OAK LODGE WATER SERVICES

BOARD OF DIRECTORS

OAK LODGE WATER SERVICES

FEBRUARY 21, 2023

PUBLIC MEETING OAK LODGE WATER SERVICES BOARD OF DIRECTORS FEBRUARY 21, 2023 at 6:00 p.m.

- 1. Call to Order and Hybrid Meeting Facilitation Protocols
- 2. Call for Public Comment
- 3. Presentation of Draft Wastewater Master Plan
- 4. Consideration of Contract Award for Lift Station 2 Construction
- 5. Consent Agenda
 - a. December 2022 Financial Report
 - b. Approval of January 11, 2023 Board Meeting Minutes
 - c. Approval of January 17, 2023 Board Meeting Minutes
 - d. Approval of FY 2024 Budget Calendar
 - e. Approval of Contract Award for Process Blower Installation
- 6. Presentation of Quarterly Capital Projects Prioritization Report
- 7. Consideration of Resolution 2023-0014 Authorizing a Budget Transfer in Fiscal Year 2023
- 8. Business from the Board
- 9. Department Reports
 - a. General Manager
 - b. Human Resources
 - c. Finance
 - d. Technical Services
 - e. Field Operations
 - f. Plant Operations
- 10. Recess to Executive Session

Convene Executive Session under ORS 192.660(2)(h) to consult with counsel concerning the legal rights and duties of a public body with regard to current litigation or litigation likely to be filed, and

ORS 192.660(2)(d) to conduct deliberations with persons designated by the governing body to carry on labor negotiations.

11. Adjourn Executive Session

If necessary, Board may take action on items discussed in Executive Session.

12. Adjourn Regular Meeting

AGENDA ITEM

TitleCall to OrderItem No.1DateFebruary 21, 2023

Summary

The Chair will call the meeting to order with a quorum of the Board at the noticed time.

The General Manager will review the meeting protocols before business is discussed.

AGENDA ITEM

TitleCall for Public CommentItem No.2DateFebruary 21, 2023

Summary

The Board of Directors welcomes comment from members of the public.

Written comments may not be read out loud or addressed during the meeting, but all public comments will be entered into the record.

The Board of Directors may elect to limit the total time available for public comment or for any single speaker depending on meeting length.

AGENDA ITEM

То	Board of Directors
From	Brad Albert, District Engineer
Title	Presentation of Draft Wastewater Master Plan
Item No.	3
Date	February 21, 2023

Summary

Oak Lodge Water Services (OLWS) contracted with Water Systems Consulting, Inc. (WSC) to develop a Wastewater Master Plan (WWMP) to guide the planning of capital project expenditures through a 30-year planning horizon. OLWS has established four core commitments to customers and the WWMP takes these into account in the evaluation of the wastewater system and the recommendations provided.

The OLWS wastewater service area is located in northwestern Clackamas County and serves the communities of Oak Grove, Jennings Lodge, and portions of the adjacent municipalities of Milwaukie and Gladstone. OLWS owns the portion of the lateral service pipes that collect raw wastewater from individual customers between the private property line and the wastewater collection main. Wastewater collection mains range in size from 4- to 30-inch diameter pipes, with several of the larger diameter pipes designated as trunks that convey the wastewater towards the wastewater treatment plant (WWTP) located on SE Renton Avenue. Due to the topography of the service area, several lift stations which discharge through pressurized force mains are required to convey the collected wastewater to the WWTP. The WWTP treats the wastewater prior to discharge to the Willamette River.

Operations and maintenance responsibilities for the wastewater system are divided between treatment and collections, with shared support between the teams provided when necessary. Data on the condition of existing assets are collected and stored within several software programs that aid the operations teams to plan and prioritize work orders and preventative maintenance tasks across the system. The evaluations and recommendations within this WWMP are partially based upon data provided by OLWS from these software systems, as well as additional data that was collected by the WSC-led consultant team.

The OLWS wastewater and treatment system must comply with federal, state, and local regulations associated with publicly owned wastewater systems. During the preparation of this WWMP, the Oregon Department of Environmental Protection issued a new Waste Discharge Permit (#100986) for OLWS that lowered some of the waste discharge parameters for the disposal of treated wastewater into the Willamette River.

Collection System

OLWS has conducted CCTV inspections on 98% of the collection system piping. Although the condition data from those CCTV inspections was collected using different defect coding systems over the years, the data was converted into National Association of Sewer Service Companies Pipeline Assessment Certification Program (NASSCO PACP) equivalent defect scores for use in the evaluation. The pipe condition can be used to represent the likelihood of failure, with PACP Grade 4 and 5 defects requiring repair or replacement within the next 5 to 10 years to minimize the risk of failure. A proposed system for estimating consequence of failure was also proposed to support a risk-based prioritization method for determining where to invest in repairs when resources are limited.

Wastewater Treatment Plant

The OLWS WWTP provides secondary treatment using activated sludge processes with ultraviolet (UV) disinfection to meet waste discharge requirements. The WWTP is rated for a total capacity of 20 mgd following a significant expansion in 2012 when most of the existing equipment was installed.

Brown and Caldwell (BC) utilized a combination of visual inspections, review of operational data, and discussions with OLWS operations staff to assess the condition, integrity, and operability of equipment at the WWTP. Findings from the assessment were used to make condition-based repair recommendations for the WWTP.

Capital Improvement Plan

A Capital Improvement Plan (CIP) is a planning and management tool used to create a longer term plan for capital projects as outlined by the WWMP. OLWS prepares a 6-year CIP updated annually to include anticipated timing and costs for recommended projects within the collections and treatment systems. Cost estimates are based on conceptual understanding of projects, and include a contingency markup to account for unknown aspects and a project development markup to cover planning, design, construction management, inspection, and administration costs.

Each CIP project was assigned a prioritization score based on weighted criteria identified by OLWS. Criteria include asset criticality and condition, customer criticality, regulatory mandates, relationship to other projects, ability to leverage outside funding, level of service, alignment with OLWS Board goals and adopted plans, public interest, and operations and maintenance effectiveness and efficiency. The recommended CIP takes prioritization scoring into account, but also strives to level spending which requires some deviations from strict adherence to prioritization scores.

Past Board Presentations

• July 2022 – Population Forecasting

- September 2022 Inflow and Infiltration / Levels of Service
- November 2022 Tertiary Treatment Options
- December 2022 Capital Improvement Plan

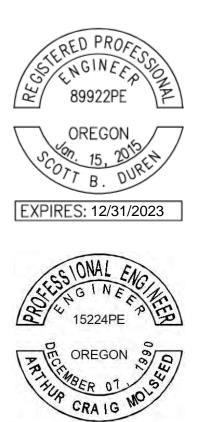
Next Steps


The Draft WWMP is presented at the February Board meeting to receive feedback and answer questions. The feedback that Staff receives from the February Board meeting will be incorporated in the final WWMP. Staff will present the final WWMP at the March Board meeting for final adoption.

Wastewater Master Plan

FEBRUARY 2023

OAK LODGE WATER SERVICES



OAK LODGE WATER SERVICES

Wastewater Master Plan

FEBRUARY 2023

SCOTT DUREN, PE EXECUTIVE SUMMARY, CHAPTERS 1, 2, 3, 4, 5, 7, 8,

ARTHUR MOLSEED, PE CHAPTER 6

EXPIRES: DECEMBER 31, 2024

Prepared by Water Systems Consulting, Inc and Brown and Caldwell

ACKNOWLEDGEMENTS

The Wastewater Master Plan Consultant Team. would like to acknowledge the significant contributions of Oak Lodge Water Services, including the following staff.

Sarah Jo Chaplen, General Manager Brad Albert, PE, District Engineer David Hawkins, Plant Superintendent Jeff Page, Utility Operations Director Chad Martinez, Collections Field Supervisor Haakan Ogbeide, PE, Civil Engineer Gail Stevens, Finance Director The Wastewater Master Plan was prepared by Water Systems Consulting, Inc. and Brown and Caldwell. The primary authors are listed below.

Adam Donald, PE Scott Duren, PE Jeff Lawrence Jason Rice, PE

Art Molseed, PE Mark Strahota, PE Patricia Tam Heather Lough, PE Rick Kelly, PE Water Systems Consulting, Inc. and Brown and Caldwell would like to acknowledge the contributions of Angelo Planning Group, Leeway Engineering, SFE Global, and West Yost. The primary contributors by firm are listed below.

Andrew Parish, AICP Matt Hastie, AICP

Rob Lee, PE Yarrow Murphy, PE

Mike Lemmen Glenn Cumyn Dylan Carver

Raj Kapur Walt Meyer, PE

MUSC

TABLE OF CONTENTS

Executiv	/e Summary	1
1.0	Introduction	1-1
1.1	Objectives	1-2
1.2	Authorization	1-2
1.3	Relationship to Other Documents	1-2
2.0	Existing Wastewater System	2-1
2.1	Existing Service Area	
2.2	Collection System Inventory	
2.3	Wastewater Treatment	
2.4	Maintenance Activities and Programs	2-14
2.5	Data Systems and Information Management	2-16
3.0	Regulations and Policies	3-17
3.1	Interagency Agreements	3-18
3.2	Rules and Regulations	3-19
3.3	Potential Future Regulatory Considerations	3-21
4.0	Wastewater Flows and Loads	4-1
4.1	Elements of Total Wastewater Flow	4-2
4.2	Base Wastewater Flows	4-3
4.3	Wet Weather Flows	4-15
4.4	Flow Summary	4-22
4.5	Treatment Plant Flows and Loadings	4-24
5.0	Collection System Analysis	5-1
5.1	Hydraulic Model Development	
5.2	Hydraulic Capacity Evaluation	
5.3	Condition Assessment	5-13
5.4	Rainfall Derived Infiltration and Inflow Reduction	5-23
5.5	Recommended Projects	5-30
6.0	WWTP Assessment and Analysis	6-1
6.1	Introduction and Objectives	6-2
6.2	Summary of Projected Flows and Loads	6-2
6.3	WWTP Capacity Assessment	6-3
6.4	Identification and Evaluation of WWTP Alternatives	6-7
Wastev	water Master Plan	

Table of Contents

6.5	Develo	opment of Costs	6-9
6.6	WWT	P Alternatives Evaluation	6-10
7.0		Capital Improvement Plan	7-1
7.1	CIP Development Methodology7-2		
7.2	Recommended Capital Improvement Plan7-5		
7.3	Capita	al Improvement Projects	7-5
7.4	Staffin	g Considerations	7-12
7.5	Fundir	ng and Financing	7-13
7.6	CIP S	ummary	7-14
Reference	ces	1	
Appendi	хA	WWTP Description and Condition Assessment of Unit Processes	A
Appendi	хВ	WWTP Historical Performance	B
Appendi	хC	WWTP Operations	C
Appendi	хD	WWTP Regulatory Framework	D
Appendi	хE	Model Development TM	E
Appendi	x F	Buildable Lands Inventory	F
Appendi	x G	Flow Monitoring TM	G
Appendi	хH	Recommended Pipe Upsizing	Н
Appendi	хI	WWTP Capacity Assessment	I
Appendi	хJ	WWTP Alternatives Workshop Materials	J
Appendi	хK	CIP Project Cost Opinions	K
Appendi	хL	CIP Project Map	L

LIST OF FIGURES

Figure 2-1: Location Map	
Figure 2-2: Oak Lodge Water Services' Service Area	
Figure 2-3: OWLS-Owned Pipe Material Distribution on a Length Basis	
Figure 2-4. WWTP process schematic	
Figure 2-5. Aerial view of WWTP with major facilities labeled	
Figure 2-6: Mains Requiring Increased Maintenance	
Figure 4-1: Components of Wastewater Flow	4-2
Figure 4-2: Diurnal Curve for Collection System Flow	
Figure 4-3: Allocation of Wastewater Flows	4-5
Figure 4-4: Flow Monitor Locations	4-16
Figure 4-5: RTK Unit Hydrograph Parameters (A Toolbox for Sanitary Sewer Ove and Planning (SSOAP) and Applications)	•
Figure 4-6: Comparison of Storm Hyetographs	4-20
Figure 4-7: 5-Year, 24-Hour Storm with Antecedent Rainfall Hyetograph	4-23
Figure 5-1: Existing Capacity Deficiencies Under PWWF Condition (Part 1)	5-4
Figure 5-2: Existing Capacity Deficiencies Under PWWF Condition (Part 2)	5-5
Figure 5-3: Buildout Conditions Results Under Design Storm (Part 1)	5-8
Figure 5-4: Buildout Conditions Results Under Design Storm (Part 2)	5-9
Figure 5-5: Recommended Gravity Main Upgrades (Existing and Buildout Loading	g) 5-11
Figure 5-6: Consequence of Failure of Gravity Mains	5-19
Figure 5-7: Likelihood of Failure for Gravity Mains	5-22
Figure 5-8: Risk within OLWS Collection System	5-24
Figure 5-9: Key RDII Locations	5-28
Figure 5-10: Proposed Main Upsizing	5-32
Figure 6-1: MLE Process Schematic	6-14
Figure 6-2: A2O Process Schematic	6-15
Figure 6-3: SND Process Schematic	6-16
Wastewater Master Plan	

MUSC

Figure 6-4: SND Process Schematic
Figure 6-5: Layout of Recommended SND/A2O Alternative
Figure 6-6: Site Footprint Allocated for Future Tertiary Filters
Figure 6-7: 2012 Record Drawings Showing Hydraulic Profile Assumptions for Future Tertiary Filters
Figure 6-8: Tertiary Filtration Facility Conceptual Layout - Plan View
Figure 6-9: Tertiary Filtration Facility Conceptual Layout - Section View
Figure 6-10: Existing Solids Handling Facilities
Figure 6-11: Proposed Solids Handling Process Flow Schematic
Figure 6-12: Alternative 1 - North Solids Handling Facility and Expansion of Rectangular Digesters
Figure 6-13: Alternative 2 - South Solids Handling Facility and Expansion of Rectangular Digesters
Figure 6-14: Alternative 3 - South Solids Handling Facility and North Circular Digesters 6-43

LIST OF TABLES

Table 2-1: Gravity Pipe Summary
Table 2-2: History of WWTP Improvements 2-8
Table 2-3. Major Equipment Design Data
Table 3-1: NPDES Permit Waste Discharge Limits 3-21
Table 4-1: Peaking Factors 4-4
Table 4-2. Wastewater Generation Factors 4-6
Table 4-3. Wastewater Flow per Equivalent Dwelling Unit
Table 4-4. Existing Wastewater Flows in 2022 within the Oak Lodge Water ServicesWastewater Service Area
Table 4-5. Summary of BLI Vacant Parcel Analysis 4-10
Table 4-6. Portland State University Annual Historical Population Estimates for Oak Lodge Water Service Area 4-12
Table 4-7. Future Population Forecasts for Oak Lodge Water Service Area 4-12
Table 4-8. Population and Growth Projections for Wastewater Master Plan
Table 4-9. Existing and Projected Buildout Wastewater Flows for OLWS Wastewater ServiceArea - 2022 to 20524-14
Table 4-10: Additional Loading at Buildout 4-15
Table 4-11: Estimated Groundwater Infiltration
Table 4-12: Top Five Rain Events (24 Hour) by Total Rain During Wet Weather Flow Monitoring
Table 4-13: Existing Peak Wet Weather Flow and RDII 4-21
Table 4-14: RDII Calculated for Contributing Area By Basin
Table 4-15: Summary of Wastewater Collection System Flows
Table 4-16: Summary of Wastewater Flows for WWTP Analysis
Table 4-17: WWTP Historical Flows and Loadings and Peaking Factors
Table 4-18: Summary of Treatment Plant Flows and Loads
Table 5-1: Hydraulic Capacity Evaluation Criteria 5-2
Table 5-2: Lift Station Results Under Existing Loading
Wastewater Master Plan Oak Lodge Water Services vii

Table 5-3: Lift Station Results Under Buildout Loading	5-7
Table 5-4: Upsized Pipe Summary	5-12
Table 5-5: COF Evaluation Criteria	5-14
Table 5-6: COF Score by Pipe Diameter	5-15
Table 5-7: COF Score by Pipe Depth	5-15
Table 5-8: COF Score by Road Type	5-16
Table 5-9: COF Score by Land Use of Service Area	5-16
Table 5-10: COF Scores Based on Distance from Water Bodies	5-17
Table 5-11: COF Score Weighting	5-18
Table 5-12: Recommended Scores for Mains without PACP Scores	5-21
Table 5-13: RDII Reduction Values	5-25
Table 5-14: Potential RDII Reduction from Rehabilitating Existing Grade 4/Grade 5 D	•
Table 5-15: RDII Reduction Needs	5-27
Table 5-16: Recommended Projects	5-31
Table 6-1: Summary of Projected Flows and Loads	6-3
Table 6-2. Maximum Capacities by Unit Process	6-4
Table 6-3: Evaluation Criteria and Scoring Factors	6-8
Table 6-4: Screenings Removal Equipment Alternatives	6-11
Table 6-5: Grit-Removal Equipment Alternatives	6-12
Table 6-6: Secondary Treatment System Alternatives Screening	6-13
Table 6-7: Secondary Treatment Design Criteria	6-14
Table 6-8: Secondary System Alternatives Cost Comparison	6-17
Table 6-9: Disinfection Alternatives	6-20
Table 6-10: Tertiary Filtration Design Criteria	6-21
Table 6-11: Tertiary Filter Alternatives - Site Footprint and Hydraulic Profile Evaluatio	n 6-23
Table 6-12: Tertiary Filtration Alternatives Screening	6-24
Table 6-13: Summary of Proposed Disk Filter Equipment	6-25
Table 6-14: Anticipated Project Costs - Tertiary Filtration Facility	6-29
Table 6-15: Biosolids Handling and End Use Alternatives	6-32

Table 6-16: Aerobic Digestion Design Criteria	. 6-33
Table 6-17: Digestion Alternatives	. 6-35
Table 6-18: Thickening Equipment Alternatives	. 6-36
Table 6-19: Dewatering Equipment Alternatives	. 6-36
Table 6-20: Thickening and Dewatering Equipment Design Criteria	. 6-37
Table 6-21: Solids Handling System Alternative Cost Estimate	. 6-44
Table 6-22: Solids Handling System Alternatives Comparison	. 6-45
Table 7-1: Prioritization Matrix Criteria and Weights	7-4
Table 7-2. Collection System (C) Capital Improvement Program Implementation	7-7
Table 7-3. Treatment (T) Capital Improvement Program Implementation	7-8
Table 7-4. Planning (P) Capital Improvement Program Implementation	7-9
Table 7-5. Capital Improvement Program Implementation Summary	7-9
Table 7-6: Projects from Existing Collections CIP	. 7-10
Table 7-7: Projects from Existing Treatment CIP	7-11

ACROYNMS & ABBREVIATIONS

A20	Anaerobic-Anoxic-Oxic
AACE	Advancement of Cost Engineering International
ABAC	Ammonia-Based Aeration Control
ALUM	Aluminum Sulfate
BC	Brown and Caldwell
BFT	Belt Filter Press
BLI	Buildable Lands Inventory
BOD	Biochemical Oxygen Demand
BWF	Base Wastewater Flow
CCI	Construction Cost Index
CCTV	Closed Circuit Television
CFR	Code of Federal Regulations
CIP	Capital Improvement Plan
COF	Consequence of Failure
CWSRF	Clean Water State Revolving Fund
DEQ	Department of Environmental Quality
DO	Dissolved Oxygen
DS	Digested Sludge
EAM	Enterprise Asset Management
EDU	Equivalent Dwelling Unit
ENR	Engineering News-Record
EPA	Environmental Protection Agency
FTE	Full-Time Equivalent
GBT	Gravity Belt Thickener
GIS	Geographic Information System
GWI	Groundwater Infiltration
HP	Horsepower

Acroynms & Abbreviations

MUSC

HRT	Hydraulic Retention Time
IFAS	Integrated Fixed Film Activated Sludge
IGA	Intergovernmental Agreement
ILS	Influent Lift Station
IMLR	Internal Mixed Liquor Recycle
INF	Influent
KWH/D	Kilowatt-Hour per Day
LB	Pound
LOF	Likelihood of Failure
LS	Lift Station
MBR	Membrane Bioreactor
MGD	Million Gallons Per Day
MG/L	Milligrams per Liter
МН	Manhole
MLE	Modified Ludzack-Ettinger
NASSCO	National Association of Sewer Service Companies
ΝΟΑΑ	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
NPV	Net Present Value
NRCS	Natural Resources Conservation Science
OAR	Oregon Administrative Rule
OLWS	Oak Lodge Water Services
O&M	Operations & Maintenance
OPCC	Opinion of Probable Construction Cost
ORS	Oregon Revised Statute
PACP	Pipeline Assessment Certification Program
POS	Parks and Open Space
POTW	Publicly Owned Treatment Works
PSU	Portland State University
PWWF	Peak Wet Weather Flow

Acroynms & Abbreviations

MWSC

RAS	Return Activated Sludge
RDII	Rainfall Derived Infiltration and Inflow
RDT	Rotary Drum Thickener
RLIS	Regional Land Information System
SCADA	Supervisory Control and Data Acquisition
SCS	Soil and Conservation Service
SDC	System Development Charge
SF	Square Feet
SHB	Solids Handling Building
SND	Simultaneous Nitrification and Denitrification
SOR	Surface Overflow Rate
SSMP	Sanitary Sewer Master Plan
SSO	Sanitary Sewer Overflow
SVI	Sludge Volume Index
ТР	Total Phosphorus
TSS	Total Suspended Solids
TWAS	Thickened Waste Activated Sludge
USDA	United States Department of Agriculture
UV	Ultraviolet
VSR	Volatile Solids Reduction
WAS	Waste Activated Sludge
WES	Water Environment Services
WRF	Water Reclamation Facility
WSC	Water Systems Consulting
WWF	Wet Weather Flow
WWMP	Wastewater Master Plan
WWTP	Wastewater Treatment Plant

Wastewater Master Plan

EXECUTIVE SUMMARY

The following document describes the evaluation of the Oak Lodge Water Services' wastewater system comprising of collections, conveyance, and treatment elements. The existing system was evaluated under current and future conditions to provide recommendations for improvements over the 30-year planning horizon from 2022 through 2052. These improvements are provided in a capital improvement plan that can be used to guide investments and to assess strategies for funding and financing.

CONTENTS

01 | Introduction
02 | Existing System
03 | Regulations & Po
04 | Wastewater Flow
05 | Collections System
06 | Treatment System
07 | Capital Improvem
08 | Next Steps

		 • ES-2
		 . ES-3
olicies		 ES-4
VS		 ES-6
em		 . ES-10
m		 . ES-12
nent Pla	an	 . ES-14
		 . ES-16

SECTION 01

Oak Lodge Water Services (OLWS) contracted with Water Systems Consulting, Inc. (WSC) to develop a Wastewater Master Plan (WWMP) to guide the planning of capital project expenditures through a 30-year planning horizon. OLWS has established four core commitments to customers and the WWMP takes these into account in the evaluation of the wastewater system and the recommendations provided. The 2022 WWMP updates two previous planning documents: a 2007 Sanitary Sewer Master Plan that focused on the treatment system and a 1992 WWMP. The WSC team includes multiple subconsultant specialists that have contributed to the document's preparation and are referenced where appropriate.

OLWS CORE COMMITMENTS

OLWS and WSC have evaluated the Wastewater System with the goal of meeting the core commitments.

Protect Public Health

- Provide Excellent Customer Service
- Make Smart Investments and Work to Keep Rates Affordable
- Keep Local Streams and Rivers Clean

ALL BUTTITITIE TO TAXA

Existing System

EL Joseph

The OLWS wastewater service area is located in northwestern Clackamas County and serves the communities of Oak Grove, Jennings Lodge, and portions of the adjacent municipalities of Milwaukie and Gladstone. OLWS owns the portion of the lateral service pipes that collect raw wastewater from individual customers between the private property line and the wastewater collection main. Wastewater collection mains range in size from 4- to 30-inch diameter pipes, with several of the larger diameter pipes designated as trunks that convey the wastewater towards the wastewater treatment plant (WWTP) located on SE Renton Avenue. Due to the topography of the service area, several lift stations with pressurized force mains are required to convey the collected wastewater to the WWTP. Raw wastewater passes through screens, aeration basins, clarifiers, and ultraviolet disinfection prior to discharge to the Willamette River. Waste sludge from the treatment process is digested, dewatered, and hauled offsite for land application.

The collections system is divided into six basins, with the flow collected within each basin culminating at a lift station. A map of each of the basins, the major trunk mains, and the associated lift stations is provided in Figure ES-1.

Operations and maintenance responsibilities for the wastewater system are divided between treatment and collections, with shared support between the teams provided when necessary. Data on the condition of existing assets are collected and stored within several software programs that aid the operations teams with planning and prioritizing work orders and preventative maintenance tasks across the system. The evaluations and recommendations within this WWMP are partially based upon data provided by OLWS from these software systems, as well as additional data that was collected by the WSC-led consultant team. Additional details on the existing wastewater system can be found in Chapter 2.0 of this WWMP.

<text><text><text><text><text><text>

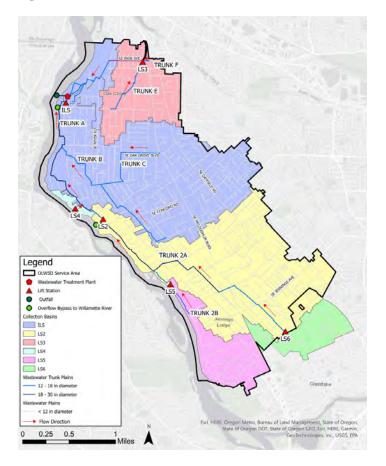


Figure ES-1. OLWS Wastewater Service Area

Regulations and Policies

OLWS maintains interagency agreements (IGAs) with several adjacent wastewater providers. A summary of each IGA is provided below:

CLACKAMAS COUNTY

The majority of the OLWS collections system is located within Clackamas County roadways. An IGA streamlines the ability for OLWS to excavate and repair buried pipelines within County roadways. Additional IGAs with Clackamas Water Environment Services (WES) delineates service area boundaries and enables resource sharing during emergencies.

CITY OF GLADSTONE

Since 1971, a series of IGAs have covered the agreement for OLWS to receive, convey, and treat wastewater flows from the northern portion of Gladstone in an area that was formerly part of the Oak Lodge Sanitary District No. 2. At the time of writing, OLWS and Gladstone are working to finalize an updated IGA.

CITY OF MILWAUKIE

An IGA establishes rates and requirements for a limited number of properties within each agency's service boundary that are more efficiently provided by the other party's collection system.

The OLWS wastewater and treatment system must comply with federal, state, and local regulations associated with publicly owned wastewater systems. During the preparation of this WWMP, the Oregon Department of Environmental Protection issued a new Waste Discharge Permit (#100986) for OLWS that lowered some of the waste discharge parameters for the disposal of treated wastewater into the Willamette River. In particular, lower limits for both carbonaceous BOD₅ and total suspended solids present compliance challenges for the existing facilities during the shoulder seasons. The new waste discharge limits are provided in Table ES-1. Additional details on the regulations and policies can be found in Chapter 3.0 of this WWMP.

Table ES-1. NPDES Permit Waste Discharge Limits

Parameter	Average Effluent Concentratio		
Farameter	Monthly (mg/L)	Weekly (mg	
		MAY 1 - OC	
Carbonaceous BOD ₅ (CBOD ₅)	10	15	
Total Suspended Solids (TSS)	10	15	
	Ν	OVEMBER	
CBOD5	30	45	
TSS	30	45	
	•		

NATIONAL DEQ arrowshift arrowshift	WASTE DIS Oregon Departmen Northwest Re 700 NE Mul Portl	CHARGE ELIM CHARGE PERN at of Environmental Qui gion – Portland Office toomah St., Suite 600 and, OR 97232 ne: 503-229-5263	INATION SYSTEM IIT ality
Issu	ed pursuant to ORS 4681	8.050 and the federal C	lean Water Act
SSUED TO:	SOU	RCES COVERED B	Y THIS PERMIT:
Dak Lodge Water	Type of Waste	Outfall Number	Outfall Location
Services District	Treated Wastewater	001	45.4244/-122.6546
14611 SE River Rd. Oak Grove, OR 97267		001A	45.4244/-122.6540
Own CONTREE STORE CONT	Recycled Water	006	Specified in Recycled Water Use Plan (when prepared)
	Reuse Biosolids	N/A	Specified in Biosofids Management/Land Application Plan
FACILITY LOCATION		RECEIVING STR	EAM INFORMATION:
FACILITY LOCATION: Oak Lodge Water Services District Water Reclamation Facility 13750 Sfit Renton Avenue Oak Grove, OR 97222 County: Clackamias EPA Pernit Type: Major		WRD Basin: Willan USGS Sub-Basin: L Receiving Stream in NHD Reach Coder LLID: 1227618456	ower Willamette ame: Willamette 17090012006672-79%
ssued in response to App indings in the permit reco	lication No. 971683 rece		permit is issued based on the land us May 1, 2022
Bram Tiffany Yelton-Bram, W Northwest Region	/Q Manager	April 7, 2022 Issuance Date	Effective Date
		TTED ACTIVITIES	

is prohibited.

Revision 1 2021 Version 2.3

AT A GLANCE

In 2022, OLWS received a new NPDES permit that imposed stricter discharge limits into the Willamette River. The WWMP includes a forecast of potential future regulations that were evaluated as part of the WWTP planning process. Future permit updates may include additional pollutants.

ions			Paily	
ng/L)	Average (lb/d)	Weekly Average (lb/d)	Daily Maximum (lb/d)	
стов				
	490	740	980	
	490	740	980	-
(1 - AF	PRIL 30	2000	5 200	
	2,600	3,900 3,900	5,200 5,200	
	2,000	3,200	5,200	

SECTION 04

Wastewater Flows

To evaluate the hydraulic performance of the wastewater system, the volume of wastewater flow must be estimated. Wastewater flow consists of the following elements:

- Base Wastewater Flow (BWF) is the flow that enters the system under normal • average conditions, regardless of weather.
- Groundwater Infiltration (GWI) occurs in wet weather months when groundwater elevations are elevated with respect to buried elements of the collection system.
- Rainfall-Derived Infiltration and Inflow (RDII) occurs during and after rainstorms resulting from inflow through manhole covers and cross-connections and infiltration through pipe and manhole joints, cracks, and fractures.

AT A GLANCE

The OLWS system sees relatively high volumes of RDII that increases pumping and treatment costs, and increases the risks of sanitary sewer overflows (SSOs). The Master Plan recommends basin focused rehabilitation projects to systematically address and reduce RDII. See Projects C-1 through C-6 in the CIP.

Existing and Future Base Wastewater Flows

BWF across the existing system was estimated using data from the WWTP Influent Lift Station flow meters during dry weather periods. The total BWF across the system is estimated to be 1.85 million gallons per day (mgd). Data from the WWTP was also used to develop an average diurnal curve to estimate the typical fluctuations in wastewater during the course of a 24-hour day. Winter water consumption records were used to proportionally allocate BWF geospatially across the OLWS service area and to identify representative wastewater generation factors for different residential and nonresidential land use categories.

Angelo Planning Group completed a buildable lands inventory (BLI) to estimate the capacity for growth within the OLWS wastewater service area in three categories:

Buildout Development.

The capacity for currently vacant and partially vacant properties to develop.

Middle Housing Densification. The capacity for increased density of development for vacant and partially vacant properties and for conversions of 5 percent of developed single-family properties into multi-family properties.

AT A GLANCE

The OLWS service area is nearly built-out. The majority of growth will likely be infill development. A buildable lands inventory was conducted to determine the capacity and results in a relatively small growth rate, meaning that the WWTP and most pipes and pump stations are sufficiently sized if RDII can be reduced.

> Full development of the capacity identified in the BLI over the 30-year planning horizon would result in an

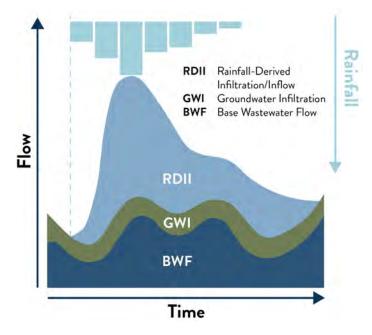
0.77% which is comparable to, and slightly higher than, growth rates forecasted by the Portland State University Population Research Center. The calculated future BWF for the OLWS wastewater system assumes the full development capacity in the buildable lands inventory is 2.19 mgd.

Commercial Redevelopment.

Conversion of underutilized parcels near the SE Park Avenue Transit Station into multifamily housing.

AVERAGE ANNUAL GROWTH RATE OF

Existing and Future GWI and RDII


To determine the amount of GWI and RDII in the OLWS wastewater system, flow monitoring was conducted at eight locations during the winter of 2021-2022. The flow monitoring data during storms that produced more than 1 inch of rain over 24 hours was used to develop parameters for estimating RDII flows based on rainfall patterns. The volume of GWI was estimated by subtracting the BWF from flow monitoring data during a period without rainfall.

Since wet weather flows are dependent upon the volume and peak intensity of rainfall during a storm, a "design storm" must be selected to estimate flows. A 5-year return interval storm with a total rainfall of 3.0 inches over 24 hours, as defined by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) was used to establish existing and future wet weather flow. The flows associated with this storm are used to evaluate the capacity of the collection system to achieve the design criteria for freeboard and SSOs that are identified in Chapter 5.0.

In the evaluation of the WWTP, the highest Peak Wet Weather Flow (PWWF) observed over the six years of available data occurred when a smaller antecedent storm with approximately 1 inch of total rainfall occurred in the 24 hours prior to a larger 24 hour storm with two or more inches of total rainfall. In order to better align with historic PWWF at the plant, a revised hyetograph was generated to include an antecedent storm of 1.26 inches of rainfall in the 48-hours prior to the 5-year, 24 hour design storm. The antecedent storm hyetograph was generated based on storm data from the flow monitoring period and represents an actual 48-hour storm in the OLWS service area.

Table ES-2 provides a summary of wastewater flows used for the evaluation and Table ES-3 presents the wastewater loading at the WWTP. Additional details on the existing and buildout wastewater system flows can be found in Chapter 4.0 of this WWMP.

Table ES-2. Current and Future Flows for OLWS Wastewater System

Year	Equivalent Dwelling Units (EDU)	Base Wastewater Flow (gpd)	Peak Wet Weather Flow Collection System (gpd)	Peak Wet Weather Flow WWTP (gpd)
2022 – Existing	14,151	1,853,899	17,504,994	19,059,887
2052 - Buildout	16,726	2,191,112	17,956,410	19,522,181

Table ES-3. WWTP Loading

Pa	irameter	2022	2052
Flo	ow (mgd)		
•	Average dry weather	2.2	2.5
•	Average dry weather	3.2	3.5
•	Average wet weather	4.4	4.8
•	Max month dry weather	3.0	3.3
•	Max month wet weather	6.3	6.7
•	Peak day	15.1	15.5
•	Peak hour	19.1	19.5
BC	DD (IP/q)		
•	Annual average	4,950	5,850
•	Max month dry weather	5,400	6,380
•	Max month wet weather	6,290	7,440
TS	S (lb/d)		
•	Annual average	4,750	5,620
•	Max month dry weather	5,230	6,180
•	Max month wet weather	6,370	7,530

Note: ADWF is different than BWF. See Chapter 4 for more information.

AT A GLANCE

Although only 2,575 new dwelling units are projected over the next 30 years, OLWS sees a nearly tenfold increase in flows during wet weather. A diligent approach to rehabilitation of aging wastewater mains, manholes, and laterals will reduce RDII in wet weather, lessen the risk of sewer overflows, avoid costly pipe upsizing projects, and reduce the costs for pumping and treatment.

Collections System Analysis

The collection system analysis looked at both capacity and condition data to determine deficiencies and to identify recommended improvements.

Hydraulic Capacity Evaluation

WSC developed a hydraulic model of the OLWS wastewater collection system to evaluate capacity based on a 5-year, 24-hour storm. Working with OLWS staff, evaluation criteria for wastewater mains focused on providing a minimum of two feet of freeboard between peak water surface elevations in manholes and the manhole rim to prevent overflows. In shallow manholes where the available freeboard is less than two feet, a maximum allowable surcharge relative to the overall manhole depth was used. Lift station capacity required the ability to pass wet weather flow with the largest pump out of service. Sanitary sewer overflows (SSOs) at any of the outfalls during the design storm are also not acceptable to OLWS, so surcharging must be kept below overflow weir elevations.

At buildout conditions, the wastewater system is anticipated to have 83 manholes (or approximately 3.6 percent of total system manholes) with insufficient freeboard and 36 locations where a SSO is anticipated. To address the capacity deficiencies at buildout, 19,259 linear feet of wastewater piping (primarily trunk mains and also representing approximately 3.6 percent of total pipe length in the system) must be upsized and the firm capacity of Lift Stations 2 and 5 must be increased.

AT A GLANCE

Unless action is taken, OLWS will experience multiple SSOs across the collection system. Upsizing of trunk mains is needed, but due to the locations, will require a large investment.

Condition Evaluation

OLWS has conducted closed-circuit television (CCTV) inspections on 98 percent of the collection system piping. Although the condition data from those CCTV inspections was collected using different defect coding systems over the years, the data was converted into NASSCO PACP equivalent defect scores for use evaluating the need for repairs and rehabilitation across the wastewater system. The pipe condition can be used to represent the likelihood of failure, with PACP Grade 4 and 5 defects requiring repair or replacement within the next 5 to 10 years to minimize the risk of failure. A proposed system for estimating consequence of failure was also proposed to support a risk-based prioritization method for determining where to invest in repairs when resources are limited.

RDII Reduction Program

OLWS currently has capacity and condition deficiencies in the collection system that could be simultaneously addressed through an RDII reduction program. Focusing condition-based repairs within basins that are upstream of known capacity deficiencies may reduce the amount of trunk main upsizing while addressing the risk of structural failures.

A pilot-program for RDII reduction is recommended for the Lift Station 5 basin. Sub-basin flow monitoring will be conducted to identify areas of highest RDII to determine the extent and nature of wastewater rehabilitation. Smoke testing in each basin will identify potential sources of surface water entering the collection system so that repairs can be made. Focusing on those pipes with Grade 4 and 5 defects, rehabilitation of the wastewater main, the service laterals, and the manholes will be completed to both address structural defects and to reduce RDII. Following completion of repairs, another round of flow monitoring will be conducted to estimate the magnitude of RDII reduction and to guide future RDII reduction efforts in the Lift Station 2 and 6 basins. Additional details on the analysis of the OLWS wastewater collection system can be found in Chapter 5.0 of this WWMP.

AT A GLANCE

OLWS diligently inspects wastewater mains at regular intervals to assess condition before an unplanned failure occurs. These assessments have identified systemwide needs for repairs over the next 5 to 10 years. Continuous rehabilitation with prioritization of the highest risk mains will allow OLWS to invest wisely.

AT A GLANCE

Without an ongoing RDII reduction program, expensive pipe upsizing will be necessary to avoid SSOs. Basin-wide investigations and targeted pipe repairs, most of which can be completed without excavation, will reduce capital and long-term operational costs.

Wastewater Treatment Plant Analysis

The OLWS WWTP provides secondary treatment using activated sludge processes with ultraviolet disinfection to meet waste discharge requirements. The plant is rated for a total capacity of 20 mgd following a significant expansion in 2012 when a majority of the existing equipment was installed.

Existing WWTP Assessment

Brown and Caldwell (BC) utilized a combination of visual inspections, review of operational data, and discussions with OLWS operations staff to assess the condition, integrity, and operability of equipment at the WWTP. Findings from the assessment were used to make condition-based repair recommendations for the WWTP. Additional details can be found in Appendix A of the WWMP.

Plant data from 2016 to 2021 was evaluated to assess historical trends and operational performance. Effluent quality has almost consistently met permit requirements during the period with only recent exceedance of total suspended solids (TSS). With a new permit that limits the discharge concentration for carbonaceous biochemical oxygen demand (CBOD) and TSS to 10 mg/L, the WWTP may not reliably meet the new limits, especially for TSS. Future forecasts of long-term regulatory trends indicate that the WWTP could be subject to limits on total phosphorous and ammonia in upcoming permit cycles, which may require modifications to allow biological nutrient removal to take place.

AT A GLANCE

The WWTP cannot reliably meet new permit limits for total suspended solids. A high priority project to add tertiary treatment filters (T-12) will be completed.

A capacity assessment was conducted for the WWTP to identify existing capacity constraints and the timing of those constraints for each major treatment process. Extensive sampling throughout the plant was used to characterize the wastewater and to calibrate a biological process model and plant-wide solids mass balance to assess capacity.

Near term capacity constraints between now and 2030 include:

- Aeration system is near or at capacity under dry weather conditions
- Secondary clarifiers projected to reach solids loading limit under dry weather conditions when one clarifier is out of service
- Aerobic digesters require upstream thickening of solids to achieve hydraulic retention time requirements for Class B biosolids and aeration capacity may need to be increased to allow one of the four digesters to be taken out of service
- Any upsets to settling characteristics or clarifier operations could cause effluent to exceed the 10 mg/L limit for TSS

Longer term capacity constraints, beyond 2030, include the following:

- Aeration blowers projected to reach firm capacity limit in 2035 for wet weather conditions
- Similar to near term, the aeration capacity of the digester system is anticipated to be exceeded

The timing and extents of capacity constraints are based on the assumption that RDII will not increase due to aging wastewater mains. If RDII reduction projects are not completed, capacity constraints in the WWTP will occur sooner.

AT A GLANCE

Capacity constraints will be reached in the next 10 years due to limited aeration capacity. Improvements to the secondary treatment system will provide the necessary capacity while providing flexibility to meet potential future regulations.

Identification and Evaluation of WWTP Alternatives

Through a series of workshops with OLWS, conceptual alternatives for addressing condition and capacity deficiencies at the WWTP were identified and evaluated. Evaluation criteria included planning for future needs, operations and maintenance considerations, and environmental impacts. Conceptual cost estimates were developed for each alternative, both in terms of capital costs and long-term operational costs, to allow for comparison. The following improvements were recommended based on the results of the alternative analysis:

- Keep existing Huber Multi-Rake screens and adjust channel fit
- Keep existing grit removal equipment with improvements to HeadCell access
- Conversion of secondary treatment process to simultaneous nitrification denitrification (SND) to address aeration capacity issues
- Future addition of Anaerobic-Anoxic-Oxic (A2O) capabilities along with SND to address phosphorous removal if required in future discharge permits without the need for costly chemical addition
- Keep existing Trojan UV system and make gate and actuator improvements
- Add tertiary disc filters to reliably meet new TSS limit year-round
- Construction of a new solids handling building with redundant thickening and dewatering units, thickened waste activated sludge and digested sludge pumps, polymer and odor control equipment, electrical room, and drive-under solids storage hopper in area south of existing Digesters 1 and 2
- Replacement of Digesters 3 and 4 with two new aerobic digesters adjacent to the existing Digesters 1 and 2

Additional details on the alternatives analysis and recommendations for WWTP improvements can be found in Chapter 6.0 of this WWMP.

AT A GLANCE

Handling and managing solids at the plant is timeconsuming and creates odors. A future recommendation for a new solids handling building will reduce operational costs and avoid the need to store solids onsite.

SECTION 07

Capital Improvement Plan

A capital improvement plan (CIP) was prepared to include anticipated timing and costs for recommended projects within the collections and treatment systems. Cost estimates are based on conceptual understanding of projects, and include a contingency markup to account for unknown aspects and a project development markup to cover planning, design, construction management, inspection, and administration costs.

Each CIP project was assigned a prioritization score based on weighted criteria identified by OLWS. Criteria include asset criticality and condition, customer criticality, regulatory mandates, relationship to other projects, ability to leverage outside funding, level of service, alignment with OLWS Board goals and adopted plans, public interest, and operations and maintenance effectiveness and efficiency. The recommended CIP takes prioritization scoring into account, but also strives to level spending which requires some deviations from strict adherence to prioritization scores. The total value of the CIP is \$159,893,000. The CIP projects are divided into collections, treatment, and planning projects and are summarized in Table ES-4, 5, and 6. Additional details on the CIP can be found in Chapter 7.0 of this WWMP.

Table ES-4. Collections System CIP Projects

Project ID	Project Description	Prioritization Rank	Opinion of Probable Cost	Fiscal Years
C-1	LS 5 Basin RDII Reduction	1	\$3.02M	2023-24
C-2	LS 2 Basin RDII Reduction	1	\$4.95M	2024-25
C-3	LS 6 Basin RDII Reduction	1	\$495K	2024-25
C-4	Influent LS Basin RDII Reduction	1	\$7.17M	2025-27
C-5	LS 4 Basin RDII Reduction	5	\$205K	2026-27
C-6	LS 3 Basin RDII Reduction	6	\$8.37M	2031-32
C-7	Ongoing Condition Rehab	7	\$25.7M	2033-52
C-8	Trunk A Upsizing	13	\$11.9M	2028-30
C-9	Trunk B Upsizing	13	\$10.4M	2029-31
C-10	Trunk 2A Upsizing	15	\$1.9M	2030-31
C-11	Trunk C Upsizing	16	\$144K	2031-32
C-12 to 20	Current 6-yr CIP projects	Various	\$14.3M	2023-52
	Collection Projects Subtotal		\$88.4M	

Project ID	Project Description	roject Description Prioritization Rank		Fiscal Years
T-1,2,4,5,6,7,8&11	Secondary Treatment Upgrades for SND/A20			2026-30
T-3	Replace aeration blowers	4	\$160k	2024-25
T-9&10	Rehab secondary clarifiers 1&2 and RAS Control Center	3,9	\$3.7M	2024-29
T-12	Tertiary Filtration Facility	1	\$12.0M	2023-25
T-13	Digester Blower Replace- ment	4	\$170k	2023-26
T-14,15	UV Disinfection Rehab	12,17	\$2.5M	2023-52
T-16,17	Influent Lift Station Rehab	25,28	\$1.2M	2026-28
T-18,19,20 21,22	Headworks Improvements	16,21,24,30	\$3.7M	2033+
T-23	WWTP Air Piping Inspection	13	\$80k	2023
T-24,25	GBT and TWAS Refur- bishment	13	\$325K	2026
T-26	Solids Handling Upgrades	8	\$35M	2033+
T-27	W3 Sodium Hypochlorite Replace	29	\$150k	2031
T-28	Secondary Clarifier 3&4 Rehab	6	\$3.7M	2033+
T-29	Ongoing Electrical 26 Upgrades		\$2.3M	2023-52
T-30	Plant Drain LS Rehab	7	\$120K	2026
	Treatment Projects Subtotal		\$69.2M	

Table ES-6. Planning CIP Projects

Project ID	Project Description	Prioritization Rank	Opinion of Probable Cost	Fiscal Years
P-1	5-yr Cycle WWMP Updates	-	\$2.2M	2027,32 & beyond
	Planning Projects Subtotal		\$2.2M	

Next Steps

Treatment System Projects

A total of **30 treatment system projects** were identified as part of this wastewater master plan. Some of the recommended projects overlapped with current projects that are in the 2023-2028 OLWS 6-year CIP and have been modified accordingly. Although each project was assigned a unique prioritization score, the schedule for implementation for some projects can be grouped together to reduce costs and improve the ability to design and construct holistically. The highest priority project is T-12 which will provide a new tertiary treatment facility to improve reliability in meeting new waste discharge permit limits, particularly for TSS. A summary of the existing projects is provided below in Table ES-7.

Table ES-7. Projects from Existing Treatment CIP

Project Number	Capital Project Description
T-1,2,4,5, 6, 7, 8 & 11	Secondary Treatment Upgrades for SND/A2O: Adding density and improving controls to the existing aeration system, modifying the mixed liquor return system, and other improvements will allow the WWTP to address capacity constraints and provide the ability to meet potential future nutrient discharge limits.
T-3	Replace Aeration Blowers: Current aeration blower replacement is needed to provide reliable operations. This project is in the current OLWS CIP.
T-9,10	Rehab Secondary Clarifiers 1 & 2 and RAS Control Center: Recent condition assessment conducted by OLWS identified the need to rehab the secondary clarifiers.
T-12	Tertiary Filtration Facility: A new treatment process will improve reliability to meet new waste discharge permit limits.
T-13	Digester Blower Replacement: Current digester blower replacement is needed to provide reliable operations. This project is in the current OLWS CIP.
T-14,15	UV Disinfection Upgrades: Ongoing replacement of UV bulbs and upgrades to the flow control gates are necessary.
T-16,17	Influent Lift Station Rehab: Pump replacement and other improvements are necessary to provide reliable operations. This project is in the current OLWS CIP.
T-18,19,20 21,22	Headworks Improvements: Upgrades to screen seals in channel, access to head cell, providing a 3rd mechanical screen, and other improvements at the headworks will improve operations.
T-23	WWTP Air Piping Inspection: Inspection and identification of necessary repairs to the air piping is needed for reliable operations. This project is in the current OLWS CIP.
T-24,25	GBT and TWAS Refurbishment: A refurbishment of the existing GBT unit and replacement of TWAS pumps are necessary to provide reliabile operations.
T-26	Solids Handling Upgrades: A new solids handling building south of existing Digesters 3 & 4 and the replacement of Digesters 1 & 2 will provide improved reliability and operations for solids handling.
T-27	W3 Sodium Hypochlorite Replace: Replacement of the system is needed for reliable operations.
T-28	Secondary Clarifier 3&4 Rehab: Rehabilitation of mechanical elements are needed for reliable operations.
T-29	Ongoing Electrical Upgrades: Plant staff typically replace sensitive electrical equipment, such as variable frequency drives, to provide reliable operations.
T-30	Plant Drain Lift Station Rehab: Pump replacement and other improvements are necessary to provide reliable operations. This project is in the current OLWS CIP.

Collection System Projects

A total of **11 collection system projects** were identified as part of this wastewater master plan, which were added to supplement the existing nine projects identified by OWLS during their previous CIP process. The highest priority projects are projects C-1 through C-4, which focus on RDII reduction to alleviate the risk of SSOs. Each RDII project will include smoke testing to identify and remove any cross connections contributing inflow, flow metering to current and final levels of RDII, and rehabilitation of wastewater mains, service laterals, and manholes to reduce infiltration. The work of these projects is focused on poor condition infrastructure that needs to be replaced and has the potential to reduce the need for upsizing pipes within the collection system.

Table ES-8. Collection System CIP Projects for Addressing Capacity and Condition-Based Deficiencies

Project Number	Capital Project Description
C-1	LS5 RDII Reduction Pilot: Smoke testing 35,000 [rehab]); rehab of 173 LF of 6" pipe, 5,839 LF of 8 manholes (63 vertical feet [VF]); and rehab of 138
C-2	LS2 Basin RDII Reduction Program: Smoke testin, rehab); rehab of 11,145 LF of 8" pipe, 304 LF of 12 LF of 21" pipe; rehab of nine manholes (95 VF); an
C-3	LS6 Basin RDII Reduction Program: Smoke testin rehab); rehab of 171 LF of 8" pipe; rehabilitation of property connection. Scope is limited to OLWS-ow
C-4	ILS Basin RDII Reduction Program: Smoke testing rehab); rehab of 270 LF of 6" pipe, 12,724 LF of 8" 1,428 LF of 21" pipe; rehab of 17 manholes (179 VF
C-5	LS4 Basin RDII Reduction Program: Smoke testin rehab); rehab of 491 LF of 8" pipe; rehab of one ma connection.
C-6	LS3 Basin RDII Reduction Program: Smoke testin, rehab); rehab of 19,504 LF of 8" pipe, 1,009 LF of manholes (168 VF); and rehab of 428 laterals from
C-7	Annual Condition Rehabilitation: Annual budget for system. This project will take place after the RDII regrade 4 defects after the time of this master plan.
C-8	Trunk Main A Upsizing: Upsize Trunk Main A along deficiencies. Project scope includes the installation wastewater main. Depending on the effectiveness of reduced.
C-9	Trunk Main B Upsizing: Upsize Trunk Main B along deficiencies. Project scope includes the installation wastewater main. Depending on the effectiveness of reduced.
C-10	Trunk Main 2A Upsizing: Upsize Trunk Main 2A alo capacity deficiencies. Project scope includes the ins Depending on the effectiveness of the RDII reduct
C-11	Trunk Main C Upsizing: Upsize Trunk Main C along deficiencies. Project scope includes the installation

AT A GLANCE

Over the next 30 years,

investments necessary to deliver the expected level

of service to customers.

for capital projects,

be needed.

adjustments to SDCs,

A combination of funding

and increases in rates will

OLWS has significant

) LF of pipe; flow metering at five locations (pre- and post-rehabilitation 3" pipe, 2,556 LF of 10" pipe, and 215 LF of 12" pipe; rehab of six 3 laterals from the main to the property connection.

ng 165,414 LF of pipe; flow metering at 17 locations (pre- and post-2" pipe, 4 LF of 14" pipe, 251 LF of 18" pipe, 752 LF of 20" pipe, and 338 nd rehab of 198 laterals from the main to the property connection.

ng 6,846 LF of pipe; flow metering at two locations (pre- and postfone manhole (11 VF); and rehab of 33 laterals from the main to the wned assets.

g 207,931 LF of pipe; flow metering at 21 locations (pre- and post-3" pipe, 503 LF of 10" pipe, 250 LF of 12" pipe, 247 LF of 15" pipe, and F); and rehab of 326 laterals from the main to the property connection.

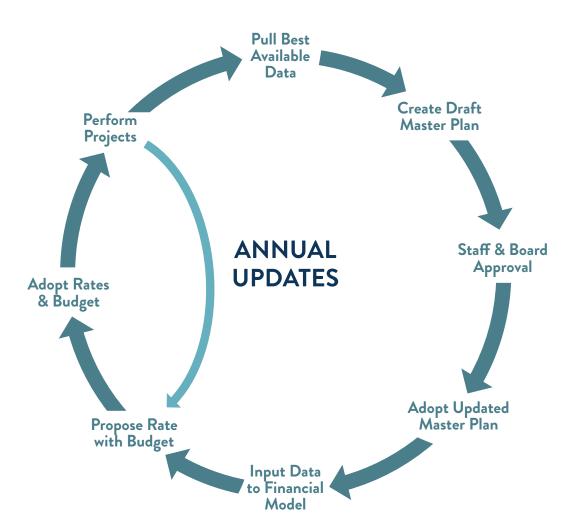
ng 2,335 LF of pipe; flow metering at one location (pre- and postnanhole (11 VF); and rehab of four laterals from the main to the property

ng 51,309 LF of pipe; flow metering at five locations (pre- and postf 10" pipe, 1,788 LF of 12" pipe, and 996 LF of 15" pipe; rehab of 16 n the main to the property connection.

for rehabilitating future Grade 5 and Grade 4 mains within the collection reduction programs and will address mains that developed Grade 5 and .

g the extents shown in Figure 5 10 and Appendix H to address capacity n of 3,516 LF of 24", 240 LF of 27", and 3,202 LF of 30" gravity of the RDII reduction in Projects C-1 through C-6, this scope may be

g the extents shown in Figure 5 10 and Appendix H to address capacity n of 362 LF of 15", 4,600 LF of 18", and 3,729 LF of 24" gravity of the RDII reduction in Projects C-1 through C-6, this scope may be


long the extents shown in Figure 5 10 and Appendix H to address istallation of 322 LF of 15" and 1,698 LF of 18" gravity wastewater main. tion in Projects C-2 and C 3, this scope may be reduced.

g the extents shown in Figure 5 10 and Appendix H to address capacity of 289 LF of 10" gravity wastewater main.

Planning Projects

WSC recommends an update to the WWMP on an approximate 5-year basis to refresh the CIP to improve the utility of the wastewater master plan. As time passes between each WWMP update, new regulations may be implemented, system conditions gradually deteriorate, and priorities for OLWS can shift. Updating the master plan every 5-years also requires less effort than developing a completely new master plan document. Project P-1 allocates budget every five years to provide an update to this wastewater master plan to facilitate future CIP development and reflect improvements made within the wastewater system. The next update will be particularly important as RDII reduction projects are completed and benefits of lower PWWFs can be assessed to determine the impacts on capacity and treatment system improvement recommendations.

Figure ES-3. Master Plan 5-Year Update Cycle

AT A GLANCE

Over time, the system will change and new needs will arise. By updating the WWMP on a 5-year cycle, the plan will stay fresh and OLWS can stay ahead of financing needs.

Staffing Considerations

Developing the WWMP has shown a need to conduct a detailed staffing analysis to determine OLWS' appropriate level of staff for current and future operations.

Staffing decisions come with many considerations that go beyond the scope of this WWMP. Individual project CIP budgets include project development costs and assume more automated processes, where appropriate. The recommended overall CIP accounts for some of the cost and should allow flexibility for OLWS to address staffing needs over the 30-year planning horizon as processes and equipment change.

Funding and Financing

OLWS will explore several options to fund the CIP including user fees, bonds, grants from outside agencies, and SDCs. The following sections will describe the potential for funding the recommended capital improvements through user fees and SDCs, bonds, or grants from outside agencies.

CIP Summary

The recommended CIP identifies approximately \$160M in projects, with roughly 50% of the work to be completed within the next 10 years. An implementation schedule that provides for an average capital improvement budget of \$8.0M per year for the next 10 years appears feasible but will likely require rate increases or additional funding mechanisms. Prioritization of projects is based upon the currently known deficiencies within the system. As continued inspections and assessments of wastewater mains, manholes, lift stations, and wastewater treatment plant facilities provide new information, there may be a need to adjust the prioritization and timing of the CIP.

1.0 Introduction

This introductory section includes a statement of the intended objectives of this planning document, a citation of the contract authorizing development of the plan, a list of the related documents and plans that influence or are influenced by this effort, and a brief description of Oak Lodge Water Services District (OLWS) and its environment.

IN THIS SECTION

- Objectives
- Authorization
- Relationship to Other Documents
- OLWS Overview

PREPARED BY:

WSC

1.1 Objectives

Oak Lodge Water Services (OLWS) contracted with Water Systems Consulting, Inc. (WSC) to develop a Wastewater Master Plan (WWMP) to guide the planning of capital project expenditures through a 30-year planning horizon. The WWMP provided herein serves as an update to the previous version that was prepared in 2007 and shall supersede that plan.

OLWS is committed to its customers to protect public health, provide excellent customer service, make smart investments and work to keep rates affordable, and keep local streams and rivers clean. During the process of preparing the updated WWMP, OLWS identified the following objectives in support of these commitments to their customers:

- Quantify the ability to add new customers and different types of customers within the service area;
- Understand the impacts current operations has on hydraulic and loading capacity of the Wastewater Treatment Plant (WWTP);
- Determine if additional facilities are required to meet current and future Oregon Department of Environmental Quality (DEQ) permit requirements;
- Identify best practices for inspection, operations and maintenance for OLWS' collection system;
- > Develop a strategy for reducing rainfall derived infiltration and inflow (RDII);
- Develop a prioritized list of improvement projects, including anticipated costs, to address the deficiencies and assure capacity of the collection system and WWTP;
- Compare current staffing level to expected staff level with planned improvements and quantify adjustments by staff category; and
- Identify appropriate system development charges (SDC)s to support planned improvements and explore options for how SDCs may be assessed.

1.2 Authorization

OLWS has contracted with WSC as described in the Engineering Services Agreement with OLWS for the WWMP, executed on April 27, 2021. WSC has partnered with Brown and Caldwell (BC) to evaluate the WWTP and identify necessary improvements, SFE Global to provide flow monitoring services, Angelo Planning Group to prepare a buildable lands inventory, Leeway Engineering to provide smoke testing and RDII reduction support, West Yost to provide permitting support, and the FCS Group to assist in developing system development charges for the 30-year planning period.

1.3 Relationship to Other Documents

The WWMP will serve as a key piece of OLWS' long-range planning process and ongoing operations of their collection and wastewater treatment system, but also incorporates recommendations and considers the objectives of other planning efforts that have some overlap

with the wastewater collection system. A partial list of related documents is included here, and a supplemental list of references is included in the References section at the end of this plan.

1992 Wastewater Master Plan (1992 WWMP) – The first comprehensive wastewater master plan for OLWS was prepared by Brown and Caldwell. The plan evaluated the collection system and wastewater treatment plant for what was then called the Oak Lodge Sanitary District over a 20-year planning period spanning from 1990 through 2010.

2007 Sanitary Sewer Master Plan (2007 SSMP) – The most recent WWMP for OLWS was prepared by CH2M Hill in 2007 and evaluated the collection and wastewater treatment system over a 20-year planning horizon.

2021 Design and Construction Standards – The most recent version of the OLWS design and construction standards for the sewer collection system provides guidelines for recommended improvements.

Capital Improvement Plan Fiscal Years 2023-2028 – The most recent OLWS 6-year capital improvement plan included 19 wastewater capital improvement projects planned for completion by fiscal year 2028. Wastewater projects were incorporated into the 30-year plan in this document.

2023 Clackamas County Department of Transportation Paving Plan – The County produces a 5-year Capital Improvement Program that identifies road improvement projects. With a 5-year moratorium on excavations within newly paved roadways, the plan will aid in prioritizing wastewater collection work ahead of planned road projects.

Clackamas County Comprehensive Plan – The County's comprehensive plan establishes land use designations within the North Urban Area that includes the OLWS wastewater service area. The potential future growth within the OLWS wastewater service area is estimated based on the land use designation for properties.

2.0 Existing Wastewater System

This section describes the existing OLWS wastewater collection and treatment system including the service area boundary, the basins within the collection system, the inventory of assets, the current operations and maintenance program, and data systems.

IN THIS SECTION

- Existing Service Area
- Collection System Inventory
- Wastewater Treatment
- Maintenance Activities and
 Programs
- Data Systems and Information
 Management

2.1 Existing Service Area

The following section summarizes the OLWS wastewater system service area location, soils, climate, population, land use, and service area.

2.1.1 Location

The OLWS wastewater service area is located within northwestern Clackamas County and serves the communities of Oak Grove, Jennings Lodge, and portions of the Cities of Milwaukie and Gladstone. The service area is bordered by the City of Milwaukie to the north, the Willamette River to the west, the City of Gladstone to the South, and Clackamas County to the east as shown in Figure 2-1. A significant portion of the City of Gladstone is connected to the OLWS collection system. The City of Gladstone owns and operates these pipes outside of the OLWS service area (Figure 2-1 and Figure 2-2) while OLWS is responsible for the treatment of the flows from these pipes at their WWTP. Additional information about the City of Gladstone's responsibilities is include in Section 3.1.2.

The collection system is divided into six collection system basins defined by the downstream lift station and shown in Figure 2-2. The service area is largely built out with the primary growth over the next 30 years anticipated to come through residential infill.

2.1.2 Soils and Groundwater

Most of the OLWS service area is underlain by Columbia River basalt in the northeast and by lacustrine deposits in the southwest. The Columbia River basalts are responsible for the prominent ridges seen in the service area. Small areas within the service area are underlain by the Gresham Formation, which consists of poorly sorted and stratified coarse gravel and mud flow deposits. Areas along the Willamette River contain exposed sandy and gravelly alluvium. (CH2M Hill, 2007)

Most of the soils within the OLWS service area have poor infiltration potential for flood flows. These consist of silt loams, clay loams, sandy loams, loam, and river wash. The soils also have moderate to excellent treatment potential for removing metals or phosphorus from infiltrated stormwater. (CH2M Hill, 2007)

OLWS has received customer feedback of high groundwater tables and springs surfacing in the area near the Boardman Creek Wetlands complex and up to Oatfield Ridge. The presence of high groundwater tables here and throughout the collection system impacts infiltration during wet weather conditions.

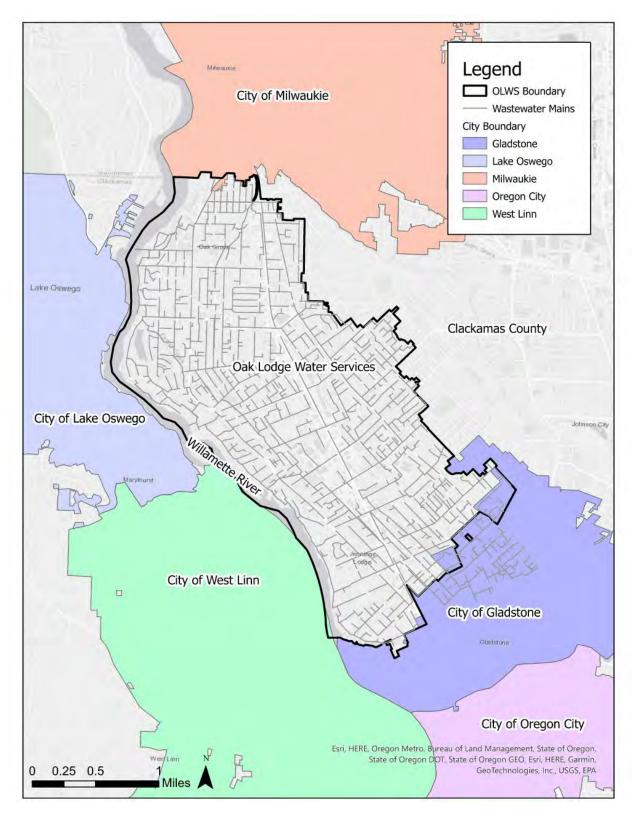


Figure 2-1: Location Map

Wastewater Master Plan Oak Lodge Water Services

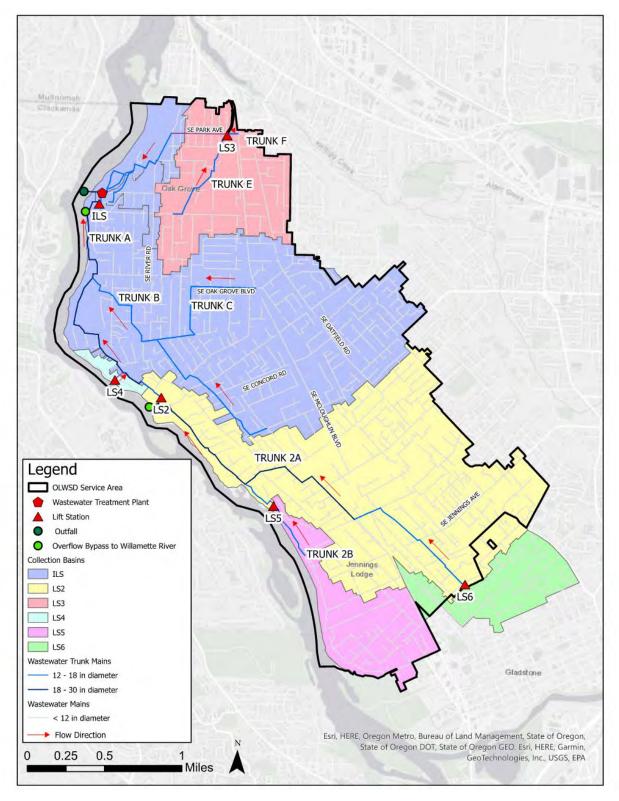


Figure 2-2: Oak Lodge Water Services' Service Area

Wastewater Master Plan Oak Lodge Water Services

2.1.3 Climate

The climate within the OLWS service area is characterized by warm summers with average high temperatures of about 78°F and mild winters with average temperatures above 40°F. On average, the service area receives 31.29 inches of rain per year, with over 70% of this occurring between October and March. During these high rainfall months there is potential for groundwater recharge while in the remainder of the year the evaporation exceeds precipitation. (Weather-US, 2021) The significant amount of rain contributes to rain derived infiltration and inflow (RDII) within the collection system.

2.2 Collection System Inventory

The OLWS wastewater collection system consists of service laterals, sewer pipes, manholes, pump stations, and force mains that convey raw wastewater from customers to the WWTP. The following sections describe and inventory the collection system.

2.2.1 Gravity Pipes and Manholes

Based on the most recent Geographic Information System (GIS) data from OLWS, the OLWS existing wastewater collection system, which includes portions owned by the City of Gladstone, is composed of the following.

- The total system (including the City of Gladstone) is comprised of approximately 99 miles of active gravity wastewater mains, 2,331 active manholes, 408 active cleanouts, and 7,548 service laterals excluding private facilities such as privately-owned manholes.
- > The City of Gladstone owns 6.6 miles of these gravity mains, 168 manholes, and 28 cleanouts
- Service laterals are owned by the respective homeowner, and 7,407 of the laterals are located within the OLWS service area.

The gravity pipe throughout the system ranges in size from 4-inch to 30-inch diameter, with 87% of the gravity pipe being 8-inches or smaller. A majority of the pipe (84%) is asbestos cement or concrete pipe. The distribution of pipe length by diameter is shown in Table 2-1 and the distribution of pipe material is shown in Figure 2-3.

Table 2-1: Gravity Pipe Summary

Pipe Diameter (in)	OLWS-Owned Total Pipe Length (LF)	Gladstone-Owned Pipe Length (LF)	Total Pipe Length (LF)	Proportion of System
4	106	0	106	<1%
6	7,411	1,673	9,084	1.7%
8	411,296	33,098	444,394	85.4%
10	13,800	0	13,800	2.7%
12	18,629	0	18,629	3.6%
14	2,212	0	2,212	<1%
15	8,081	0	8,081	1.6%
18	5,205	0	5,205	1.0%
20	5,861	0	5,861	1.1%
21	9,324	0	9,324	1.8%
24	3,136	0	3,136	<1%
30	646	0	646	<1%
Unknown	21	0	21	<1%
Total	485,728	34,771	520,499	100%

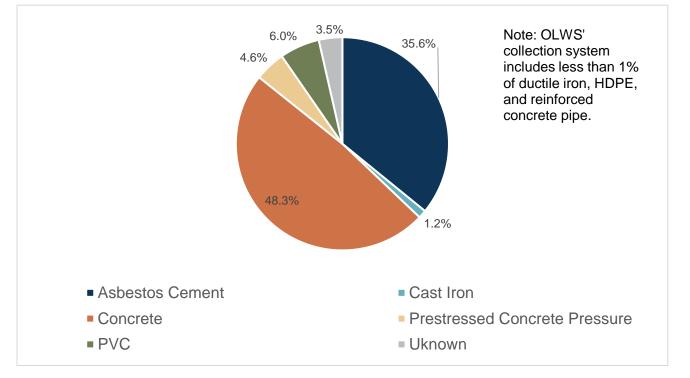


Figure 2-3: OWLS-Owned Pipe Material Distribution on a Length Basis

Wastewater Master Plan Oak Lodge Water Services

2.2.2 Lift Stations and Force Mains

Based on the GIS data provided by OLWS, the OLWS collection system currently includes six lift stations (including the Influent Lift Station [ILS] to the WWTP) and 5,408 linear feet (LF) of force main. Table 2-2 provides a summary of several operational parameters with respect to individual pump stations.

Table 2-2: Lift Station Summary Table

Pump Station	Station Location	Construction Date	Year of Latest Upgrade	No. of Pumps	Firm Capacity (gpm)	Horsepower per Pump (hp)	Туре
ILS	WWTP	1974	2012	5	13,888 ¹	4 @ 100 1 @ 60	Variable Speed
LS2	SE Oak Shore Ln and SE Risley Ave	1958	2002	3	3,400 ²	40	Variable Speed
LS3	SE Park Ave and SE 27 th Ave	1961	2002	2	2,240 ³	125	Variable Speed
LS4	End of SE River Forest Ln	1961	2007	2	139.8 ⁴	5	Constant Speed
LS5	South end of SE Walta Vista Dr	1961	2022	2	640 ⁵	15	Constant Speed
LS6	SE Glen Echo Ave and SE Addie St	1961	2003	2	800 ⁶	5	Constant Speed

gpm=gallons per minute

¹ILS firm capacity value derived from the Water Reclamation Facility Improvements record drawings dated March 2012

²LS2 firm capacity value derived from the Cornell Pumps 6NHTH pump curve and associated system curve

³LS3 firm capacity value derived from the Cornell Pumps 8NNT pump curve and associated system curve

⁴LS4 firm capacity value derived from the NP3102 pump curve and associated system curve

⁵LS5 firm capacity derived from the LS5 design plans dated February 2021

⁶LS6 firm capacity derived from Pioneer Pump SC66S12 and Cornell Pumps 6NHTA pumps curves and associated system curves

2.3 Wastewater Treatment

OLWS owns and operates a WWTP that treats wastewater collected from the service area and discharges treated effluent into the Willamette River. The WWTP currently provides secondary treatment with aeration basins and secondary clarifiers operating as a modified Ludzack-Ettinger (MLE) process. In preparation for analysis of the current and future needs for the WWTP, Brown and Caldwell (BC) has prepared the following sections to satisfy Oregon Department of Environmental Quality (DEQ) guidelines for preparing a wastewater facility planning document including:

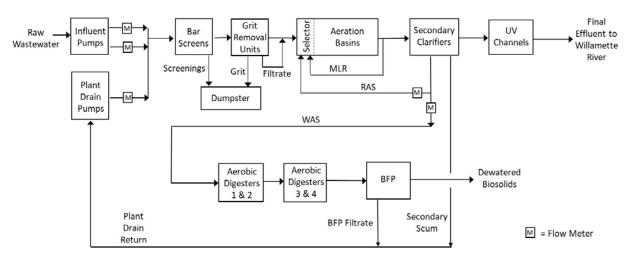
- > Description of the historical improvements to the WWTP
- Description of the existing WWTP including detailed design data with a summary of treatment processes
- > Condition assessment of the major existing WWTP assets and projection of remaining service life
- > Performance evaluation of equipment, treatment processes, and components at the WWTP

Detailed information on each of these topics can also be found in Appendices A, B, and C.

2.3.1 WWTP History

The plant was constructed in 1960 and has been upgraded since that time. A summary of the WWTP improvements is provided in Table 2-2.

Table 2-2: History of WWTP Improvements


Year	Improvement
1960	Plant constructed with 1.5 mgd capacity. Includes primary and secondary treatment (activated sludge) and anaerobic digestion.
1970	Capacity expanded to 2.0 mgd
1973	Capacity expanded to 4.0 mgd
1981	Influent screening and rock trap added
1986	Fine-bubble aeration added
1995/1996	Replace secondary clarifiers and install new return and waste activated sludge pumping facilities
1999	New outfall and diffuser added
2002	New solids handling facility constructed. Included addition of belt filter press to dewater solids.
2005	Blowers upgraded
2012	Major plant upgrades including new influent and plant drain pump stations, headworks, aeration basins, interchange bioreactors, expanded aerobic digestion capacity, expanded secondary clarifier capacity, and ultraviolet disinfection
2017	Initiation of industrial pretreatment program including outfall mixing study

Year	Improvement
2020	Modifications to solids process to convert interchange bioreactors to additional aerobic digestion capacity

2.3.2 WWTP Description

OLWS owns and operates an activated sludge WWTP that serves approximately 30,000 customers within the service area. The influent is comprised primarily of domestic wastewater; treated effluent is discharged into the Willamette River. All flow enters the WWTP through an influent pump station.

Figure 2-4 shows a process flow schematic of the existing liquid and solid stream treatment systems.

Figure 2-4. WWTP process schematic

(Note: The existing GBT [not shown above] could be used in the future to thicken WAS prior to digestion)

Figure 2-5 shows an aerial view of the current OLWS WWTP site and identifies major process facilities and other buildings.

MUSC

2.0 Existing Wastewater System

Figure 2-5. Aerial view of WWTP with major facilities labeled

Table 2-3 summarizes design flows and loadings, as well as design data for the major unit processes.

Table 2-3.	Major	Equipment	Design	Data
------------	-------	-----------	--------	------

Process Element	No. of Units	Design Value
Plant flow, mgd		
Average Annual Flow (AAF)		4.3
Average dry weather flow		3.5
Average wet weather flow		5.2
Max month, wet weather	-	10.5
Max day, wet weather		17.3
Max day, dry weather		8.6
Peak hour		18
Biochemical oxygen demand loading, pounds per		
day (ppd)		6 690
Annual average		6,680
Max month, wet weather		7,440
Max week, wet weather	-	8,910
Max day, wet weather		11,090
Max month, dry weather		7,250
Max week, dry weather		8,790
Max day, dry weather		10,900
Total suspended solids loading, ppd		
Annual average		7,450
Max month, wet weather		8,390
Max week, wet weather		10,010
Max day, wet weather	-	13,290
Max month, dry weather		8.960
Max week, dry weather		10,070
Max day, dry weather		12,970
Total Kjeldahl nitrogen loading, ppd		
Annual average		994
Max month, wet weather	-	1,244
Max month, dry weather		1,354
Influent pumps	F	
Capacity, each, mgd	5	4 @ 5.5, 1 @ 3.5
Motor horsepower (hp), each		4 @ 100, 1 @ 60
Туре		Adjustable speed
Plant drain pumps	2	
Capacity, each, mgd	2	1.75
Motor hp, each		25
Туре		Adjustable speed

Wastewater Master Plan Oak Lodge Water Services

l-Cell
turbo (3), Hybrid
6
1
re, high intensity
25
0, 1 @ 189,000

Additional details on the existing WWTP can be found in Appendix A.

Wastewater Master Plan Oak Lodge Water Services

MUSC

2.3.3 WWTP Condition

BC reviewed documentation from prior projects and other records available for the OLWS WWTP in preparation for completing a condition assessment for the WWMP. BC also performed a site visit and visual inspection on October 20, 2021, to assess the physical condition, functional integrity, and operability of equipment at the WWTP. A summary of condition assessment findings is provided in Appendix A.

2.3.4 WWTP Historical Performance

The BC reviewed plant data from 2016 to 2021 to assess historical trends of flows and loadings received by the plant and to compare them with design values. Operating data for the activated sludge system and effluent data were also reviewed to assess performance. The following is a summary of information from the OLWS WWTP Historical Performance TM included as Appendix B to the WWMP.

Analysis of the historical plant data from 2016 to 2021 for the OLWS WWTP yields the following observations and conclusions:

- While average influent flows have remained relatively steady from 2016 to 2021, average BOD and TSS loadings have increased slightly.
- The data show occasional spikes in loadings and both BOD and TSS loadings have exceeded the design maximum day loadings a few times during the 6-year period examined.
- The annual average concentrations for both BOD and TSS are observed to have increased over the 6-year period, with a notable increase from 2017 to 2018.
- The plant effluent quality has almost consistently met permit requirements in the 2016 to 2021 period, with monthly average effluent BOD, CBOD, and TSS concentrations typically below 15 mg/L. The only exception occurred in January 2021, when the monthly average TSS concentration exceeded the permit limit.
- With the current permit containing a lower limit of 10 mg/L for both CBOD and TSS, the plant may not reliably meet the new limits, especially for TSS.
- Nitrification is occurring in the system, as measured effluent ammonia concentrations are typically below 8 mg/L. The extent of denitrification cannot be determined from the data, as nitrate is not measured.
- The generally good effluent quality for secondary effluent, even during periods of high sludge volume index (SVI), suggests there is adequate secondary clarifier capacity to accommodate any deterioration in sludge settling characteristics. However, it may not be adequate to consistently meet the current TSS limit of 10 mg/L during dry season period.

MUSC

2.4 Maintenance Activities and Programs

The following subsections describes the routine maintenance activities OLWS staff perform on the collection system and WWTP.

2.4.1 Collection System

The OLWS collection system preventative maintenance program includes routine cleaning, root control, closed-circuit television (CCTV) inspections, and lift station maintenance. The operations staff has a goal to conduct CCTV on approximately 75,000 LF of wastewater mains each year (15% of the system). At the average rate of CCTV inspection, the entire system would be surveyed every 6.5 years. While there is not currently an industry standard recommendation for the frequency of CCTV inspections, an assessment interval of 5 to 10 years should allow significant structural defects to be identified before failure. Wastewater mains and manholes that are known to be in poor condition could be prioritized for shorter inspection intervals until repairs can be made. Several "high maintenance" wastewater mains, as shown in Figure 2-6, are cleaned on a more frequent quarterly schedule due to a history of fats, oils, and grease accumulation or root intrusion.

OLWS does not currently have a manhole inspection protocol. During the course of performing CCTV work on the collection system mains, operators will check the adjacent manholes for visible leaks or breaks. Any deficiencies observed will be reported and a task order will be created for repair. OLWS is currently in the process of developing a manhole inspection checklist to formalize the inspection process.

Lift stations are inspected twice per week. Operations staff visit each lift station site and check that systems are operating as expected. Force mains are not regularly inspected.

2.4.2 Wastewater Treatment Plant

BC met virtually with OLWS staff on September 1, 2021, to conduct a workshop to discuss WWTP operations. This OLWS WWTP Operations TM (included as Appendix C to the WWMP) summarizes information collected during this workshop, along with review of previous reports, historical data, and other discussions with OLWS staff. An assessment of each unit process is included in this TM which is provided in Appendix C. Projects to address recommended facility improvements to enhance operability and performance of the WWTP systems are included in the CIP provided in Chapter 7.0.

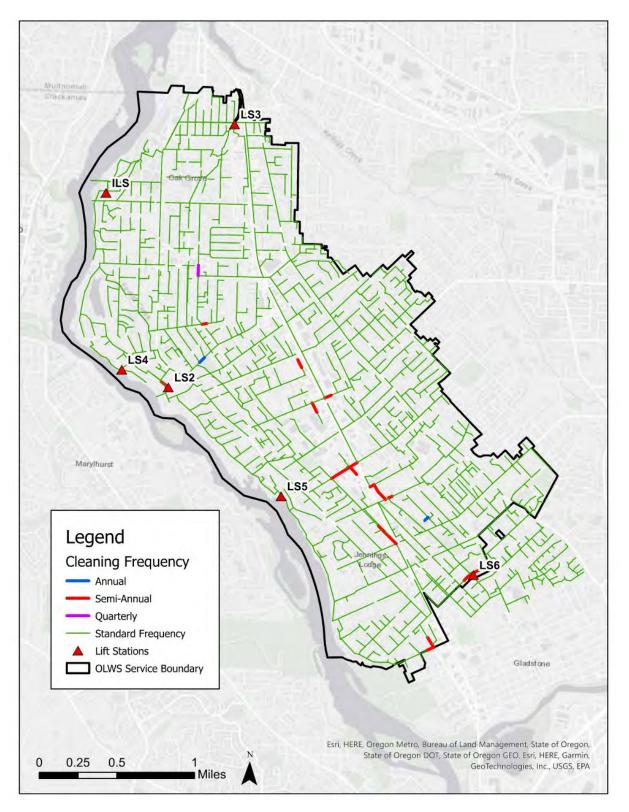


Figure 2-6: Mains Requiring Increased Maintenance

Wastewater Master Plan Oak Lodge Water Services

2.5 Data Systems and Information Management

OLWS maintains three primary data systems to organize and analyze physical attributes, maintenance requirements and condition assessment observations associated with the wastewater collection and treatment system: ArcGIS, GraniteNet and CentralSquare Enterprise Asset Management powered by Lucity (EAM).

The OLWS wastewater collection system GIS database is maintained by OLWS and includes a geographical representation of the wastewater collection system assets, including gravity pipes, force mains, manholes, cleanouts, and lift stations. Assets in the GIS database are populated with key attributes such as asset identification number, installation year, pipe diameter, and material type.

EAM is the primary wastewater asset management system that is used to track wastewater assets. The system is owned and maintained by the OLWS' asset management staff to ensure data is well maintained. Collection system and treatment plant staff enter data from the field to provide up-to-date records on asset condition and maintenance. EAM is a GIS based system that allows OLWS to maintain information about each asset, including attributes, descriptions, and maintenance history. Any changes made within the OLWS GIS database automatically syncs with EAM, allowing collection system and treatment plant operations staff to have access to real time updates. EAM is also used to schedule and generate work orders for the collection system and treatment plant operators to ensure issues are addressed in a timely matter.

GraniteNet is the OLWS pipeline inspection software. The software is compatible with the National Association of Sewer Service Companies (NASSCO) Pipeline Assessment Certification Program (PACP). OLWS uses this software to store CCTV videos for all gravity collection mains including the associated PACP condition scores. GraniteNet is linked to EAM to allow staff to easily generate work orders based on the cleaning and inspection work findings. Prior to using GraniteNet, OLWS utilized GraniteXP, which utilized several non-PACP scoring systems. As OLWS continues to CCTV their collection system, old scoring systems are being replaced with PACP scores.

OLWS operates and maintains a supervisory control and data acquisition (SCADA) system for the collection system lift stations and the WWTP. The SCADA system tracks run time and alarm conditions for each of the OLWS' six lift stations. OLWS does not own or operate any permanent flow meters within the collection system. Total flow into the WWTP is measured between two permanent flow meters on the discharge side of the ILS. Data is collected throughout the various treatment processes at the WWTP through SCADA and stored within a data historian located at the plant.

3.0 Regulations and Policies

This chapter describes the existing interagency agreements that OLWS currently maintains with adjacent wastewater providers and provides an overview of the regulatory rules and policies OLWS operates within.

IN THIS SECTION

- Interagency Agreements
- Rules and Regulations

PREPARED BY:

MUSC

3.1 Interagency Agreements

OLWS maintains three intergovernmental agreements (IGAs) for the collection and treatment of wastewater with the neighboring wastewater providers including Clackamas Water Environment Services (WES), the City of Gladstone, and the City of Milwaukie. Each IGA is briefly summarized below.

3.1.1 Clackamas WES

OLWS and Clackamas WES entered into an IGA for wastewater service in 1976 when OLWS was Oak Lodge Sanitary District and Clackamas WES was Clackamas County Service District No. 1. This IGA governs properties within each party's boundaries that are unable to be served by gravity wastewater mains due to natural topography but can be served by the other party. The IGA identifies these properties, establishes responsibility for collection, treatment, and maintenance, and establishes charges and payment.

In 1985, OLWS and Clackamas County entered into another IGA to streamline the ability for OLWS to expose and maintain collections facilities located underneath County roads. The IGA establishes notification requirements for work or repairs to OLWS infrastructure impacting County roads, waives the cost of permits and other fees associated with use or occupancy of County road rights-of-way, and establishes conditions for work impacting County roads.

In 2003, OLWS and Clackamas WES (then Clackamas County Service District No. 1, Tri-City Service District, and Surface Water Management Agency of Clackamas County) entered into an IGA for resource sharing. The IGA establishes conditions for sharing equipment and labor in both emergency and non-emergency situations.

In 2017, OLWS and Clackamas WES entered into an IGA following the formation of Oak Lodge Water Services (formerly Oak Lodge Water District and Oak Lodge Sanitary District) and the formation of WES (formerly Clackamas County Service District No. 1 and Tri-City Service District). This IGA establishes an urban services agreement that outlines the jurisdiction for each of the entities for providing wastewater and surface water management services.

3.1.2 City of Gladstone

OLWS and the City of Gladstone established an IGA in 1971 following a lawsuit after the city annexed a portion of the area served by Oak Lodge Sanitary District No. 2. This agreement is known as the Interim Agreement and was between the City of Gladstone, Oak Lodge Sanitary District, and Oak Lodge Sanitary District No. 2. OLWS currently encompasses the latter two entities. The Interim Agreement established conditions for payment, ownership of facilities, and maintenance of facilities.

In 1990, the Interim Agreement was modified to indicate that OLWS has the authority and responsibility for overseeing pretreatment programs within areas in the City of Gladstone that are outlined in the revised agreement. The agreement was modified again in 2019 to clarify

monthly service charges and hook-up fees. This 2019 modified agreement has been extended multiple times, the latest of which was in December 2020.

In 2022, a proposed IGA draft was developed between the City of Gladstone and OLWS that establishes responsibility of each party over Gladstone-owned mains that convey wastewater to the OLWS WWTP. Under this proposed agreement, the City of Gladstone is responsible for operation, maintenance, and any necessary improvements to these pipelines. OLWS is responsible for treating the wastewater conveyed through these pipes at their WWTP. It is anticipated the IGA will be finalized in 2023.

3.1.3 City of Milwaukie

OLWS and the City of Milwaukie have entered into an IGA governing areas at each party's boundaries that are unable to be served by gravity wastewater mains due to natural topography but can be served by the other party. The current version of this IGA was executed in April 2015 and shall be in effect for 10 years, with the option to renew for additional periods of 5 years if both parties agree. The IGA establishes which properties outside of each party's boundary are to be served by the other party, the rates of service, and the charges associated with adding new connections to the other party's system. Under the IGA, the City of Milwaukie is responsible for the operation, maintenance, and any required improvements of the City-owned mains. OLWS is responsible for treatment of the wastewater conveyed through these mains.

3.2 Rules and Regulations

The following rules and regulations are relevant to the OLWS wastewater collection and treatment systems.

3.2.1 Oregon Administrative Rule, Chapter 660

Oregon Administrative Rule (OAR) 660-11 states "a city or county shall develop and adopt a public facility plan for areas within an urban growth boundary containing a population greater than 2,500 persons. The purpose of the plan is to help assure that urban development in such urban growth boundaries is guided and supported by types and levels of urban facilities and services appropriate for the needs and requirements of the urban areas to be serviced, and that those facilities and services are provided in a timely, orderly and efficient arrangement...". (State of Oregon) The public facilities and services chapter of Clackamas County's Comprehensive Plan fulfills this requirement for Clackamas County. This comprehensive plan recognizes OLWS as having responsibility to operate, plan, and regulate the wastewater system for their service area.

3.2.2 Oregon Administrative Rule, Chapter 340

OAR 340 establishes the authority of the Oregon Department of Environmental Quality (DEQ). Under Division 42, total maximum daily loads (TMDLs) are authorized for pollutants in waters of the state that are listed in accordance with the Federal Water Pollution Control Act, Section 303(d). In September 2006, DEQ established TMDLs for the Willamette Basin, which includes the mainstem Willamette River. In April 2022, DEQ issued a new NPDES Waste Discharge Permit for OLWS, which is covered in Section 3.2.5.

3.2.3 Oregon Revised Statute, Chapter 223

ORS 223 establishes the framework for OLWS to impose SDCs for capital improvement projects resulting from growth and development within the OLWS service area. Under this statute, an SDC can be imposed upon a developer to fund the proportional share of expenses for capital improvements resulting from the increased demands the development puts on the system. SDCs can be improvement fees for costs associated with capital improvements that must be constructed as a result of the development, reimbursement fees for costs associated with modifying capital improvements already constructed or under construction when the fee is established to accommodate the development, or a combination of the two. Prior to establishing a SDC, OLWS must prepare a plan that identifies a list of capital improvement projects that OLWS intends to fund wholly or in part with the revenue from the SDC, the estimated cost of the project, timing, and the percentage of costs eligible to be funded by the SDC. This WWMP will serve as this plan. SDCs are further discussed in Chapter 7.0.

3.2.4 Oregon Revised Statue, Chapter 450

ORS 450 governs all sanitary districts and authorities within the state of Oregon. This statute establishes the powers of OLWS including those to construct, operate, and maintain a wastewater collection system and wastewater treatment plant, the power to compel all residents and property owners within the OLWS service area to connect to their collection system, and the power to levy service charges for operating and maintaining their system. This statute also establishes the rules surrounding governance of OLWS including those regarding the election of a board, the qualifications for board members, the power of the board, and the ability to adopt regulations and ordinances.

3.2.5 NPDES Permit

The NPDES permit program was established by the Clean Water Act in 1972 to address water pollution by regulating point source discharges to waters of the United States. NPDES permits do this primarily by establishing effluent limitations for discharging into receiving waters. These limits can be both technology-based and water quality-based.

The U.S. EPA has delegated Oregon's DEQ to administer NPDES permit program in Oregon. on behalf of the federal government. In April 2022, DEQ issued a new NPDES Waste Discharge Permit (#100986) for OLWS that establishes permit requirements for the operation of wastewater collection and treatment and for the discharge of treated wastewater to the Willamette River. The discharge limits for the carbonaceous BOD₅ and TSS are summarized in Table 3-1

Parameter	Average Concent		Monthly	Weekly Average	Daily Maximum			
Farameter	Monthly (mg.L)	Weekly (mg/L)	Average (lb/d)	(lb/d)	(lb/d)			
		May 1 – Oct	tober 31					
Carbonaceous BOD ₅	10	15	490	740	980			
TSS	10	15	490	740	980			
	November 1 – April 30							
Carbonaceous BOD ₅	30	45	2,600	3,900	5,200			
TSS	30	45	2,600	3,900	5,200			

Table 3-1: NPDES Permit Waste Discharge Limits

The NPDES Permit includes additional limits for E. coli bacteria, pH, Carbonaceous BOD₅ and TSS permit removal, and temperature in the form of an excess thermal load.

3.2.6 National Pretreatment Program

The Environmental Protection Agency's (EPA) national pretreatment program is a component of the NPDES program and outlined under 40 code of federal regulations (CFR) §403.8. Under this program, local municipalities are authorized to perform permitting, administrative, and enforcement tasks for discharges into their publicly owned treatment works (POTWs). The goal of the program is to protect POTW infrastructure, protect worker health and safety, protect the biological processes at the treatment facility, protect receiving stream water quality, and enable beneficial use of biosolids.

40 CFR §403.8 applies to any POTW with a total design flow greater than five (5) million gallons per day (gpd); POTWs with design flow of less than 5 million gpd are also required to develop a pretreatment program if circumstances warrant. Schedule E of OLWS' NPDES Permit includes specific requirements for implementing the pretreatment program OLWS' pretreatment program requirements are outlined in the OLWS Rules and Regulations dated January 15, 2021. All industrial users are required to comply with federal categorical pretreatment standards, state requirements and the local limits for contaminants identified in the regulations.

3.3 Potential Future Regulatory Considerations

To support long-term planning, particularly for the WWTP, West Yost prepared a white paper to forecast and identify potential future regulations that could impact the OLWS wastewater system. The following regulatory issues are still in the development stage, but should be monitored by OLWS for potential future requirements that could be incorporated into an NPDES permit upon renewal:

- Per and Poly fluoroalkyl Substances (PFAS). EPA has issued a roadmap that identifies several actions that are planned between 2021 and 2024 to address the risk posed by these chemicals. NPDES permit-related actions include establishing monitoring requirements, restricting PFAS discharges from industrial sources, publishing recommended ambient water quality criteria for PFAS, and finalizing risk assessments for two of the PFAS compounds of concern (PFOA and PFOS) in biosolids. Future restrictions could affect the land application of biosolids.
- Coliphage criteria. In 2015, EPA published a review of coliphages as a possible indicator of fecal contamination for surface waters. While EPA has not published draft coliphage criteria and to date, has not defined a schedule for publishing, this topic is often listed as an EPA priority. Effluent limits based on coliphage criteria are likely still several years away, however the application of the criteria could affect the disinfection technology used at the WWTP.
- Nutrients. Nutrients are a key issue at the state and national level and the OLWS WWTP discharges into a portion of the Willamette River that is listed for biocriteria. The next downstream portion of the Willamette River is listed for both biocriteria and harmful algae blooms. DEQ has not evaluated the conditions in the river to determine if it is nitrogen or phosphorous limited. However, upstream tributaries have been found to be phosphorous limited. Because of the multitude of point and non-point sources that contribute nutrients to the Willamette River basin, a TMDL process will be necessary to define waste load allocations and establish future treatment requirements. OLWS should consider the incorporation of nutrient removal technology (both phosphorous and nitrogen) to WWTP processes in the 30-year WWMP planning period.
- Wet Season Operations. Bypass, which is defined as an intentional diversion from any portion of the treatment facility, is allowed for essential maintenance provided effluent limits are not exceeded. NPDES permits continue to include a requirement prohibiting bypass of any portion of the treatment facility except when it is unavoidable to prevent loss of life, personal injury or severe property damage. This is not a significant issue for OLWS as the WWTP has the hydraulic capacity to treat wet weather flows and does not bypass secondary treatment facilities.

Additional details on the existing regulatory framework for the WWTP and considerations for future regulations are provided in Appendix D.

4.0 Wastewater Flows and Loads

The following sections of this chapter identify the existing wastewater flows within the OLWS collection system and WWTP and describe the method for projecting future flows. The chapter will cover determination of the existing system flow through the analysis of flow monitoring results, water consumption billing records, and land use data; projected future flows using the OLWS' updated buildable lands inventory (BLI); and comparison with anticipated population growth projections. Based on the flow analysis, wastewater treatment plant flows and loadings were developed.

IN THIS SECTION

- Elements of Total Wastewater
 Flow
- Base Wastewater Flows
- Wet Weather Flows
- Flow Summary
- Treatment Plant Flows and Loadings

PREPARED BY:

4.1 Elements of Total Wastewater Flow

To evaluate the hydraulic performance of the wastewater collection system, the volume of wastewater flow entering the system must be estimated. Wastewater flows consist of three general components: base wastewater flow (BWF), groundwater infiltration (GWI), and rainfall derived infiltration and inflow (RDII), as shown in Figure 4-1.

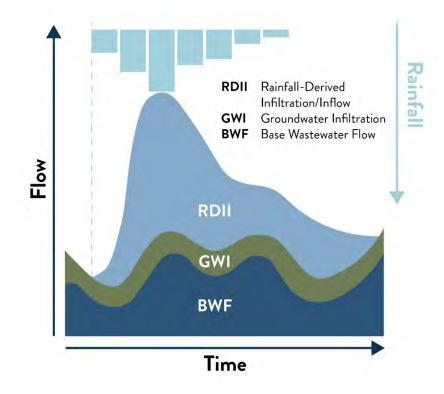


Figure 4-1: Components of Wastewater Flow

Base Wastewater Flow: Represents wastewater flow entering the system from service connections under normal conditions (i.e., no rain). BWF typically follows a diurnal pattern based on customer's water consumption patterns with typical peaks in the morning and the evening.

Groundwater Infiltration: A form of flow that consists of groundwater entering the wastewater collection system through faulty pipe joints, cracks in the pipe, and cracks in manhole walls. GWI occurs when the groundwater table is higher than the pipe invert, varies based on the level of the groundwater table, and is often seasonal due to the groundwater table fluctuating throughout the year. GWI is relatively constant over a short time period as the fluctuations in groundwater elevation outside of precipitation events are relatively slow. GWI allocation within OLWS' collection system is further discussed in Section 4.3.2.

Rainfall-Derived Infiltration and Inflow: Represents the portion of wastewater flow that results from inflow and infiltration following a rainstorm. Inflow occurs when stormwater rapidly flows into the wastewater collection system during and following a rain event, such as through holes in manhole covers or from storm drain cross connections. Infiltration occurs when rain temporarily saturates the soil surrounding wastewater pipes during and for a period after a storm, and infiltrated stormwater seeps into the wastewater pipes through faulty pipe joints, cracks in the pipe, and cracks in the manhole walls.

4.2 Base Wastewater Flows

The following sections describe the methods used to identify existing and future BWF.

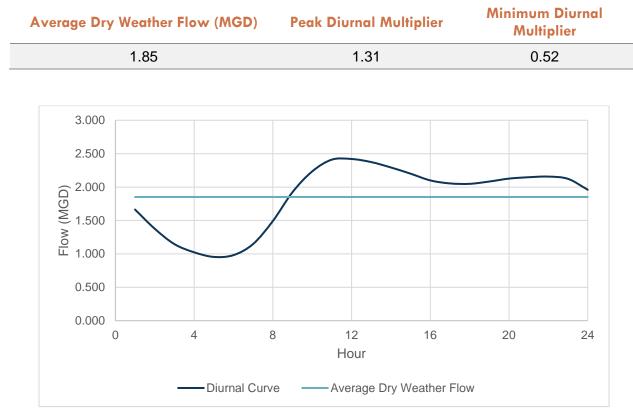
4.2.1 Existing Base Wastewater Flow

The calculation of the BWF was derived from dry weather flow monitoring at the OLWS WWTP that was spatially distributed across the service area proportional to wintertime water use derived from billing records. The following sections describe the methods used to develop diurnal curves for BWF and the allocation of those flows across the collection system.

4.2.1.1 Total Base Wastewater Flow

The total volume of BWF can be calculated using dry weather flow data for the collection system captured as the sum of the WWTP Influent Lift Station (ILS) flow meters, located on the discharge side of the influent pumps. The pump controls maintain a water surface elevation in the ILS wet well within a 4-foot range by adjusting pump speeds using variable frequency drives and turning on additional pumps to run in parallel and keep up with variations in the influent flow coming into the wet well. Thus, the totalized hourly pump discharge volumes divided by time during dry weather are representative of the hourly flow rates entering the WWTP from the collection system.

To determine the total BWF, the available ILS flow data and rain gauge data collected at the WWTP were analyzed to identify periods with good flow meter data and dry weather. Dry weather was defined as periods with no active rain and no rain for a 14-day period prior to the start date of the selected time window. Upon reviewing rainfall and flow meter data, the window of July 8, 2021 through July 28, 2021 was selected as the representative dry weather period and the average flow over this time was calculated to be 1.85 million gallons per day (mgd). Analysis across a longer time period found that the average daily flow at the WWTP in the month of August, historically the month with the minimum flow within the calendar year, was 1.86 mgd from 2019 to 2021. Based on these data, the current (2022) total BWF across the OLWS service area is assumed to be 1.85 mgd.


4.2.1.2 Diurnal Curves

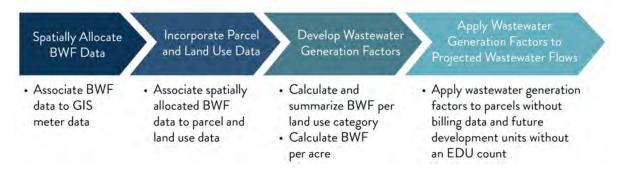
Once the total BWF was determined for the collection system, diurnal multipliers were assigned to each hour to estimate the variability of the wastewater flow over a typical day. Using the hourly data from the ILS flow meters during the dry weather period, WSC identified a diurnal

curve factor for each hour by dividing the average flow from that hour by the average daily flow. The diurnal curve was developed by multiplying each hourly factor by the average dry weather flow and plotting the results over time. The resulting diurnal curve pattern and peak flows are shown in Table 4-1 and Figure 4-2. Additional information can be found in Appendix E– Model Development TM.

Table 4-1: Peaking Factors

Figure 4-2: Diurnal Curve for Collection System Flow

Total flow and diurnal curves calculated for the dry weather period in 2021 were checked against WWTP data from 2019, prior to the COVID-19 pandemic, to determine if current flows demonstrated any notable changes in diurnal wastewater generation patterns that might indicate a shift in household water use. No significant variations were identified between the 2019 and 2021 diurnal curves so the calculated hourly peaking factors were applied to estimate current and future wastewater generation throughout the day.


4.2.1.3 Wastewater Generation Factors

Because wastewater connections do not have flow meters, the allocation of wastewater flows geospatially across the OLWS service area and between different types of land use zoning classifications was completed using wet weather potable water consumption which makes up the vast majority of base wastewater flows in the winter months. The process of doing this is summarized in Figure 4-3.

Wastewater Master Plan Oak Lodge Water Services

The water consumption data included monthly consumption for 7,218 customer connections (6,743 parcels) within the OLWS water service area. Water billing records were not available for parcels within the City of Gladstone, as these are not served by the OLWS water system. Billing data associated with fire service meters and open space parcels was excluded from the analysis as these special cases of water use do not contribute flows to the wastewater collection system. The water consumption for each account was averaged from December through March over the past 3 years to provide an estimate of average daily winter water usage for each account.

Figure 4-3: Allocation of Wastewater Flows

Not all water used gets flushed down the drain afterwards. Some, for instance, may be used outdoors for washing or irrigation and there may be minor leakages from premise pipes on the customer side of the meter. The portion of water used that contributes flow to the wastewater collection system, expressed as a percentage, is applied to the average daily winter water usage to estimate the volume of BWF generated from each metered water account. These water to wastewater conversion percentages vary slightly according to land use and were determined by iterating around typical values by land use until the predicted BWF aligned with the actual BWF. For this project, the following ranges were used based on typical values and iterations:

- > Single Family Residential: 90% of water use returns as wastewater
- > Multi-Family Residential: 96% of water use returns as wastewater
- > Non-Residential: 95% to 100% of water use returns as wastewater

The multi-family residential and non-residential properties have higher water to wastewater percentages as these land uses typically have less landscaping and irrigation piping relative to the total water consumption.

The metered water consumption and the water to wastewater conversions were used to estimate BWF for all parcels with an OLWS water connection. As previously mentioned, water consumption records were not available for all wastewater customers within the OLWS wastewater service area as some of these parcels receive water from the City of Gladstone. Wastewater customers outside of the water service area were assumed to contribute BWF at a rate equivalent to the average rates calculated across all customers in the same land use category that have metered water accounts.

Wastewater generation flow factors for each land use type were developed to project flows for customers without water billing records as well as for future development. Flow factors were developed using the following process:

- 1. Establish water to wastewater conversion percentages for each land use type based on typical values by land use (discussed above).
- 2. Apply the water to wastewater conversion percentages to all parcels with water meter records (6,743 parcels) to estimate the BWF in these parcels.
- 3. Sum the total flow by land use type and the total area by land use type. Calculate each wastewater generation factor by dividing the total BWF for that land use by the total area of that land use. Each average wastewater generation flow factor is in terms of gallons per acre per day (gpad).
- 4. Estimate wastewater flow in the remaining 1,496 parcels without water billing data by multiplying the parcel's area by the appropriate wastewater generation flow factor.
- 5. Iterate water to wastewater conversion percentages (and thus wastewater generator flow factors) until the estimated BWF is within 0.1 percent of the total BWF at the WWTP of 1.85 mgd.

The wastewater generation factors are provided in Table 4-2 and summarized comprehensively in column E of Table 4-4.

Land Use Type	Wastewater Flow Factor (gpad)
General Commercial (GC)	975
Neighborhood Commercial (CN)	710
Light Industrial (IL)	600
Mixed Use -Low Density (MUR3)	129 ¹
Mixed Use – Moderate Density (MUR7)	2,439 ¹
Parks and Open Space (POS)	80
Multifamily – Very Low Density (MFR1)	1,306
Multifamily – Moderate Density (MFR3)	3,500
Single Family – ½ acre (SFR2)	225
Single Family – 10,000 SF (SRF3)	396
Single Family – 9,000 SF (SFR4)	414
Single Family – 7,000 SF (SFR5)	581
Single Family – 6,000 SF (SFR6)	738

Table 4-2. Wastewater Generation Factors

gpad = gallons per acre per day

¹Mixed use wastewater flow factors have a high sensitivity as there was only 1 parcel of MUR3 and 1 parcel of MUR7 within the service area.

Wastewater flows can also be described in terms of an equivalent dwelling unit (EDU). An EDU is a unit of measure that represents the typical demand on OLWS facilities from a typical single-family dwelling and is associated with an average gallons per day (gpd) flow. To determine the flow per EDU, the BWF for all single-family residential land use zones with metered potable water connections was divided by the total number of dwellings associated with each account within the OLWS billing system. The flow per EDU is provided in Table 4-3.

Land Use Type	Total BWF Calculated from Water Meter Records (gpd)	Number of EDUs	Average Flow per EDU (gpd)
Single Family – ½ acre (SFR2)	5,153	38	136
Single Family – 10,000 SF (SRF3)	460,342	3,475.5	132
Single Family – 9,000 SF (SFR4)	84,427	630	134
Single Family – 7,000 SF (SFR5)	255,829	2,036.5	126
Single Family – 6,000 SF (SFR6)	11,379	81	140
Total All Single-Family	817,129	6,261	131
BWF = base wastewater flow gpd = galle	ons per day EDU = equivalent dw	elling unites	

Table 4-3. Wastewater Flow per Equivalent Dwelling Unit

The calculated flow per EDU can be used with population data to calculate total system flows. Population projections based on United States Census data estimate the average household within the OLWS service area consists of 2.36 people (see Section 4.2.3). In addition, the wastewater flow per person is typically estimated at 55 gallons per capita per day (gpcd). This value is consistent with published values for residential wastewater generation per capita, including a similar estimate within the Clackamas Water Environment Services' (WES) Sanitary Sewer Master Plan of between 54 and 67 gpcd within the WES service area (WES, 2019).

The purpose for calculating EDU flow rates is to support growth analysis for future buildout of the system. Land use estimates are based on zoning and acreage, and typically estimate the number of units the land can support. By knowing the flow per unit (EDU) the correlation between available land and wastewater flow rates can be determined, as described in Section 4.2.5.

A summary of the total existing BWF and resulting EDUs across each land use type is provided in Table 4-4. As described above, the existing wastewater flow was geospatially allocated across the OLWS wastewater service area within a collections system hydraulic model in accordance with winter weather potable water meter data (where available) and land use classifications. Additional information on the spatial allocation of flows and the calculation of wastewater generation factors are included in Appendix E– Model Development TM.

Table 4-4. Existing Wastewater Flows in 2022 within the Oak Lodge Water Services Wastewater Service Area

Wastewater Generation Factors

Column		А	В	С	D	E	F	G	Н	
Column Formula				C=A*B				G=E*F	H=C+G	I=H/136
Land Use Code	Land Use Classification	Winter Water Consumption from Billing Records (gpd) ¹	Water to Wastewater Conversion (%)	Estimated BWF Based on Water Meter Data (gpd)	Area with Water Meter Data (Acres)	Wastewater Generation Factor ² (gpad)	Area without Water Meter Data (acres)	Estimated BWF Based on Land Use (gpd)	Total Existing BWF (gpd)	Equivalent Dwelling Units (EDUs) ³
Residential										
SFR2	Single Family – ½ acre tax lot	5,726	90	5,153	22.9	225	0.6	129	5,282	40
SFR3	Single Family – 10,000 sq ft lot	511,491	90	460,342	1,163.1	396	82.1	32,523	492,865	3,762
SFR4	Single Family – 9,000 sq ft lot	93,808	90	84,427	203.8	414	12.5	5,158	89,585	684
SFR5	Single Family – 7,000 sq ft lot	284,254	90	255,829	440.6	581	31.8	18,455	274,283	2,094
SFR6	Single Family – 6,000 sq ft lot	12,643	90	11,379	15.4	738	168.1	124,037	135,416	1,034
MFR1	Multifamily – Very low Density	196,715	96	188,847	143.1	1,306	19.8	25,879	214,725	1,639
MFR3	Multifamily – Moderate Density	157,202	96	150,914	39.0	3,500	31.3	109,447	260,361	1,987
	Residential Subtotal	1,261,839		1,156,891	2,027.9		346.1	315,628	1,472,517	11,240
Non-Residential										
CG	General Commercial	310,799	96	298,367	302.7	975	44.5	43,372	341,739	2,609
CN	Neighborhood Commercial	1,372	100	1,372	2.3	710	0	0	1,372	10
IL	Light Industrial	16,092	100	16,092	33.3	600	5.2	3,145	19,237	147
MUR3	Mixed Use – Low Density	125	95	119	0.9	129	0	0	119	1
MUR7	Mixed Use – Medium Density	13,939	95	13,242	5.4	2,439	0	0	13,242	101
POS⁴	Parks and Open Space (Includes Schools)	5,149	95	4,892	56.1	80	9.8	781	5,673	43
	Non-Residential Subtotal	347,476		334,084	400.7		59.5	47,297	381,382	2,911
	Total	1,609,315		1,490,975	2,428.6		405.6	362,926	1,853,899	14,151

¹ Daily winter water consumption was calculated from the average water meter records from December-March between 2018-2020 within the OLWS water service area.

² Wastewater generation factors were iteratively adjusted from values calculated within the water service area to obtain a total BWF for the collection system within 0.1% of the 1.85 MGD observed at the WWTP in July 2021.
 ³ The total number of EDUs includes all parcels within OLWS' wastewater service area. The number of EDUs for non-residential customers is calculated specifically for this master plan.
 ⁴ The POS land use code is the zoning code associated with schools. The water use and subsequent wastewater load in the table is representative solely for schools served by OLWS. Parks and other open spaces have been omitted even if

they have water use as this is all assumed to be outdoor water use that will not contribute to the wastewater collection system.

gpd = gallons per day BWF = base wastewater flow gpad = gallons per acre per day EDU = equivalent dwelling unit OLWS = Oak Lodge Water Services mgd = million gallons per day WWTP = wastewater treatment plant

4.2.2 Buildout Lands Inventory

To assess the capacity for future residential and commercial capacity within the Oak Lodge service area, a Buildable Lands Inventory (BLI) was prepared by Angelo Planning Group for this master plan. The BLI investigated three potential avenues for growth within the OLWS' wastewater service area: buildout development of vacant and partially vacant properties (4.2.2.1), infill development as a result of middle housing additions (4.2.2.2), and commercial property redevelopment (4.2.2.3). Each is described below, and the BLI Technical Memorandum is provided as Appendix F.

4.2.2.1 Buildout Development

Property data provided by Clackamas County was reviewed within the OLWS' wastewater service area to determine the vacant acreage within the OLWS wastewater service area that could support future development. Individual parcels were placed into three distinct categories:

- Developed. Includes parcels with less than ½-acre or which meet the criteria to be considered fully developed based on the size, zoning, and current level of development of the property.
- Vacant. Includes residential zoned lots with an existing improvement value of less than \$10,000 and non-residential lots that could be rezoned for residential use.
- Partially Vacant. Includes parcels greater than ½-acre with an existing dwelling that could support additional residences, based on allowable developed density per land use zone.

The developable acreage of vacant and partially vacant properties was further analyzed to determine the net developable acreage. Vacant acreage with steep slopes exceeding 25% or environmental constraints associated with riparian or upland habitats were assumed to constrain the ability to develop and the developable acreage was adjusted accordingly. A summary of the review of parcel data is provided in Table 4-5.

Development Status	Number of Lots	Gross Acres	Vacant Acres	Net Developable Acreage	Future Residential Unit Capacity				
Residential									
Developed Land	7,733	2,098.1	0	0	0				
Partially Vacant	475	429.4	232.1	200.4	1,018				
Vacant	227	91.0	63.0	57.7	308				
		Non	-Residentia	al					
Developed	308	301.3	0	0	0				
Vacant	11	6.9	4.9	4.3	0				
Totals	8,754	2,926.7	300	262.4	1,326				
¹ Parcel analysis taken from Buildable Land Inventory Technical Memorandum (Angelo Planning Group, 2022)									

Table 4-5. Summary of BLI Vacant Parcel Analysis

4.2.2.2 Middle Housing

In 2019 the Oregon State Legislature passed House Bill (HB) 2001 which contains numerous provisions related to the development of "middle housing", defined as duplexes, triplexes, quadplexes, townhomes, and cottage clusters. HB 2001 requires that middle housing development be allowed on all residential lots that allow a single family detached dwelling with discretion given to local jurisdictions regarding the approved siting and design. Based on conversations with Clackamas County, the following assumptions were made to account for increased densification from middle housing allowed due to the passing of HB 2001:

- Buildout Development Middle Housing. The development of vacant or partially vacant properties could be middle housing rather than detached single family homes. To account for this potential, 25 percent of vacant or partially vacant properties are assumed to develop at an increased density.
- Infill Development of Single-Family Properties. Approximately 5 percent of developed parcels zoned for single-family land use will add an average of 1.5 additional units per parcel.

To account for increased densification due to middle housing allowed by HB 2001, the OLWS service area has the capacity for an additional 809 residential units. The calculation for the number of additional residential units was developed using parcel data provided by Clackamas County and is explained in more detail within the BLI TM provided in Appendix F.

4.2.2.3 Commercial Redevelopment

In discussions with Clackamas County, several parcels in the vicinity of the SE Park Avenue Transit Station were identified for an increased potential of redevelopment to provide multifamily housing. The County is considering changes to zoning maximums to allow up to 60 units per acre near the transit station. The BLI study found nearly 10 acres of underutilized parcels adjacent to the transit station that could redevelop and provide an additional 400 residential units. The BLI study also indicated a potential for additional commercial redevelopment throughout the service area, but this would require additional zoning changes and it is not clear which, if any, commercial properties would be most likely to develop. Given the challenges in predicting the location and nature of these future zoning changes, only the redevelopment around the transit center is included in the BLI estimates of additional housing unit capacity.

4.2.3 Population Estimates

The Portland State University (PSU) Population Research Center provides annual estimates of population within the OLWS water system service boundary each year based on available census data. The most recent estimate is for the year 2020 and the estimate was completed in May of 2021. Estimates are based on the April 1, 2010 census data, with each subsequent year based on a statistical estimate for population as of July 1st of each year. The 2020 census demographic and housing characteristics data is scheduled to become available in 2023 and will allow PSU to update the annual population estimates. WSC has estimated the populations statistics through 2022 based on the average growth rates in the PSU estimates. The estimated historical population data from 2010 to 2022 for the OLWS service area is provided in Table 4-6 below.

Over the 10-year period from 2010 to 2020, the population is estimated to have grown at an average annual rate of 0.4 percent within the OLWS water service area. The OLWS water service area has not experienced substantial growth over the past decade.

The PSU Population Research Center also provides forecasts, research and analysis of population and demographics across the state of Oregon and has prepared future population forecasts within the OLWS water service area through the year 2050. Populations forecasts for OLWS are provided in 5-year increments, beginning with the estimated population for 2025, in Table 4-7.

The population forecasts indicate a gradual reduction in persons per household and annual growth rate over the next 30 years. A total of 1,431 new households are forecast to be added within the OLWS water service area between 2022 and 2050. Note that the water service area is smaller than the wastewater service area, which includes a portion of the City of Gladstone.

Year ¹	Population	Household Population	Households	Persons per Household	Annual Growth Rate
2010	27,340	26,932	11,323	2.38	NA
2011	27,433	27,025	11,345	2.38	0.3%
2012	27,494	27,086	11,365	2.38	0.2%
2013	27,549	27,141	11,388	2.38	0.2%
2014	27,608	27,200	11,413	2.38	0.2%
2015	27,654	27,246	11,478	2.37	0.2%
2016	27,820	27,412	11,548	2.37	0.6%
2017	27,950	27,542	11,626	2.37	0.5%
2018	28,072	27,664	11,701	2.36	0.4%
2019	28,313	27,905	11,827	2.36	0.9%
2020	28,459	28,051	11,889	2.36	0.5%
2021 ²	28,575	28,166	11,938	2.36	0.4%
2022 ²	28,692	28,281	11,987	2.36	0.4%

Table 4-6. Portland State University Annual Historical Population Estimates for Oak Lodge Water Service Area

¹ 2010 Census data allocated to service area. Years 2011 through 2020 estimated population on July 1st by PSU Population Research Center.

 2 WSC estimate based on average growth rate of 0.41% between 2010 and 2020 PSU data.

Table 4-7. Future Population Forecasts for Oak Lodge Water Service Area

Year	Population	Household Population	Households	Persons per Household	Annual Growth Rate	
2025	29,383	28,939	12,274	2.36	0.57%	
2030	30,118	29,647	12,597	2.35	0.50%	
2035	30,706	30,209	12,848	2.35	0.39%	
2040	31,069	30,547	13,031	2.34	0.24%	
2045	31,455	30,910	13,226	2.34	0.25%	
2050	31,833	31,264	13,418	2.33	0.24%	
¹ Forecasts provided by Portland State University Population Research Center (May 2022).						

4.2.4 Future Population Growth Summary

The BLI results indicate a potential capacity for 2,535 additional residential units within the OLWS wastewater service area, compared to a forecasted increase of 1,431 additional households from the PSU Population Research Center. The PSU forecasts are limited to the 2019 water service area boundary though, while the wastewater service area boundary that formed the basis for the BLI includes the northwestern portion of the City of Gladstone. Although the two approaches represent different boundary conditions, they can be compared in terms of annual growth rate. The PSU forecasts through 2050 assume an average annual growth rate of 0.4 percent, while the BLI would result in an average annual growth rate of 0.77 percent if the full development capacity was realized by 2052, or 30 years from the writing of this chapter.

The capacity for additional residential housing units identified in the BLI appears to be more conservative than the PSU forecasts for the year 2050, but not excessively so. For the purposes of projecting future wastewater system loading within the OLWS service area, WSC recommends using the assumption that the full BLI capacity will be developed by the year 2052. A summary of the assumed growth is provided in Table 4-8.

Projected Growth by 2052	Population	Households	Annual Growth Rate
Additional Buildout Development	3,129	1,326	
Additional Middle Housing Densification	1,909	809	
Additional Commercial Redevelopment	944	400	
Totals	5,982	2,535	0.77%

Table 4-8. Population and Growth Projections for Wastewater Master Plan.

4.2.5 Buildout Base Wastewater Flow

The BLI identified which parcels will have future development and infill. To determine buildout BWF, the wastewater generation factor per EDU (Table 4-3) was applied to the additional units identified in the BLI. Parcels without new development or redevelopment were assumed to have the same loading as their existing load. Parcels with additional units were assigned a new load that was the sum of the existing load and the load associated with the additional units. For the purposes of estimating buildout loads, all new residential units were assigned a load of 131 gpd/EDU per Table 4-3. A summary of the additional buildout flows is provided in Table 4-10 and a summary of all flows is provided in Table 4-9.

While the majority of the growth in the OLWS wastewater service boundary is anticipated to come from residential households, there were also 11 commercial and light-industrial vacant properties that are not expected to be rezoned to residential use but could be developed in the future. Buildout flows were estimated for these parcels using the appropriate land use zoning wastewater generation factors per acre (Table 4-4). Additional information on the buildout loading can be found in Appendix E – Model Development TM.

Table 4-9. Existing and Projected Buildout Wastewater Flows for OLWS Wastewater Service Area - 2022 to 2052

Existing and Projected Future Flows

Land Use Code	Land Use Description	Existing BWF (gpd)	Existing EDUs	Additional Buildout BWF (gpd)	Future Middle Housing BWF (gpd)	Commercial Redevelopment BWF (gpd)	Total Additional Future BWF (gpd)	Total Existing and Future Buildout BWF (gpd)	Total Existing, Future Buildout, and Middle Housing BWF (gpd)	Total Existing, Future Buildout, Middle Housing, and Commercial Redevelopment BWF (gpd)	Buildout EDUs
SFR2	Single Family – ½ acre tax lot	5,282	40	2,620	950	0	3,570	7,902	8,852	8,852	68
SFR3	Single Family – 10,000 sq ft lot	492,865	3,762	88,425	51,054	0	139,479	581,290	632,344	632,344	4,827
SFR4	Single Family – 9,000 sq ft lot	89,585	684	20,305	11,004	0	31,309	109,890	120,894	120,894	923
SFR5	Single Family – 7,000 sq ft lot	274,283	2,094	29,344	27,271	0	56,615	303,627	330,898	330,898	2,526
SFR6	Single Family – 6,000 sq ft lot	135,416	1,034	7,336	9,380	0	16,716	142,752	152,132	152,132	1,161
MFR1	Multifamily – Very low Density	214,725	1,639	21,091	5,175	0	26,266	235,816	240,991	240,991	1,840
MFR3	Multifamily – Moderate Density	260,361	1,987	4,585	1,114	0	5,699	264,946	266,060	266,060	2,031
	Residential Subtotal	1,472,517	11,240	173,706	105,948	0	279,654	1,646,223	1,752,171	1,752,171	13,376
CG	General Commercial	341,739	2,609	3,560	0	52,400	55,960	345,299	345,299	397,699	3,036
CN	Neighborhood Commercial	1,372	10	0	0	0	0	1,372	1,372	1,372	10
IL	Light Industrial	19,237	147	1,599	0	0	1,599	20,836	20,836	20,836	159
MUR3	Mixed Use – Low Density	119	1	0	0	0	0	119	119	119	1
MUR7	Mixed Use – Medium Density	13,242	101	0	0	0	0	13,242	13,242	13,242	101
POS	Parks and Open Space (Includes Schools)	5,673	43	0	0	0	0	5,673	5,673	5,673	43
	Non-residential Subtotal	381,382	2,911	5,159	0	52,400	57,559	386,541	386,541	438,941	3,350
Totals (gp	d)	1,853,899	14,151	178,865	105,948	52,400	337,213	2,032,764	2,138,712	2,191,112	16,726
BWF = base	wastewater flow gpd = gallons per day	EDU = equiva	lent dwelling un	it							

Table 4-10: Additional Loading at Buildout

Additional Unit Source	Additional Residential Units	Additional Residential Flow (gpd)	Additional Non- Residential Flow (gpd)1	Additional Load at Buildout (gpd) ²
Buildout Development	1,326	173,706	5,159	178,865
Middle Housing	809	105,948	0	105,948
Commercial Redevelopment	400	52,400	0	52,400
Total	2,535	332,054	5,159	337,213
¹ Non-residential future flows were estimated using appropriate wastewater generation factors in Table 4-2 & Table				

4-4.

² All residential units were assigned a load of 131 gpd/EDU

gpd = gallons per day

4.3 Wet Weather Flows

Determining the wet weather flow consisted of establishing the level of GWI, developing hydrographs (RTK parameters) for modeling RDII response to a monitored rain event, selecting an appropriate design storm, and estimating RDII under the design storm conditions. Flow monitoring throughout the collection system was used to establish parameters for determining these elements of wet weather flow.

4.3.1 Flow Monitoring

Flow monitoring was conducted at eight locations (Figure 4-4) within OLWS' collection system from December 18, 2021 through February 28, 2022 to capture data on wet weather flows. Flow monitoring locations were strategically selected to balance the need for a constant minimum depth of flow required for the meters yet subdividing the service area sufficiently to identify areas where higher volumes of GWI and RDII are entering the system. Additional information on the flow monitoring procedures and analysis of the flow monitoring data can be found in Appendix G – Flow Monitoring TM.

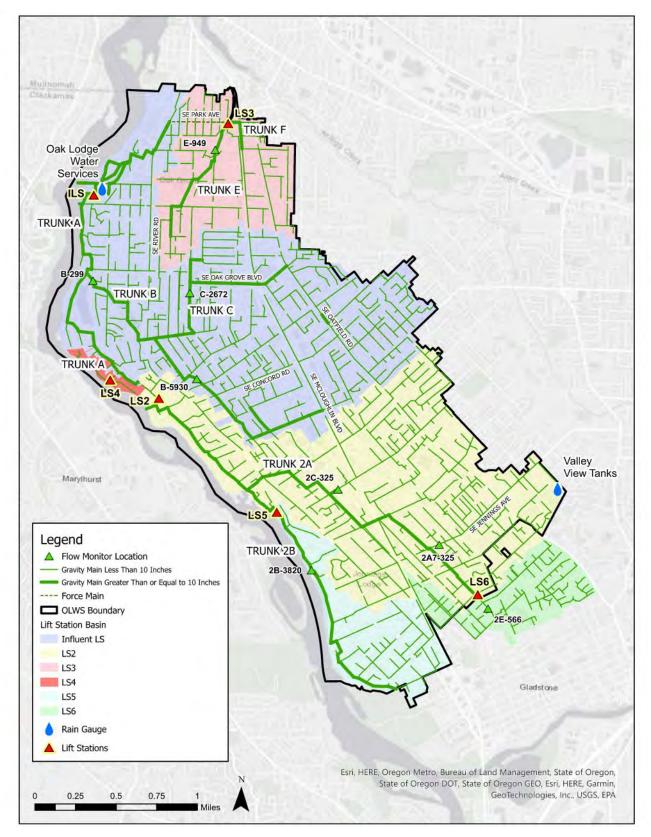


Figure 4-4: Flow Monitor Locations

4.3.2 Groundwater Infiltration

The elevation of the groundwater table within OLWS' service area fluctuates seasonally. During the winter months the elevation is increased and can cause additional GWI to enter the collections system piping when the groundwater elevation rises above the invert elevations of the pipes and manholes. To determine the volume of GWI entering the system during the wet season, the average daily wet weather flow at the ILS was calculated during the wet winter months for a period where no rainfall occurred. Average daily wet weather flow during no rain was then compared to the BWF to determine the portion of the flow that can be attributed to GWI. The winter period of January 23 - 29, 2022 was selected to perform the calculation as no rain fall was observed during this time period, good flow meter data was available for the total wet weather flow at the WWTP from ILS meters, and good flow monitoring data was available within the collection system.

To estimate total GWI for the collection system, the BWF was subtracted from the wet weather flow during the period of no rainfall in January 2022. To better understand how the GWI contribution is spread throughout the collection system, the modeled BWF at each of the flow monitoring locations was subtracted from the daily average wet weather flows during this dry period. The ratio of GWI to BWF was applied to any areas that were not captured with flow monitoring data and minor adjustments were made so that the total observed GWI across the system correlated to the total flow at the WWTP during the same period. A summary of the GWI allocation by basin is shown in Table 4-11. For the purposes of the hydraulic model, the total GWI for a basin was spread equally amongst all the manholes within that basin.

GWI is anticipated to remain relatively constant over time unless significant improvements to large portions of the collection system are implemented. The volume of GWI is dependent upon the depth of the groundwater table as well as the condition and extents of the collection system. Anticipated growth within the OLWS wastewater service area is primarily infill and will not substantially increase the extents of the system. As the collection system ages and condition of individual assets deteriorate, the volume of GWI is expected to increase. OLWS plans to make repairs to the collections system based on ongoing condition assessments such that the rate of repairs that reduce GWI will offset the rate of degradation of existing piping such that in total across the collection system there will be no significant increase in the amount of GWI over time. For the assumption of constant GWI over time to remain appropriate, OLWS must continuously assess and repair pipes and manholes with observed condition deficiencies.

Basin	Estimated GWI (gpd)	Estimated GWI (gpad)
ILS	143,576	154.1
LS2	489,438	655.2
LS3	232,881	1,040.2
LS4	9,789	783.6
LS5	110,216	736.5
LS6	63,846	437.4
Total	1,049,746	474.8

Table 4-11: Estimated Groundwater Infiltration

The ILS Basin represents all piping served solely by the ILS as shown in Figure 4-4

4.3.3 Wet Weather Hydrograph Development

Wet weather flow monitoring was used to capture rainstorm data and understand how flows within the OLWS collection system respond to a storm. The goal of this monitoring was to capture a system stressing rain event to understand RDII within OLWS's collection system. According to ADS Environmental, "system stressing events are typically more than one inch of rainfall in a 24-hour period." (Gettring More From Flow Monitoring - Interpreting Sewer Flow Data to Yield the Maximum Benefit, 2005) Table 4-12 shows the results of the top storms captured during the monitoring period.

Period	Total Rain (inches)	Peak Rain Intensity (inches per hour)
January 2, 2022 6:00 pm – January 3, 2022 6:00 pm	1.65	0.33
February 27, 2022 11:55 pm – February 28, 2022 11:55 pm	1.31	0.34
January 5, 2022 8:35 am – January 6, 2022 8:35 am	0.96	0.12
December 23, 2021 10:00 pm – December 24, 10:00 pm	0.88	0.31
January 19, 2022 1:35 am – January 10, 2022 1:35 am	0.55	0.06

Table 4-12: Top Five Rain Events	(24 Hour) b	v Total Rain During	wet Weather Flow Monitoring
		y 19141 Kalli Bolling	

The RTK (note this is not an acronym) unit hydrograph method (RTK method) was used to estimate the impacts of RDII on the collection system flows. The RTK method uses a series of three triangular unit hydrographs to model an observed RDII hydrograph based on flow monitoring data (Figure 4-5). The first unit hydrograph models the rapid response to the rain event and includes primarily inflow into the collection system. The second unit hydrograph

models the medium response that includes both inflow and infiltration components. The third unit hydrograph models the slow response to the rain event and includes infiltration, which can persist long after the storm has ended. The combination of the three unit hydrographs creates the modeled total RDII hydrograph. (A Toolbox for Sanitary Sewer Overflow Analysis and Planning (SSOAP) and Applications)

Each unit hydrograph is defined by three parameters:

- R Fraction of rainfall falling that enters the collection system as RDII.
- T Time to peak RDII flow (measured in hours)
- K Ratio of the time of recession to the time of peak flow

These parameters were iterated using typical values until the modeled hydrograph aligned with the hydrograph from the storm beginning on January 2, 2022, at 6:00 pm. This storm was selected as it had the largest volume of rain over a 24-hour period while having the second highest peak rain intensity. These two factors made it the storm with the largest RDII response.

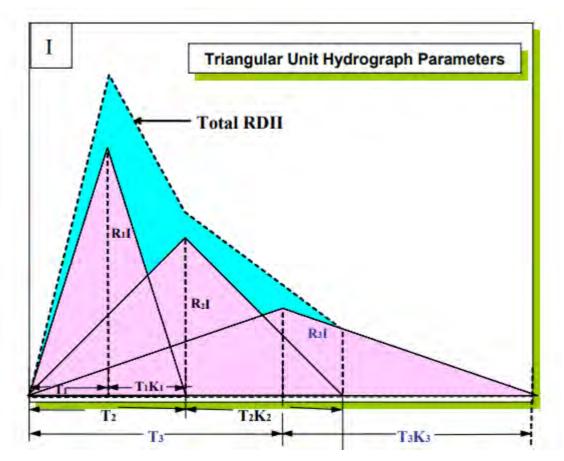


Figure 4-5: RTK Unit Hydrograph Parameters (A Toolbox for Sanitary Sewer Overflow Analysis and Planning (SSOAP) and Applications)

4.3.4 Establishing Wet Weather Performance

The desired level of wet weather performance must be selected to evaluate the collection system's ability to handle wet weather flows under both existing and future conditions. This is done by selecting a storm to design around, which is specified based on the quantity of rain over a set time period. Selecting the size of this storm is the responsibility of the owner of the collection system, but the Oregon Department of Environmental Quality (DEQ) provides guidance as to what is acceptable. According to Oregon Administrative Rule (OAR) 340-041-0009 (7) and (8), all sanitary sewer overflows (SSOs) are prohibited. However, DEQ may withhold enforcement action for a SSO that occurs during larger storm events, defined as a 10-year storm, 24-hour duration for summer months and a 5-year storm, 24-hour duration for winter months. Based on this guidance, the OLWS selected a 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration for summer for a set of a 5-year storm, 24-hour duration for the design storm as a total of 3.0 inches of rain over 24 hours and follows the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) (formerly Soil and Conservation Service [SCS]) 24-hour, Type IA distribution. (J.F. Miller, 1973) Figure 4-6 shows a comparison of the 10-year and 5-year storm hyetographs for reference.

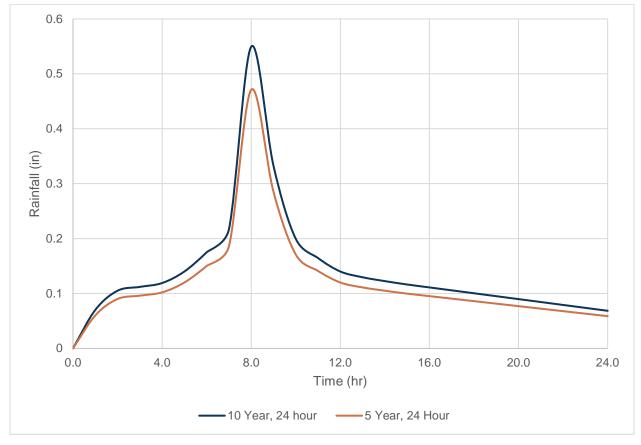


Figure 4-6: Comparison of Storm Hyetographs

WSC reviewed publicly available rain gauge information from the City of Portland's Harney Rain Gauge located at 2033 SE Harney Street, located 2.5 miles north of the OLWS service area. Over the past decade, from 2012 through 2022, there have been four storms that have exceeded 2.5 inches of rain in a 24-hour period, and one of which (the November 19, 2012, event) reached a total of 3.15 inches of rain over 24 hours. In terms of peak intensity, two of the four storms (November 19, 2012, and December 7, 2015 storms) reached a peak intensity greater than 0.5 inches of rainfall in an hour. Based on the review of the last decade of rainfall data near the OLWS wastewater service area, the selection of the 5-year 24-hour design storm appears to reflect the magnitude and intensity of observed storms within the past decade.

4.3.5 Rainfall Derived Inflow and Infiltration

RDII was determined by subtracting the BWF and GWI from the peak wet weather flow (PWWF) under design storm conditions. The design storm was modeled by importing the design storm hyetograph from Figure 4-6 and shifting the start of the storm so the peak rainfall aligns with the peak daily diurnal dry weather flow and applying the RTK parameters identified for each monitoring area. More information on the hydraulic model is included in the Model Development TM in Appendix E. The resulting RDII for each lift station basin is presented in Table 4-13.

Basin ¹	BWF and GWI at PWWF (gpd)	PWWF Modeled Design Storm (gpd)	Peak RDII (gpd)	Peaking Factor of PWWF to BWF and GWI	
ILS	1,340,546	9,145,679	7,805,133	6.8	
LS2	1,156,516	3,982,899	2,826,383	2.7	
LS3	501,618	2,303,420	1,801,802	4.6	
LS4	14,621	68,217	53,596	4.7	
LS5	234,457	911,600	677,143	3.9	
LS 6	193,259	1,093,178	899,919	5.7	
gpd = gallor	¹ Basins are as shown in Figure 4-4 gpd = gallons per day BWF = base wastewater flow GWI = groundwater infiltration PWWF = peak wet weather flow RDII = rainfall derived infiltration and inflow				

Table 4-13: Existing Peak Wet Weather Flow and RDII

Sub-basins within the OLWS wastewater service area are commonly compared in terms of the ratio, or peaking factor, between the PWWF and the BWF and GWI. However, this method does not normalize for the size of the basin nor the amount of rainfall. A better method for evaluating RDII is to determine the amount of peak RDII produced per acre of contributing area, as this normalizes the RDII by the basin size. The contributed area is calculated by assuming that a buffer area within 100 feet of every pipe within the basin will contribute to RDII within the system. The peak RDII per acre is provided for each basin in Table 4-14.

Basin	Peak RDII (gpad)	Contributing Area (acres)
ILS	8,377	931.8
LS2	3,783	747.0
LS3	8,048	223.9
LS4	4,290	12.5
LS5	4,525	149.6
LS6	6,166	146.0
System Average	6,362	2,210.8
gpad = gallons per acre per day	RDII = rainfall derived infiltrat	ion and inflow

Table 4-14: RDII Calculated for Contributing Area By Basin

For the purpose of estimating future flows in this master plan, the system-wide RDII volume is assumed to remain constant between existing and buildout conditions. RDII is a function of the volume of rainfall, the total geographical extents of the collection system, and the condition of the collection system. Under both existing and buildout conditions, the same design storm is used for the evaluation so the volume of rainfall across the geographical area remains constant. Similarly, with the majority of the anticipated growth within the OLWS service area coming from infill development there will not be significant geographic expansion resulting in contributing area and total volume of rainfall. The condition of the collection system will degrade over time, causing an increase in RDII if periodic repairs are not completed. For the purposes of establishing future flows, WSC has made the assumption that OLWS will maintain an appropriate level of repairs to the collection system to at least offset, if not reduce, the amount of RDII. Further discussion of the extents and recommendations for repairs to achieve RDII reductions are provided in Chapter 5.0 of this WWMP.

4.4 Flow Summary

A summary of the current and future wastewater flows within the collection system is provided in Table 4-15. BWF was determined through analyzing water billing data and land use data to develop factors for predicting wastewater flow. Growth in the total wastewater flows over the 30-year planning horizon from 2022 through 2052 is anticipated to be solely from growth in the BWF, which assumes that all buildable lands are developed by 2052 and assumes a certain amount of infill densification resulting from commercial redevelopment and high-density residential development.

The design criteria for the collection system are based on conveying all flows associated with a 5-year, 24-hour winter storm, which is the threshold at which DEQ will impose regulatory action. The flows associated with this storm are used to evaluate the capacity of the collection system to achieve the design criteria for freeboard and SSOs that are identified in Chapter 5.0. The resulting PWWF at the WWTP in the model under this design storm is shown in Table 4-15.

Year	Equivalent Dwelling Units (EDU)	Base Wastewater Flow (gpd)	Peak Wet Weather Flow (gpd)
2022 – Existing	14,151	1,853,899	17,504,994
2052 - Buildout	16,726	2,191,112	17,956,410

Table 4-15: Summary of Wastewater Collection System Flows

In the evaluation of the WWTP, the highest PWWF observed over the six years of available data occurred when a smaller antecedent storm with approximately 1 inch of total rainfall occurred in the 24 hours prior to a larger 24-hour storm with two or more inches of total rainfall. In order to better align with historic PWWF at the plant, a revised hyetograph (Figure 4-7) was generated to include an antecedent storm of 1.26 inches of rainfall in the 48-hours prior to the 5-year, 24-hour design storm. The antecedent storm hyetograph was generated based on storm data from the flow monitoring period and represents an actual 48-hour storm in the OLWS service area.

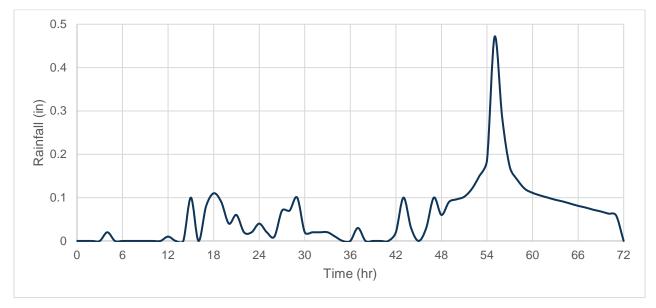


Figure 4-7: 5-Year, 24-Hour Storm with Antecedent Rainfall Hyetograph

Using the revised hyetograph with antecedent rainfall, revised PWWF values were estimated at the WWTP for performing the WWTP analysis. These are summarized in Table 4-16.

Table 4-16: Summary of Wastewater Flows for WWTP Analysis

Year	Equivalent Dwelling Units (EDU)	Base Wastewater Flow (gpd)	Peak Wet Weather Flow (gpd)
2022 – Existing	14,151	1,853,899	19,059,887
2052 - Buildout	16,726	2,191,112	19,522,181

4.5 Treatment Plant Flows and Loadings

To evaluate existing capacity and future expansion needs at the WWTP, other flow quantities besides base and peak wet weather flows as well as plant influent BOD and TSS loadings were developed from historical plant data and base flows given in Table 4-16 above. The following summarizes the historical data review and development of the design flows and loadings to the WWTP.

4.5.1 Historical Flows and Loadings

OLWS provided plant data from 2016 to 2021 for development of the flow and loading unit factors. The following flows were calculated for each individual year (if applicable, based on the timescale of the data provided):

- Minimum month flow Monthly average flow for the month in each year with the lowest average flow in each year. This is assumed to correspond to the base wastewater flow developed above and given in Table 4-15.
- Average dry weather flow (ADWF) Average flow from May to October period, as defined in the plant's National Pollutant Discharge Elimination System (NPDES) permit. Note that this is different from the average dry weather flow defined in Section 4.2 above.
- > Average annual flow (AAF) Average flow for each year
- Average wet weather flow (AWWF) Average flow from November to April period, as defined in the NPDES permit.
- Maximum month dry weather flow (MMDWF) Monthly average flow for the month with the highest average flow during dry weather period.
- Maximum month wet weather flow (MMWWF) Monthly average flow for the month with the highest average flow during wet weather period.
- Peak day flow (PDF) Daily average flow for the day with the highest average flow calculated based on the 5-year 24-hour design storm
- Peak hour flow (PHF) Assumed to correspond to the peak wet weather flow shown in Table 4-15 based on the 5-year 24-hour design storm.

Table 4-17 summarizes the influent flows and loads and calculated peaking factors based on the 2016 to 2022 data. The peaking factors were used to calculate future flows and loads discussed below.

Year	2016	2017	2018	2019	2020	2021	Average
Flows (mgd)							
Min month	1.94	2.13	1.91	1.83	1.96	1.79	1.93
ADWF	2.44	2.53	2.17	2.25	2.24	2.06	2.28
AAF	3.61	3.98	3.37	2.88	2.94	3.31	3.35
AWWF	4.79	5.43	4.57	3.51	3.64	3.91	4.31
MMDWF	3.96	3.38	2.73	2.68	2.66	2.54	2.99
MMWWF	6.05	7.87	6.68	4.54	5.23	6.09	6.08
Min month/ADWF	0.80	0.84	0.88	0.81	0.88	0.87	0.85
ADWF/AAF	0.67	0.64	0.64	0.78	0.76	0.62	0.69
AWWF/ADWF	1.97	2.15	2.10	1.56	1.62	1.90	2.03 ¹
MMDWF/ADWF	1.62	1.34	1.26	1.19	1.19	1.23	1.36 ¹
MMWWF/ADWF	2.49	3.11	3.08	2.02	2.33	2.95	2.91 ¹
		BOD	Loading	s (lb/d)			
Average annual	4,240	4,010	4,890	4,920	4,760	5,200	4,670
MM Dry Weather	4,680	4,820	4,480	5,710	4,740	6,660	5,080
MM Wet Weather	4,870	4,820	7,990	5,880	5,440	6,820	5,970
MMDW/AA	1.10	1.06	0.92	1.16	1.00	1.28	1.09
MMWW/AA	1.15	1.20	1.63	1.20	1.14	1.31	1.27
	TSS Loadings (lb/d)						
Average annual	4,080	3,960	4,860	4,700	4,590	4,960	4,530
MM Dry Weather	4,760	4,470	5,140	5,080	4,800	5,540	4,970
MM Wet Weather	4,890	5,110	7,970	6,030	5,830	6,840	6,110
MMDW/AA	1.17	1.13	1.06	1.08	1.05	1.12	1.10
MMWW/AA	1.20	1.29	1.64	1.28	1.27	1.38	1.34

Table 4-17: WWTP Historical Flows and Loadings and Peaking Factors

¹ Average calculated from 2016 to 2018 and 2021 data as the ratios for 2019 and 2020 are noticeably lower than for the other years.

mgd = million gallons per day Ib/d = pounds per day MM = maximum month AA = annual average

4.5.2 Plant Flow and Loading Projections

BOD and TSS loading projections are used to assess the WWTP treatment process capacity and future upgrade and expansion needs. Loadings were calculated by applying per EDU loading rates to the projected EDUs from Section 4.4 and load peaking ratios from historical plant data summarized in Table 4-17 above. For the WWTP, flow parameters including ADWF,

AWWF, and maximum month flows are often used in conjunction with loadings to evaluate and size the treatment unit processes. The following methodology and assumptions were used to develop the projected flows and loadings:

- Per EDU BOD and TSS loading rates were calculated from existing (2022) EDU of 14,151 and the average of the 2019 to 2021 annual average loadings. These are calculated to be 0.350 and 0.336 pounds per EDU per day for BOD and TSS, respectively. It was assumed that these unit loading rates would remain the same through 2052.
- 2022 and 2052 annual average BOD and TSS loads were calculated from the 2022 EDU of 14,151 and 2052 EDU of 16,726, respectively, and the per EDU loading rates.
- The maximum month dry weather and wet weather loads were then calculated from the annual average loads using the load peaking factors calculated from historical data.
- 2022 and 2052 AAF, ADWF, AWWF, MMDWF, MMWWF were calculated from the base wastewater flows of 1.85 and 2.19 mgd, respectively, and the flow peaking factors calculated from historical data. Peak day and peak hour flows were derived from the hydraulic model for the 5-year 24-hour storm as discussed above.

Table 4-18 summarizes the 2022 and 2052 projected flows and loads. The design flows and loads previously projected for the year 2030, as described in "Technical Memorandum: Basis of Capacity OLWS WRF Improvements Project" (CH2M Hill, October 2, 2013), were also included. Comparing the projected 2052 flows and loads with the original design flows and loads (for 2030) indicates lower values for the current projections except for peak hour flow and maximum month wet weather BOD load. The lower loading projections result in a reduction in required treatment capacity for some of the unit processes or a delay in the need for expansion to increase capacity, when compared to the original design.

Table 4-18: Summary of Treatment Plant Flows and Loads

Parameter	2030 Design (2013 TM)	2022	2052
Flow (mgd)			
Average dry weather	3.5	2.2	2.5
Average annual	4.3	3.2	3.5
Average wet weather	5.2	4.4	4.8
Max month dry weather	5.9	3.0	3.3
Max month wet weather	10.5	6.3	6.7
Peak day	-	15.1	15.5
Peak hour	18.0	19.1	19.5
BOD (lb/d)			
Annual average	6,680	4,950	5,850
Max month dry weather	7,250	5,400	6,380
Max month wet weather	7,440	6,290	7,440
TSS (lb/d)			
Annual average	7,450	4,750	5,620
Max month dry weather	8,960	5,230	6,180
Max month wet weather	8,390	6,370	7,530

5.0 Collection System Analysis

The following sections describe the evaluation of the wastewater collection system for both hydraulic capacity and structural condition. Where deficiencies were identified, recommendations for capital improvement projects have been provided and are summarized at the end of the chapter.

IN THIS SECTION

- Hydraulic Model Development
- Hydraulic Capacity Evaluation
- Condition Assessment
- Rainfall Derived Infiltration and Inflow
- Recommended Projects

PREPARED BY:

5.1 Hydraulic Model Development

WSC developed a model of OLWS' wastewater collection system in SewerGEMS, Bentley's® GIS-based hydraulic modeling software, using updated system information provided by OLWS. The objective of the model development was to construct a model representative of OLWS' wastewater collection system for use in simulating and predicting the performance of infrastructure under an array of differing flow conditions. The model was calibrated using flow metering data and used to evaluate recommended capital improvements based on the deficiencies identified in the capacity analysis. Additional information on the model development and calibration is included in Appendix E – Model Development TM.

5.2 Hydraulic Capacity Evaluation

An evaluation of the capacity of the wastewater collection system was conducted. The first step included developing acceptable capacity performance criteria. These capacity criteria were then used in conjunction with the hydraulic model to identify capacity deficiencies in both gravity wastewater pipelines and lift stations that comprise the collection system.

5.2.1 Capacity Evaluation Criteria

In June 2022, OLWS and WSC conducted a workshop to review preliminary hydraulic modeling results and to discuss the desired criteria for evaluating the capacity of the collection system. Capacity evaluation criteria are necessary for identifying hydraulic capacity deficiencies within the existing collection system. The capacity evaluation criteria included the selection of a design precipitation event, the minimum acceptable freeboard between water surface elevations and manhole rims at peak flows, and capacity required in each lift station. The final evaluation criteria are presented in Table 5-1.

Category	Evaluation Criteria
Model Peak Wet Weather Flow (PWWF)	Fir purposes of evaluating system capacity, PWWF will be based on the 5-year, 24-hour design storm timed to match peak RDII with daily diurnal peak dry weather flow.
Available Freeboard	Minimum 2 ft freeboard in each manhole during PWWF. Freeboard measured as distance between manhole rim elevation and the maximum water surface elevation. For manholes where 2 ft of freeboard is not feasible due to manhole depth, a maximum surcharge equivalent to 35% of the distance from the pipe invert to the manhole rim during PWWF was used.
Lift station firm capacity	Lift station capacity is equal to, or greater than, PWWF with largest pump out of service.
Permitted Outfalls	No sanitary sewer overflows at permitted outfalls within the collection system.

Table 5-1: Hydraulic Capacity Evaluation Criteria

OLWS' evaluation criteria are consistent with the Oregon DEQ regulations. DEQ may withhold enforcement action for a sanitary sewer overflow (SSO) that occurs during larger storm events, which are defined as a 10-year, 24-hour duration storm for summer months and a 5-year, 24-hour duration storm for winter months. OLWS has elected to model the collection system capacity using a 5-year, 24-hour duration storm and not permit any SSO. The manhole freeboard and surcharge limits selected in the design criteria are considered conservative and will identify any manholes at risk of an SSO under these storm conditions. Similarly, lift stations are to be evaluated based on their firm capacity (defined as the capacity of the station with the largest pump out of service).

5.2.2 Capacity Deficiency

The hydraulic model was used to evaluate OLWS' collection system under dry and wet weather conditions. Loading was applied for existing and buildout conditions in accordance with the flows and loads outlined in Chapter 4.0. The following subsections describe deficiencies as defined by the evaluation criteria presented in the previous Section (5.2.1).

5.2.2.1 Existing Loading Conditions

The wastewater collection system was first modeled under OLWS' existing loading conditions for the PWWF condition and manhole water surface elevations were used to assess the capacity of the system gravity piping. Pipelines were assumed to be deficient if an adjacent manhole violated the available freeboard criteria. The results showing the manholes, and piping with insufficient capacity, in the model are shown in Figure 5-1. The model identified 81 manholes and 134 gravity pipelines (or approximately 3.6 percent of the total for both manholes and linear footage of wastewater mains in the OLWS service area) that violated the available freeboard criteria. Of these manholes, 36 were determined to overflow (SSO) in the PWWF condition, based on the model results.

Each lift station was evaluated to determine whether its firm capacity was greater than the PWWF. The firm capacity is defined as the lift station's capacity with the largest pump out of service. The results of the lift station analysis are shown in Table 5-2.

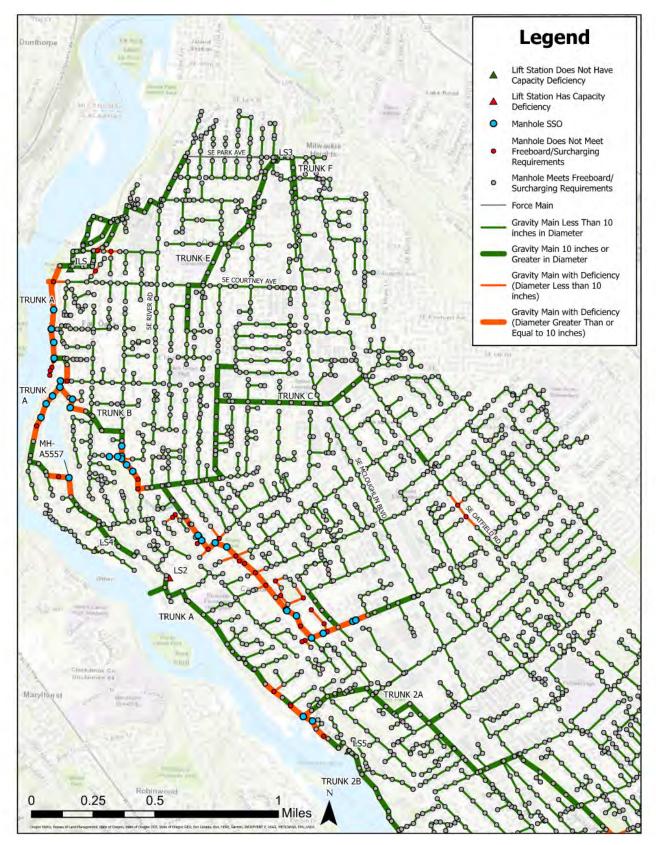


Figure 5-1: Existing Capacity Deficiencies Under PWWF Condition (Part 1)

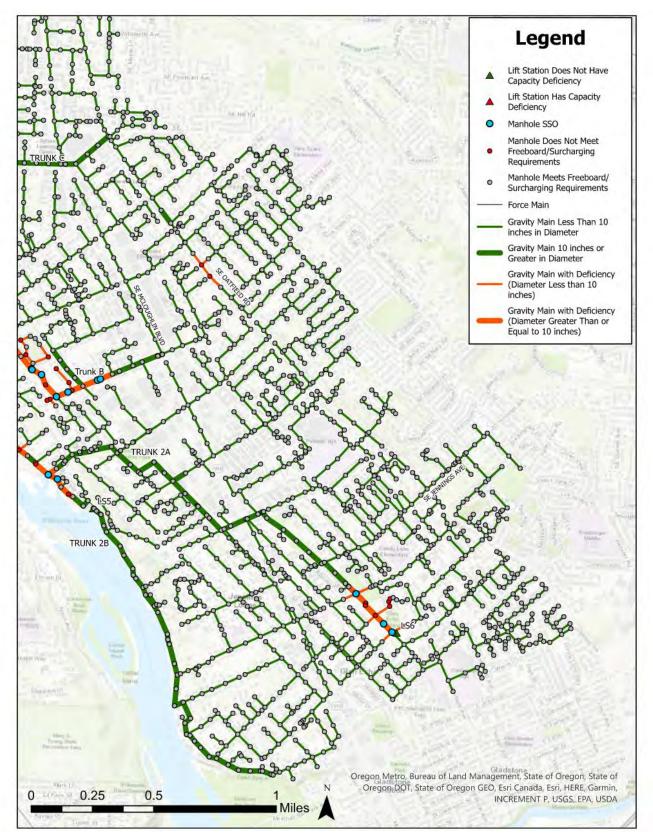


Figure 5-2: Existing Capacity Deficiencies Under PWWF Condition (Part 2)

Lift Station (LS)	No. of Pumps	Firm Capacity with Largest Pump Out of Service (gpm)	Peak Wet Weather Flow (gpm)	Meets Design Criteria?
Influent Lift Station (ILS)	5	13,888 ¹	12,156	Yes
LS2	3	3,400 ²	4,158	No
LS3	2	2,240 ³	1,600	Yes
LS4	2	139.8 ⁴	47	Yes
LS5	2	640 ⁵	633	Yes
LS6	2	800 ⁶	759	Yes

Table 5-2: Lift Station Results Under Existing Loading

gpm=gallons per minute

¹ILS firm capacity value derived from the Water Reclamation Facility Improvements record drawings dated March 2012

²LS2 firm capacity value derived from the Cornell Pumps 6NHTH pump curve and associated system curve

³LS3 firm capacity value derived from the Cornell Pumps 8NNT pump curve and associated system curve

⁴LS4 firm capacity value derived from the NP3102 pump curve and associated system curve

⁵LS5 firm capacity derived from the LS5 design plans dated February 2021

⁶LS6 firm capacity derived from Pioneer Pump SC66S12 and Cornell Pumps 6NHTA pumps curves and associated system curves

Based on comparison with the current design PWWF, LS2 has a capacity deficiency under the design storm conditions. The LS2, LS5, and LS6 basins all provide flow into LS2. As discussed in Chapter 4.0, these basins have high levels of GWI and RDII, which is the primary reason the flow exceeds the firm capacity of the station under PWWF conditions. Additionally, the existing collection system downstream of LS2 has a capacity deficiency, such that an SSO will occur at manhole (MH) A-5557 if LS2 pumps at the rated firm capacity of 3,400 gallons per minute (gpm) when system-wide flows are high during wet weather. An SSO at MH A-5557 results in a spill into a private residential property which presents a public health risk. To mitigate the damage caused by an SSO at the manhole, OLWS has placed a level sensor within MH A-5557 to detect when the water surface level is within 2 feet of the MH rim and send a signal to LS2 to reduce the speed of pumps and limit flows to 2,500 gpm. This temporary operational modification will divert flow into the Willamette River through an outfall from the LS2 wet well rather than allowing an SSO at MH A-5557 where the risk of human contact with raw sewage is significantly greater. The temporary modification was put in place to reduce impacts of an SSO while OLWS works towards a solution to the capacity deficiency.

When assessing the capacity of lift stations, a PWWF value that is less than the firm capacity indicates that no capacity deficiency exists. The firm capacity stated for each station is conservative and much lower than the actual capacity of the station.

MUSC

5.2.2.2 Buildout Loading Conditions

The collection system was also modeled under OLWS' buildout loading conditions. The results of the model are shown in Figure 5-3. The model identified 83 manholes and 138 gravity mains that violated the available freeboard criteria. Of these manholes, 36 of them are expected to overflow under the design storm.

Additionally, each lift station was evaluated against the design criteria from Section 5.2.1 assuming no upgrades to the existing infrastructure. The results are presented in Table 5-3. In addition to LS2, LS5 becomes deficient under buildout conditions. High levels of RDII and GWI appear to be the primary driver behind the LS5 deficiency at buildout.

Lift Station	No. of Pumps	Firm Capacity with Largest Pump Out of Service (gpm)	Peak Wet Weather Flow (gpm)	Meets Design Criteria?
ILS	5	13,888 ¹	12,470	Yes
LS2	3	3,400 ²	4,262	No
LS3	2	2,240 ³	1,688	Yes
LS4	2	139.8 ⁴	48	Yes
LS5	2	640 ⁵	662	No
LS6	2	800 ⁶	770	Yes

Table 5-3: Lift Station Results Under Buildout Loading

gpm=gallons per minute

¹ILS firm capacity value derived from the Water Reclamation Facility Improvements record drawings dated March 2012

²LS2 firm capacity value derived from the Cornell Pumps 6NHTH pump curve and associated system curve

³LS3 firm capacity value derived from the Cornell Pumps 8NNT pump curve and associated system curve

⁴LS4 firm capacity value derived from the NP3102 pump curve and associated system curve

⁵LS5 firm capacity derived from the LS5 design plans dated February 2021

⁶LS6 firm capacity derived from Pioneer Pump SC66S12 and Cornell Pumps 6NHTA pumps curves and associated system curves

Figure 5-3: Buildout Conditions Results Under Design Storm (Part 1)

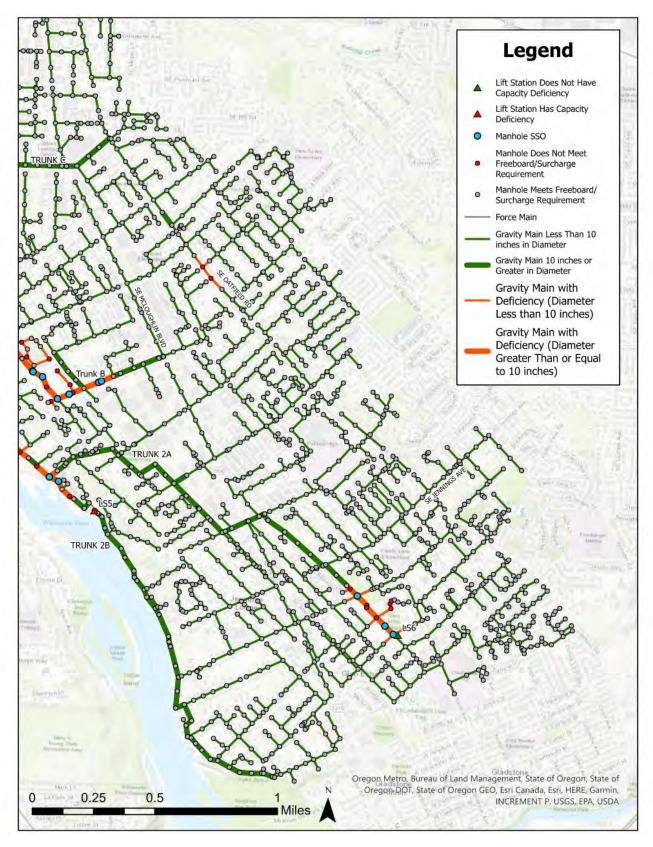


Figure 5-4: Buildout Conditions Results Under Design Storm (Part 2)

5.2.3 Recommended Capacity Improvements

The following subsections recommend capacity improvements for gravity pipelines and lift stations that were identified as having inadequate capacity.

5.2.3.1 Gravity Pipelines

As discussed in the previous sections, 83 manholes are anticipated to have insufficient freeboard under buildout conditions, including 36 with SSOs. Many of the deficiencies are within Trunk Main A and Trunk Main B or along the river front. For the purposes of addressing hydraulic deficiencies, WSC assumed the collection system would not divert any excess flow into the Willamette River so all proposed upsizing conveys all flow within the collection system to be conveyed to the WWTP. To address the freeboard deficiencies under buildout conditions, 82 pipes must be upsized. Within the hydraulic model, segments of wastewater mains were upsized one to two pipe sizes until the available freeboard criteria could be met at all manholes. These pipelines are identified in Appendix H and are shown in Figure 5-5. A summary of the size and total quantity of the new pipe is provided in Table 5-4.

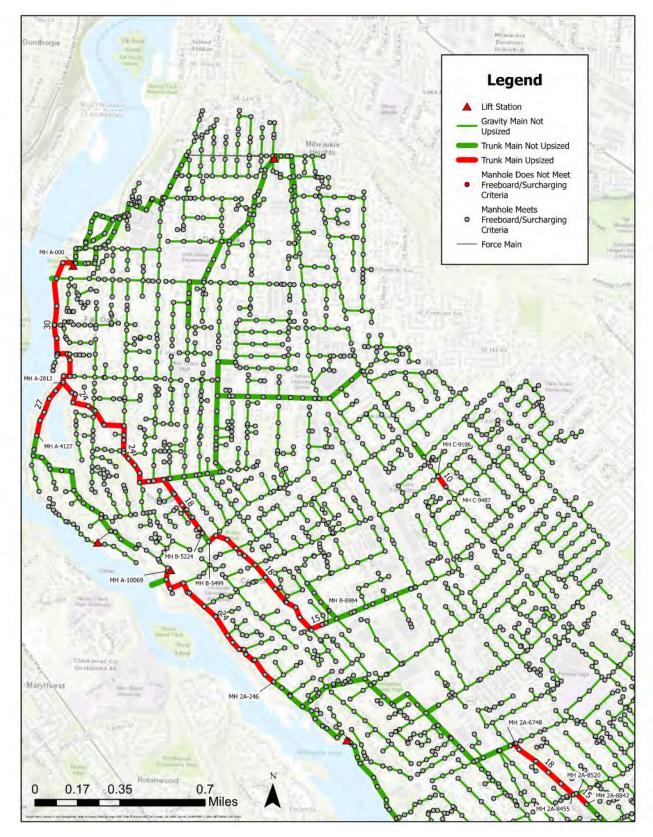


Figure 5-5: Recommended Gravity Main Upgrades (Existing and Buildout Loading)

New Pipe Diameter (in)	Total Length (LF)
10	289.3
15	683.8
18	6,298.4
24	7,492.2
27	1,293.9
30	3,201.5
Total Linear Footage of Upsizing	19,259.1

Table 5-4: Upsized Pipe Summary

All of the upsizing required to address capacity deficiencies occurs within the trunk mains of the collection system. These are larger diameter mains that collect flow from branches within the system and convey it to the WWTP via the ILS. Not only do the trunk mains convey large flows, which require more intensive bypassing for upsizing, but many of the trunks are located in areas where work is challenging. The upsizing required for Trunk Main A and Trunk Main 2A are largely located in easements through private property in areas with shallow rock. This makes accessing the mains more difficult, performing restoration work more complex following the installation, and requires greater levels of outreach to the community. Similarly, Trunk Main B consists of large numbers of easements through private property that will pose similar challenges. All of these factors contribute to making these upsizing projects very expensive.

5.2.3.2 Lift Stations

As discussed in Section 5.2.2.1, LS2 is deficient under existing loading conditions. OLWS currently has identified a project to reconstruct LS2 that will occur over Fiscal Years (FY) 2023 through 2024. As part of this project, the station's pumps will be replaced with new submersible non-clog pumps. These pumps should be upsized so the firm capacity of the new pumps will meet or exceed the PWWF at buildout (Table 5-3).

Under buildout loading conditions, LS5 becomes deficient. LS5 was recently rebuilt, and new pumps are not recommended at this time since the station has no deficiencies under existing loading conditions. However, as the station ages and the service area is built out, these pumps will need to be replaced with larger pumps to meet the PWWF. Based on linear growth, PWWF would equal the firm capacity in 2030, signaling the need to upgrade the pumps. As described in Chapter 4, the PWWF assumes that the volume of RDII will remain relatively constant. It is important to note that if condition deficiencies described in the Section 5.3 are not addressed, gradual deterioration will likely result in increased RDII and the firm capacity of LS 5 would be exceed sooner. Flows should be monitored to determine whether growth actually occurs as quickly as projected and that condition repairs are successful in maintaining or reducing RDII from current volumes.

The above upgrades may be able to be mitigated either partially or fully through RDII reduction in the basins upstream of each lift station as this would reduce the peak flow into the stations. RDII reduction is discussed in greater detail in Section 5.4.

5.3 Condition Assessment

The following sections describe the structural condition of the wastewater collection system and identify condition-based deficiencies that will need to be addressed.

5.3.1 Existing Condition Assessment Practices

This section describes the current assessment practices that are employed by OLWS along with a system for prioritizing repairs based on criticality.

5.3.1.1 Inspection Practices

Current OLWS collection system inspection practices for wastewater mains, manholes, and lift stations are detailed in Section 2.4.1.

5.3.1.2 Existing Project Prioritization

OLWS currently identifies necessary condition-based improvements based on CCTV results. Since the transition to EAM, all pipe videos are coded to NASSCO's PACP standards. Operations staff review the CCTV results and flag mains with Grade 4 and Grade 5 defects to be given a work order for repairs. According to the EPA, mains with Grade 5 and Grade 4 defects should be replaced within the next 5 to 10 years to minimize the risk of failure. (Environmental Protection Agency, April 2015) OLWS has not been repairing the Grade 4 and Grade 5 defect pipes at this rate, which has led to an accumulation of Grade 4 and Grade 5 defect pipes within the collection system. This method of prioritization effectively identifies mains with the highest likelihood of failure but does not have any way of prioritizing repairs based on criticality. Past operations staff did develop a ranking system for individual pipes that could be used to establish criticality and thus prioritize repairs, but staff turnover in the past 6 years has resulted in a loss of the underlying data required to use this system. To provide a means for prioritizing inspection and repairs within the collection system, a prioritization system is recommended in the following section that can be easily implemented going forward.

5.3.2 Recommended Renewal Strategy

A system for prioritizing wastewater mains will allow OLWS to identify the top priority pipes for inspection, repair or replacement during each budget planning cycle. The following sections describe a framework for using risk, defined by NASSCO's PACP Based Risk Management system as the product of consequence of failure (COF) and likelihood of failure (LOF), to prioritize mains for condition-based improvements within OLWS' collection system.

5.3.2.1 Consequence of Failure

Under NASSCO's PACP Based Risk Management system, COF is assigned on a scale of 1 to 6 and incorporates the economic, social, and environmental impact an asset would have if that asset were to fail. The recommended method for establishing COF based on readily available data within GIS will provide a viable COF score for each pipe segment that can be stored within the GIS database. The criteria described in Table 5-5 are proposed for use in establishing COF values, and the table indicates which triple-bottom-line impacts, or costs, are represented by each criteria. Each main was assigned a score of 1 to 6 for each of these criteria. The criteria were then weighted and normalized to create a composite COF score.

Evaluation Criteria	Economic Cost	Social Cost	Environmental Cost
Pipe Diameter	Х	Х	Х
Pipe Depth	Х		
Road Type	Х	Х	
Land Use of Service Area		Х	
Impact on Water Bodies			Х

Table 5-5: COF Evaluation Criteria

5.3.2.1.1 Pipe Diameter

One criteria that arguably has the most impact on the COF following a pipe failure is the volume of wastewater flow that is conveyed by an asset, as this will proportionally increase the magnitude and consequence of an SSO following a failure. Pipe diameter was selected to serve as a proxy for the volume of flow since the data is readily available for each pipeline and the pipe sizing is determined by the anticipated flow that must be conveyed. Pipe diameter thus can proportionally translate to each of the triple-bottom-line costs that would be incurred in an unplanned failure. It represents a relative measure of economic cost as the larger the main is, the greater the costs to OLWS for an unplanned replacement. If the pipe were to fail, the environmental cleanup costs will be relative to the volume of a SSO which is anticipated to be proportional to the pipe diameter. Larger pipes also present a greater risk of social impact as the extent of potential upstream service outages increase with pipe size. COF scoring criteria for pipe diameter are shown in Table 5-6. OLWS' pipes range in size from 4 inches in diameter to 30 inches in diameter.

Table 5-6: COF Score by Pipe Diameter

COF	Pipe Diameter (inches)
1	Pipe Diameter < 8"
2	8" ≤ Pipe Diameter < 10"
3	10" ≤ Pipe Diameter < 15"
4	15" ≤ Pipe Diameter < 20"
5	20" ≤ Pipe Diameter < 24"
6	Pipe Diameter ≥ 24"

5.3.2.1.2 Pipe Depth

Pipe depth is readily available within the GIS data and is established for each pipe using the greater depth from manhole rim elevation to top of pipe elevation between the upstream and downstream manholes. Like pipe diameter, pipe depth is representative of the magnitude of an economic cost following an unplanned failure. The depth of a pipe impacts the ability of OLWS' crews to address a main break in an unplanned emergency repair scenario, with deeper pipes requiring more resources and potentially outside contractors with appropriate excavation equipment. The deeper a main is, the more excavation, time, and effort is required to replace or repair the main. COF scoring criteria for pipe depth are shown in Table 5-7.

COF	Pipe Depth (ft)
1	Pipe Depth < 5'
2	5'≤ Pipe Depth < 7'
3	7' ≤ Pipe Depth < 10'
4	10' ≤ Pipe Depth < 12'
5	12' ≤ Pipe Depth < 15'
6	Pipe Depth ≥ 15'

Table 5-7: COF Score by Pipe Depth

5.3.2.1.3 Road Type

The type of road in which a wastewater pipe is located is also proportional to the impact, both economic and social, of an unplanned failure. Economically, the type of road above a pipe impacts the level of traffic control, permitting, and pavement restoration required to complete the replacement or repair of the wastewater main during and after excavation. From a social perspective, replacing a pipe under a local, residential street impacts far less people than a pipe under an arterial street or highway. COF scoring criteria for road type are shown in Table 5-8.

Table 5-8: COF Score by Road Type

Road Type	
Unnamed Private Road/Driveway/Easement	
Private Legally Named Road	
Minor Residential Street	
Neighborhood Collector	
Arterial	
Highway	

To determine the type of road for each pipeline, the streets shapefile from Metro's Regional Land Information System (RLIS) is used, which provides detailed spatial data resources for the Portland Metro Area. Where a wastewater pipeline or manhole is located within multiple types of roads, such as in intersections, the COF score associated with the higher consequence road is assigned (i.e. it was given the highest of the COF values).

5.3.2.1.4 Land Use of Service Area

The land use of the area served by each pipeline is representative of the potential social cost an unplanned pipe failure would have on a community. Industrial users are often heavy water and wastewater users, so a failure on a pipeline serving industrial land use could impact a significant number of workers and other businesses that rely upon impacted industries. A wastewater main serving only single family residences may have significantly less impact on the community if the outage is isolated to only a few households. The predominant zoning of the upstream wastewater basin of each collection system asset is used to establish COF scoring. The COF scoring for the land use of the service area is presented in Table 5-8.

COF	Land Use of Service Area		
1	None		
2	Single Family Residential (9,000 ft ² lot to ½ acre tax lot		
3	Single Family Residential (5,000 ff ² lot to 7,000 ft ² lot)		
4	Multi-Family Residential		
5	Commercial/Governmental		
6	Industrial		

Table 5-9: COF Score by Land Use of Service Area

5.3.2.1.5 Impact on Water Bodies

For the purposes of determining the environmental cost component COF of an unplanned failure that results in an SSO impacting a surface water, the distance to a surface water body is used to represent the level of impact from a pipe break. Distance to a water body is easy to

determine within GIS, but may be misleading as the water body is only impacted if a SSO can reach the water via overland flow. Mapping of SSO flow paths from each manhole would be a more accurate way to identify potential environmental impacts to surface water bodies, but the level of effort to complete the necessary analysis within GIS is substantial. For the purpose of this WWMP, distance between collection system components and water bodies will be used to establish the COF score, but OLWS may determine that future improvements to map spill paths are worth the effort to assess environmental costs. COF scoring criteria for distances to water bodies as well as their qualitative impact are shown in Table 5-10.

COF	Distance to Water Body	Impact on Water Bodies
1	Greater than 150 ft	Insignificant Impact
2	Between 100 ft and 150 ft	Minimal Impact
3	Between 75 ft and 100 ft	Minor Impact
4	Between 50 ft and 75 ft	Moderate Impact
5	Between 25 ft and 50 ft	Major Impact
6	Less than or equal to 25 ft	Significant Impact

Table 5-10: COF Scores Based on Distance from Water Bodies

To determine the distances to water bodies, the hydrography GIS data available through Clackamas County's GIS data portal was used. The hydrography data consists of all lakes, rivers, and streams within Clackamas County, thus capturing the surface water bodies within the OLWS service area. Wastewater pipes were selected based on distance buffers to these water bodies and resulting selections were used to assign a COF score in accordance with Table 5-10.

5.3.2.1.6 Determination of Final COF Score

Once each collection main was assigned a COF score for each of the five categories, a weighted COF score was calculated using the weighting shown in Table 5-11. A weighted average was determined by multiplying each COF category score by its weighting factor and then dividing by the sum of the weighting factors (15). Each COF category is weighted to account for the fact that some criteria are anticipated to have a greater impact on the COF than others. Weighting factors for each COF category were assigned based on OLWS' staff input and can be adjusted in the future as new information becomes available. The final COF scores for each main are presented in Figure 5-6.

Table 5-11: COF Score Weighting

COF Category	Weighting Factor	Percentage of COF Score
Pipe Diameter	5	33.3%
Pipe Depth	3	20.0%
Road Type	2	13.3%
Land Use of Service Area	2	20.0%
Impact on Water Bodies	3	13.3%
Total	15	100%

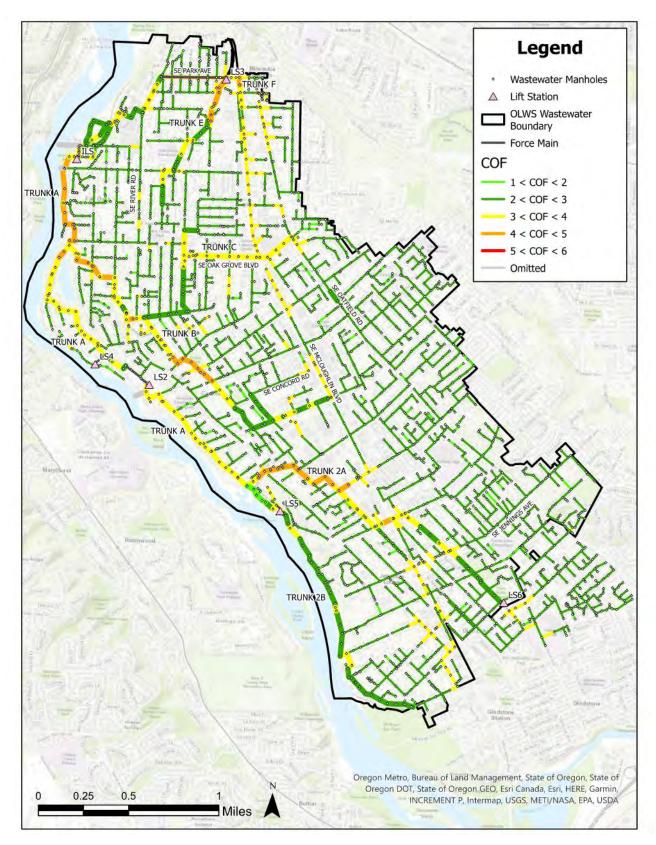


Figure 5-6: Consequence of Failure of Gravity Mains

5.3.2.2 Likelihood of Failure

The LOF factor is a calculated value that represents the probability a main will fail based on the main's physical condition. NASSCO has developed a system that utilizes PACP scores to determine a LOF factor to be used in calculating risk. OLWS has condition data for 2,526 (98%) of the collection system piping, however not all of the data is in PACP format. For the mains without PACP scores, OLWS has documented the quantity of various types of defects that can be used to create a composite PACP score by assigning the equivalent PACP score for that type of defect. For each defect category documented by OLWS, the range of PACP scores for this defect were evaluated and a median or conservative score was selected to approximate the equivalent PACP score. The OLWS scores did not have enough detail to determine the exact PACP defect score in many instances so a best approximation was used. A list of the scoring conversions used are shown in Table 5-12. These converted scores will allow for an equal comparison with those that have PACP scores.

5.3.2.3 Calculation of Likelihood of Failure

NASSCO's PACP Based Risk Management system determines LOF based on the main's PACP Quick Rating. A main's quick rating is a 4-digit code that is defined as follows:

- > 1st digit Highest grade defect identified in the PACP survey.
- 2nd digit Frequency of occurrence for the highest-grade defect identified in the PACP survey. If the defect occurs more than nine times, a letter is used to represent the frequency based on NASSCO's standards.
- > 3rd digit Second highest grade defect identified in the PACP survey.
- 4th digit Frequency of occurrence for the second highest-grade defect identified in the PACP survey. If the defect occurs more than nine times, a letter is used to represent the frequency based on NASSCO's standards.

To determine LOF, the first two numbers of the main's Overall Quick Rating are used. The scores are determined as follows:

- If the main has no defects (i.e. the Quick Rating is 0000), the LOF is assigned a value of 1.0.
- If the highest grade defect occurs no more than nine times, the LOF is the value of the first two numbers of the Quick Rating divided by 10. For example, a score of 4321 would have a score of 43/10 = 4.3.
- > If the second character is a letter, replace the letter with a zero, divide the first two numbers of the Quick Rating by 10 and add 1.0. For example, a score of 5B35 would have a score of (50/10) + 1 = 6.0.

Using this methodology, a LOF score was established for each of the mains that had condition data within the OLWS collection system. The results are summarized in Figure 5-7. A significant portion of the system contains broken or fractured piping with a LOF score greater than 4.

Table 5-12: Recommended Scores for Mains without PACP Scores

OLWS Defect	Equivalent NASSCO PACP Defect Grade	Recommended Score	OLWS Defect	Equivalent NASSCO PACP Defect Grade	Recommended Score
Break in Pipe	Break – 4 Broken Soil or Void Visible - 5	5	Collapse	5	5
Cracks	Crack Circumferential – 1 Crack Longitudinal/Crack Spiral/Crack Hinge 2 – 2 Crack Hinge 3/Crack Multiple – 3 Crack Hinge 4 - 4	3	Fractures	Fracture Circumferential – 2 Fracture Longitudinal/Fracture Spiral/Fracture Hinge 2 – 3 Fracture Hinge 3/Fracture Hinge 4/Fracture Multiple – 4	4
Grease	$\leq 10\% \rightarrow 2$ > 10% to $\leq 20\% \rightarrow 3$ > 20% to $\leq 30\% \rightarrow 4$ > 30% $\rightarrow 5$	3	Encrustation and Scale	$\leq 10\% \rightarrow 2$ > 10% to $\leq 20\% \rightarrow 3$ > 20% to $\leq 30\% \rightarrow 4$ > 30% $\rightarrow 5$	3
Settled Deposits	$\leq 10\% \rightarrow 2$ > 10% to $\leq 20\% \rightarrow 3$ > 20% to $\leq 30\% \rightarrow 4$ > 30% $\rightarrow 5$	3	Obstruction	$\leq 10\% \rightarrow 2$ > 10% to $\leq 20\% \rightarrow 3$ > 20% to $\leq 30\% \rightarrow 4$ > 30% $\rightarrow 5$	3
Defective Joints	Joint Offset Medium Defective \rightarrow 3 Joint Offset Large Defective \rightarrow 4	3	Line Deviations	$\leq 10\% \rightarrow 1$ > 10% to $\leq 20\% \rightarrow 2$ > 20% $\rightarrow 4$	2
Deformation	$\leq 5\% \rightarrow 4$ >5% $\rightarrow 5$	4	Infiltration	1 – 5 depending on type of infiltration (weeper, dripper, gusher, stain)	4
Defective Lining	3	3	Water Level +20%	No Score for Water Level	None
Defective Taps	3	3	Survey Abandoned	No Score for Survey Abandoned	None
Roots	1-5 Depending on Severity and Location within the Pipe (Fine, Medium & Root Ball; Joint, Connection, Barrel, Lateral)	3	Camera Underwater	4	4

5.0 Collection System Analysis

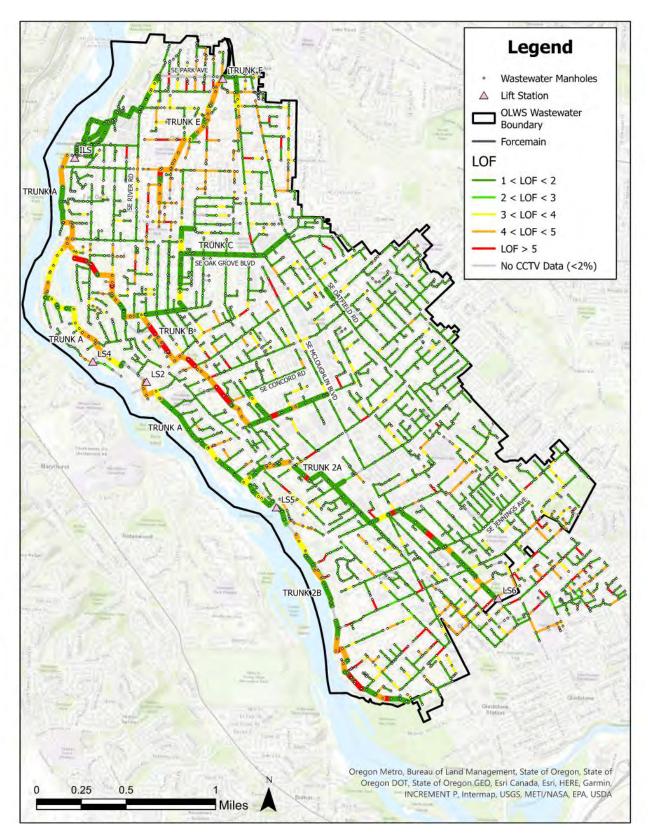


Figure 5-7: Likelihood of Failure for Gravity Mains

MWSC

5.3.3 Risk

5.3.3.1 Collection System Piping

Collection piping risk is defined as the product of the COF and LOF scores for each main. Risk scores can be a useful tool for prioritizing repairs when resource limitations force prioritization decisions. However, risk scores alone should not be the sole driver for the timing of repairs. As discussed earlier, the industry best practice is to repair or replace all mains with Grade 5 or Grade 4 defects within 10 years of the defect being identified. These poor condition mains should be prioritized whenever possible. The risk scores can be used amongst the Grade 5 and Grade 4 defect mains to help prioritize which ones should be done if resources are limited. The resulting risk score map is provided in Figure 5-8.

WSC will provide all of the COF and LOF scores within a GIS database for OLWS to use going forward. The COF scores are established based on the geospatial and physical properties of each asset and are not anticipated to change. As CCTV inspections produce updated PACP scores for each wastewater main, OLWS will need a process for periodically updating the LOF score based on the latest PACP inspection data.

5.3.3.2 Lift Stations

A risk analysis was not performed on any of the lift stations as part of this WWMP. OLWS has already identified and programmed lift station rehabilitation and replacement projects into their most recent 6-year capital improvement plan (CIP). These improvements should reduce any major risks to the lift stations in the near term. Regular condition assessments should be conducted once rehabilitation and replacement of these stations is completed to monitor the status of equipment relative to the equipment's useful life.

5.4 Rainfall Derived Infiltration and Inflow Reduction

5.4.1 RDII Reduction Basis

As discussed in Chapter 4.0 and Chapter 5.2.2, the collection system has high levels of RDII that result in capacity deficiencies in LS2, LS5, and portions of Trunk A, Trunk B, Trunk C, and Trunk 2A. There are also a substantial number of pipes in the OLWS collection system with LOF scores of greater than 4, which indicate the potential presence of PACP Grade 4 and 5 defects. Given the high levels of RDII and the high number of Grade 4 and Grade 5 pipe defects within the collection system, there is an opportunity to implement an RDII reduction program that could address both capacity and condition-based deficiencies in a cost-effective manner.

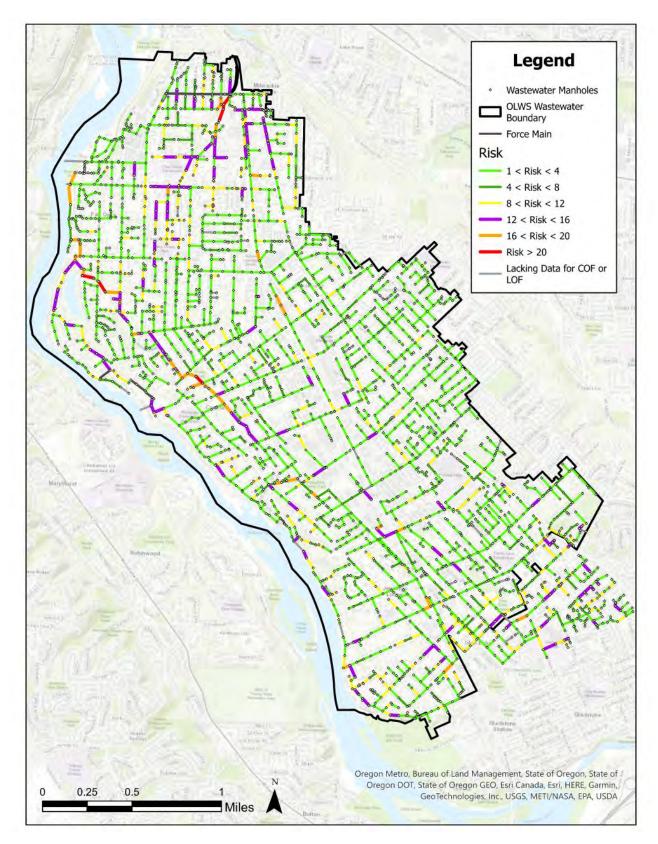


Figure 5-8: Risk within OLWS Collection System

Wastewater Master Plan Oak Lodge Water Services An RDII reduction study in Sweet Home, Oregon identified various levels of RDII reduction possible by rehabilitating collection system mains and their corresponding laterals. (Brown and Caldwell, 2013) This study found that rehabilitating only the collection system mains resulted in a 20% reduction in RDII. When laterals were rehabilitated from the main to the property line in addition to the main rehabilitation, 30% reduction was achieved. This jumped to 65% reduction when laterals were fully rehabilitated from the main to the property. Further reduction in RDII is also achieved through manhole rehabilitation. Costs for RDII reduction (Table 5-13) were estimated by evaluating the cost to rehabilitate all pipes in the collection system and rehabilitate all laterals within the collection system to varying degrees and then applying the various RDII reduction percentages to determine the cost per gallon of RDII removed. These unit costs were then used to evaluate potential RDII reduction based on rehabilitation spending.

Table 5-13: RDII Reduction Values

Rehabilitation	RDII Reduction	Cost per gallon of RDII Removed
Rehabilitate Main Only	20%	\$12.24
Rehabilitate Main and Laterals from Main to Property Line	30%	\$14.39
Rehabilitate Main and Laterals from Main to Property	65%	\$8.29

This method of estimating RDII reduction is likely underestimating the amount of RDII that can be removed through rehabilitation of the collection system, but this was the best method to attempt to quantify reduction given the data available. To fully understand RDII distribution throughout a collection system, flow metering data utilizing metering basins ranging from 10,000 to 15,000 linear feet (LF) upstream of the meter are recommended. (Gettring More From Flow Monitoring - Interpreting Sewer Flow Data to Yield the Maximum Benefit, 2005) In larger basins, the high RDII sources can get diluted by the areas with low RDII making it difficult to pinpoint the actual areas where RDII is high. Smaller flow metering basins run the risk of having insufficient flows for capturing metering data as well as add additional costs for having more meters. The flow metering basins were often much larger than the ideal RDII study range of 10,000 to 15,000 LF. As such, there is insufficient data to pinpoint where the most problematic RDII sources are.

By assuming the entire collection system is rehabilitated to achieve the cost per gallon of RDII removed, it is assumed that RDII is equally distributed amongst all mains within a collection system basin. In reality, the RDII will be more heavily concentrated in various subbasins as discussed above. More detailed flow metering will be required to understand where the most problematic areas are. They are likely areas where the groundwater table is high and the pipes are in poor condition, as this provides openings for the water to seep into the collection system, or where cross connections are entering the wastewater collection system rather than the stormwater collections system.

5.4.2 RDII Reduction Potential

Rehabilitating the entire collection system to address RDII would be extremely expensive and result in minimal value as mains in good condition would be rehabilitated along with those in poor condition. To maximize value, OLWS could target RDII reduction by rehabilitating all mains with Grade 5 and Grade 4 defects (LOF greater than 4). These mains should be rehabilitated or replaced within the next 10 years to maintain system performance. Focusing RDII work on these mains will maximize the value of OLWS' funds as it is work that is already needed.

To estimate the amount of RDII reduction, the RDII reduction percentages identified in Section 5.4.1 were applied to all the Grade 5 and Grade 4 defect mains within each collection system basin. The associated cost and amount of RDII reduction for each type of rehabilitation is provided in Table 5-14. Further RDII reduction can be achieved in City of Gladstone-Owned mains subject to finalization of the IGA (Section 3.1.2).

	Rehabilitate	Pipes Only	Rehabilitate Pipes Plus Laterals from Pipe to Right-of-Way		Rehabilitate Pipes Plus Laterals from Pipe to Property		
Basin	Cost	Estimated RDII Removed (gpd)	Cost	Estimated RDII Removed (gpd)	Cost	Estimated RDII Removed (gpd)	
ILS	\$2,888,000	120,585	\$5,028,000	181,845	\$6,251,000	394,634	
LS2	\$2,215,000	92,484	\$3,515,000	127,125	\$4,258,000	268,813	
LS3	\$3,541,000	289,297	\$6,351,000	441,348	\$7,957,000	959,831	
LS4	\$72,000	3,006	\$98,000	3,554	\$113,000	7,134	
LS5	\$1,330,000	55,532	\$2,236,000	80,868	\$2,754,000	172,864	
LS6 (OLWS- Owned)	\$32,000	1,336	\$249,000	9,005	\$372,000	23,485	

Table 5-14: Potential RDII Reduction from Rehabilitating Existing Grade 4/Grade 5 Defect Pipes

5.4.3 RDII Reduction Needs

To evaluate the potential benefits of a comprehensive RDII reduction program from a master planning perspective, key capacity deficiencies in the collection system were evaluated to determine if RDII reduction in the upstream service area could alleviate the need for capacity based projects (upsized pumps at lift stations and upsized mains within the collection system) identified in Section 5.2.3. Four key locations were identified that represent these capacity deficiencies in the collection system. These locations are summarized in Table 5-15 in order of ascending RDII reduction need and shown in Figure 5-9.

Table 5-15: RDII Reduction Needs

Location	Target Peak Wet Weather Flow		RDII Reduction Needed				Driver
	gpd	gpm	gpd	gpm			
Lift Station 5	921,600	640	31,680	22	Required reduction for flows to meet the firm capacity of the lift station under buildout loading.		
Lift Station 2	4,896,000	3,400	1,241,280	862	Required reduction for flows to meet the firm capacity of the lift station under buildout loading.		
Manhole A-5557	3,931,200	2,730	1,648,200	1,145	Shallow manhole on Trunk A that has experienced SSOs		
Manhole A-778	11,000,000	7,639	3,735,990	2,594	Required reduction to not experience SSO in Trunk A		

As discussed in section 5.2.3.2, LS5 will not meet the design criteria under buildout loading. In order to avoid upsizing the pumps, the PWWF entering LS5 must be reduced to the station's firm capacity of 640 gpm. The RDII reduction required to achieve this is 22 gpm (31,680 gpd), which should be achievable through rehabilitating the existing Grade 4 and Grade 5 mains within the basin (Table 5-14).

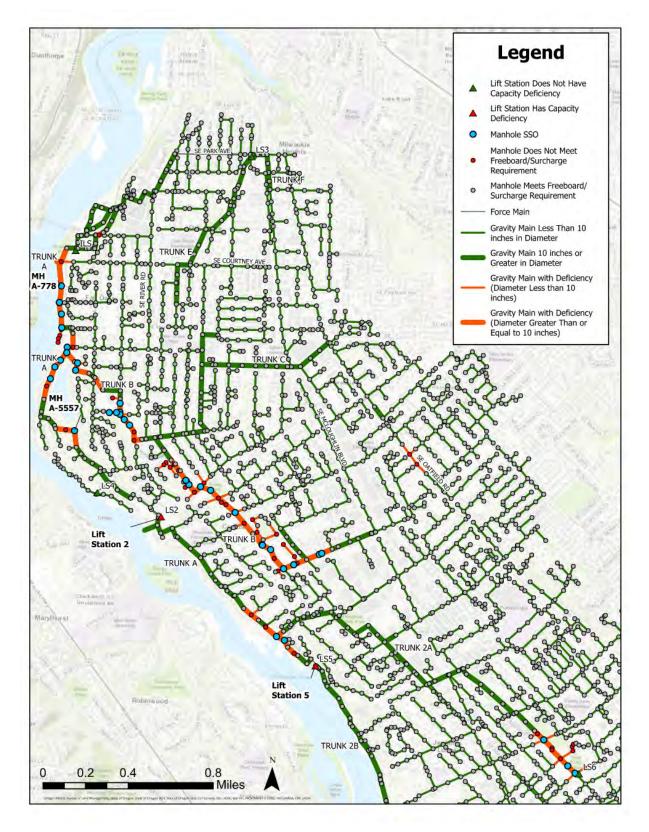


Figure 5-9: Key RDII Locations

Wastewater Master Plan Oak Lodge Water Services Similarly, LS2 flows do not meet the design criteria at both existing and buildout conditions. Due to the layout of the collection system, the required 1,241,280 gpd reduction in RDII would need to be achieved through rehabilitation work in the LS2, LS5, and LS6 basins as all three of these basins send flow to LS2. Rehabilitating all OLWS-owned Grade 4 and Grade 5 mains within these three basins along with full lateral rehabilitation of the laterals on these mains is estimated to only reduce 466,162 gpd of RDII. This only accounts for OLWS-owned mains within the LS6 basin. Much of the poor condition pipe within the Lift Station 6 basin is owned by the City of Gladstone, so further RDII reduction (Table 5-14) is possible should the City of Gladstone repair their pipes in this basin. As stated in Section 5.4.1, the RDII metrics used in this master plan are conservative and additional reduction may be possible from lining these defective mains and their laterals if the defects are the primary source allowing infiltration to enter the collection system. Additional RDII reduction through the removal of cross connections and rehabilitation of poor condition measures are recommended to be used prior to upsizing any of the pumps at LS2.

Manhole A-5557 is the location on Trunk A where SSOs have occurred during wet weather. Currently operations staff divert flow exceeding 2,500 gpm upstream of LS2 to the Willamette River when the water surface elevation in the manhole gets to within 2 feet of freeboard of the manhole rim to avoid a spill with a high potential for human exposure. Due to its location just downstream of LS2, the same rehabilitation work recommended for avoiding upsizing at LS2 described in the previous paragraph must also be done to reduce RDII at this manhole. Modeling has identified that backwater from mains surcharging further downstream in Trunk A also contributes to the SSO condition at this manhole. Rehabilitation work in the ILS basin should also help by alleviating the backwater contributing to the SSO condition. As previously discussed, the conservative metrics for RDII reduction used for this master plan do not predict enough RDII reduction to eliminate the need for upsizing pipe. However, actual levels of RDII reduction may be higher than predicted and additional RDII reduction could be achieved through the removal of cross connections and rehabilitation of poor condition manholes. RDII reduction measures are recommended to be used prior to upsizing any mains as the results of these efforts will reduce the amount of upsized pipe required and could possibly achieve the desired targets. Should RDII reduction not result in sufficient reduction of flows to avoid an SSO, Manhole A-5557 could also be raised to provide more freeboard as this manhole is located outside of the road.

Manhole A-778 represents the capacity limitations within Trunk A as this manhole has the lowest rim elevation within the trunk. To fully eliminate the need for upsizing Trunk A, 3,735,990 gpd (Table 5-15) of RDII reduction must be achieved in the upstream collection system. This level of RDII reduction is not anticipated, indicating that some level of upsizing will be required. However, this value has been identified as a target to provide insight into the level of upsizing required after all RDII reduction efforts have been completed.

5.5 Recommended Projects

Based on the analysis in this chapter, a list was developed of collection system projects to address the hydraulic and condition deficiencies within OLWS' collection system over the 30-year planning period. The projects are in addition to those already included in OLWS' current CIP.

As discussed at the start of this chapter, OLWS has established hydraulic capacity performance criteria for the collection system and there are numerous locations where those criteria cannot be met under existing and buildout conditions. As a first step towards correcting hydraulic capacity deficiencies, RDII reduction work is recommended in the basins upstream of the highest priority deficiencies within Trunk A that have resulted in recent SSOs. This RDII reduction work can be done as part of the necessary condition-based maintenance required in the collection system over the next 5 years.

Prioritizing RDII reduction projects will help OLWS to better determine the nature and geospatial distribution of RDII entering the collection system and the optimum approach reducing the volume of RDII within each basin. Each RDII reduction project recommended consists of smoke testing the entire collection system basin to find and remove any cross connections that are contributing inflow to the collection system. After addressing the cross connections, prerehabilitation flow metering is recommended to be deployed within the basin during the rainy season to (1) establish a baseline flow and wet weather response for measuring RDII reduction against and (2) better understanding how the RDII is geospatially spread throughout the basin. The number of flow meters selected will vary by basin size but are estimated assuming flow metering basins of 10,000 to 15,000 LF upstream of each meter as a best practice for RDII studies. After the initial flow metering is completed, rehabilitation should be done on all Grade 5 and Grade 4 defect mains within the basin and any of their associated laterals in poor condition to maximize the amount of RDII reduction achieved. Manholes connected to these mains should be assessed as part of this effort and any manholes in poor condition should be rehabilitated to support additional RDII reduction. Since manhole condition data was unavailable for the collection system, one manhole rehabilitation was assumed for every 1,500 LF of pipe rehabilitated based on past experience. After rehabilitation work is completed, flow meters should be deployed in the same locations during wet weather conditions to measure the new wet weather response and quantify the amount of RDII removed.

The recommended capital improvement projects for the collection system are presented in Table 5-16. These include RDII reduction projects for each collection system basin and the upsizing of mains to address the capacity deficiencies identified through the hydraulic modeling. The extent of upsizing required will depend on the effectiveness of the RDII reduction work. Due to the high level of variability associated with RDII reduction work, the upsizing projects are included in their entirety (assuming no RDII reduction) to provide a placeholder for costs. The extents of upsizing are anticipated to be significantly reduced following the RDII reduction work.

Table 5-16: Recommended Projects

Project No.	Capital Project Description
C-1	LS5 RDII Reduction Pilot: Smoke testing 35,000 LF of pipe; flow metering at 5 locations (pre- and post-rehabilitation [rehab]); rehab of 173 LF of 6" pipe, 5,839 LF of 8" pipe, 2,556 LF of 10" pipe, and 215 LF of 12" pipe; rehab of 6 manholes (63 vertical feet [VF]); and rehab of 138 laterals from the main to the property connection.
C-2	LS2 Basin RDII Reduction Program: Smoke testing 165,414 LF of pipe; flow metering at 17 locations (pre- and post-rehab); rehab of 11,145 LF of 8" pipe, 304 LF of 12" pipe, 4 LF of 14" pipe, 251 LF of 18" pipe, 752 LF of 20" pipe, and 338 LF of 21" pipe; rehab of 9 manholes (95 VF); and rehab of 198 laterals from the main to the property connection.
C-3	LS6 Basin RDII Reduction Program: Smoke testing 6,846 LF of pipe; flow metering at 2 locations (pre- and post-rehab); rehab of 171 LF of 8" pipe; rehabilitation of 1 manhole (11 VF); and rehab of 33 laterals from the main to the property connection. Scope is limited to OLWS-owned assets.
C-4	ILS Basin RDII Reduction Program: Smoke testing 207,931 LF of pipe; flow metering at 21 locations (pre- and post-rehab); rehab of 270 LF of 6" pipe, 12,724 LF of 8" pipe, 503 LF of 10" pipe, 250 LF of 12" pipe, 247 LF of 15" pipe, and 1,428 LF of 21" pipe; rehab of 17 manholes (179 VF); and rehab of 326 laterals from the main to the property connection.
C-5	LS4 Basin RDII Reduction Program : Smoke testing 2,335 LF of pipe; flow metering at 1 location (pre- and post-rehab); rehab of 491 LF of 8" pipe; rehab of 1 manhole (11 VF); and rehab of 4 laterals from the main to the property connection.
C-6	LS3 Basin RDII Reduction Program : Smoke testing 51,309 LF of pipe; flow metering at 5 locations (pre- and post-rehab); rehab of 19,504 LF of 8" pipe, 1,009 LF of 10" pipe, 1,788 LF of 12" pipe, and 996 LF of 15" pipe; rehab of 16 manholes (168 VF); and rehab of 428 laterals from the main to the property connection.
C-7	Annual Condition Rehabilitation: Annual budget for rehabilitating future Grade 5 and Grade 4 mains within the collection system. This project will take place after the RDII reduction programs and will address mains that developed Grade 5 and Grade 4 defects after the time of this master plan.
C-8	Trunk Main A Upsizing: Upsize Trunk Main A along the extents shown in Figure 5-10 and Appendix H to address capacity deficiencies. Project scope includes the installation of 3,516 LF of 24", 240 LF of 27", and 3,202 LF of 30" gravity wastewater main. Depending on the effectiveness of the RDII reduction in Projects C-1 through C-6, this scope may be reduced.
C-9	Trunk Main B Upsizing: Upsize Trunk Main B along the extents shown in Figure 5-10 and Appendix H to address capacity deficiencies. Project scope includes the installation of 362 LF of 15", 4,600 LF of 18", and 3,729 LF of 24" gravity wastewater main. Depending on the effectiveness of the RDII reduction in Projects C-1 through C-6, this scope may be reduced.
C-10	Trunk Main 2A Upsizing: Upsize Trunk Main 2A along the extents shown in Figure 5-10 and Appendix H to address capacity deficiencies. Project scope includes the installation of 322 LF of 15" and 1,698 LF of 18" gravity wastewater main. Depending on the effectiveness of the RDII reduction in Projects C-2 and C-3, this scope may be reduced
C-11	Trunk Main C Upsizing: Upsize Trunk Main C along the extents shown in Figure 5-10 and Appendix H to address capacity deficiencies. Project scope includes the installation of 289 LF of 10" gravity wastewater main

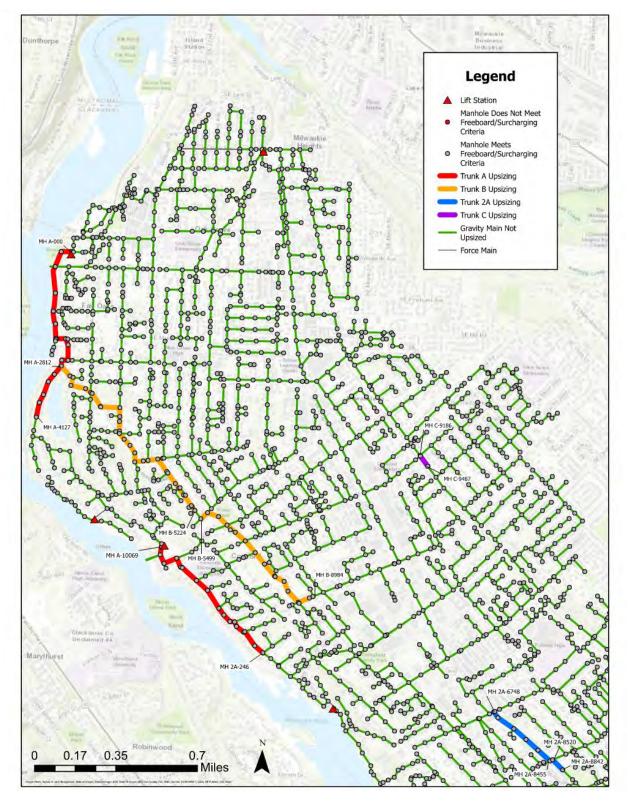


Figure 5-10: Proposed Main Upsizing

6.0 WWTP Assessment and Analysis

This chapter summarizes alternatives for maintaining, modifying, or replacing the existing liquid and solid stream treatment processes at the OLWS Wastewater Treatment Plant (WWTP). Brown and Caldwell (BC) developed each alternative to provide treatment for projected flows and loads over the planning horizon, anticipated regulatory requirements that may be implemented as part of future permit renewal and future build-out conditions. In addition, alternatives were identified to address age and condition related deficiencies based on remaining service lives of existing equipment and facilities.

This chapter describes the advantages and disadvantages of each of the alternatives, as well as anticipated performance and reliability. The chapter also includes recommendations that are incorporated into the Capital Improvement Plan (CIP) included in Chapter 7.0 of the Wastewater Master Plan (WWMP).

IN THIS SECTION

- Summary of Flows and Loads
- Capacity Assessment
- WWTP Alternatives Analysis
- WWTP Recommendations

PREPARED BY:

MUSC

6.1 Introduction and Objectives

This chapter summarizes and builds upon information documented elsewhere in this WWMP including:

- Chapter 2.0 Existing Wastewater System
- Chapter 4.0 Wastewater Flows
- > Appendix A WWTP Description and Condition Assessment of Unit Processes
- > Appendix B WWTP Historical Performance
- > Appendix C WWTP Operations
- > Appendix I WWTP Capacity Assessment
- > Appendix J WWTP Alternatives Workshop Materials

The chapters and appendices listed above are intended to satisfy Oregon Department of Environmental Quality (DEQ) guidelines for preparing a wastewater facility planning document including:

- Description of the existing WWTP including detailed design data including a summary of treatment processes
- Condition assessment of the major existing WWTP assets and projection of remaining service life
- Performance evaluation of equipment, treatment processes, and components at the WWTP
- Capacity assessment of existing WWTP for the capability of reliably meeting current and potential future discharge permit requirements
- > WWTP alternatives evaluation including:
 - Identification of viable alternatives for each treatment process including design criteria beginning with a summary of projected flows and loads
 - Initial screening of alternatives based on applicable design criteria for each treatment process and major assets
 - o Evaluation of viable alternatives including a 'present worth' analysis
 - Recommendation for each treatment process to meet required performance and other criteria

6.2 Summary of Projected Flows and Loads

Table 6-1 summarizes the current and projected flows and loads for the design year of 2052. The flows and loads are used for the capacity assessment described in Section 6.3 and the alternatives analyses used in Sections 6.4 through 6.6.

Parameter	2022	2052
Flow (mgd)		
Average dry weather	2.2	2.5
Average annual	3.2	3.5
Average wet weather	4.4	4.8
Max month dry weather	3.0	3.3
Max month wet weather	6.3	6.7
Peak hour	19.1	19.5
BOD (lb/d)		
Annual average	4,950	5,850
Max month dry weather	5,400	6,380
Max month wet weather	6,290	7,440
TSS (lb/d)		
Annual average	4,750	5,620
Max month dry weather	5,230	6,180
Max month wet weather	6,370	7,530

Table 6-1: Summary of Projected Flows and Loads

The projected flows given in Table 6-1 were developed assuming that the system-wide RDII volume would remain constant between existing and buildout conditions as mentioned in Chapter 4.0. If the RDII reduction work was not performed such that the RDII volume increases, then flows to the WWTP would be higher. If the RDII reduction work results in an overall decrease in the RDII volume, then flows to the WWTP would be lower. Impacts to the loadings are expected to be minimal due to changes in the RDII volumes.

6.3 WWTP Capacity Assessment

A capacity assessment was conducted for the OLWS WWTP as part of the master planning efforts to identify the existing capacity constraints and timing of those constraints for each major treatment process. Wastewater characterization and calibration of the biological process models and plant-wide solids mass balance model were conducted to set up the tools that were used for the capacity assessment.

Both dry weather and wet weather plant operating conditions were evaluated. The conclusions of this assessment are summarized below by plant processes and timing. The overall conclusion is that the OLWS WWTP has sufficient capacity to treat the projected 2052 flows and loads but the facility would require upgrades of the aeration system for both the aeration basins and aerobic digesters and operation of the gravity belt thickener (GBT) as a dedicated thickening process. In addition, tertiary treatment is required to reliably meet the BOD and TSS limits included in the NPDES permit issued in 2022.

6.3.1 Summary of Capacity Constraints by Unit Process

Table 6-2 provides a summary of maximum capacities by treatment process.

Table 6-2. Maximum Capacities by Unit Process

Treatment Process	Capacity	~Year Capacity Expected to be Reached	
Influent pumps	20 mgd ¹	After 2052	
Influent screens	23.5 mgd ¹	After 2052	
Grit removal	23.5 mgd ¹	After 2052	
A crotice begins	Dry weather (2 basins): 2.96 mgd, 5,400 lb/d ²	Currently at capacity	
Aeration basins	Wet Weather (3 basins): 6.94 mgd, 8,390 lb/d ²	After 2052	
A arotion blowers	Dry weather (2 basins): 3.47 mgd, 6,890 lb/d 2	After 2052	
Aeration blowers	Wet Weather (3 basins): 6.48 mgd, 6.810 lb/d ²	2035	
	Dry weather (2 basins, 3 clarifiers, 30% RAS): 3.02 mgd, 5,600 lb/d ²	2027	
Cocondon / clorificro	Dry weather (2 basins, 3 clarifiers, 50% RAS): 3.65 mgd, 7,520 lb/d (extrapolated) ²	After 2052	
Secondary clarifiers	Wet weather (3 basins, 4 clarifiers, 30% RAS): 6.66 mgd, 7,440 lb/ d ²	2051	
	Wet weather (3 basins, 4 clarifiers, 50% RAS): 7.22 mgd, 9,450 lb/d (extrapolated) ²	After 2052	
UV	22 mgd ¹	After 2052	
Plant hydraulics	20 mgd ³	After 2052	
	Dry weather: > 3.5 mgd, > 8,170 lb/d ²	After 2052	
Aerobic digesters	Wet weather (digester feed TS \leq 1.1%): 6.33 mgd, 6,300 lb/d ²	Currently at capacity	
	Wet weather (digester feed TS \ge 1.3%): 6.67 mgd, 7,440 lb/d ²	2052	
	Dry weather (2 basins): > 3.5 mgd, > 8,170 lb/d	After 2052	
BFP	Wet weather (digester feed TS \leq 1.1%): 6.33 mgd, 6,300 lb/d ²	Currently at capacity	
	Wet weather (digester feed TS \geq 1.4%): 6.67 mgd, 7,440 lb/d ² 2052		
1. Capacity expressed as p	lant influent peak hour flow.		

1. Capacity expressed as plant influent peak hour flow.

2. Capacity expressed as plant influent MMF and maximum month BOD loading.

3. Capacity expressed as peak instantaneous flow

6.3.2 Summary of Capacity Constraints by Timing

Capacity constraints at the OLWS WWTP have been divided into two phases based on the anticipated timing of each limitation. In addition, recommendations were developed to potentially address these capacity constraints or to improve performance. These are summarized below.

6.3.2.1 Near-Term (now to 2030) Capacity Constraints

Near-term capacity constraints for major elements of the treatment system are summarized below.

6.3.2.1.1 Aeration system limitations

Assuming the dissolved oxygen (DO) concentrations are maintained at the recommended level of 2 mg/L in the aerated zones, the diffuser air flow in the first aerated zone would currently be near or at the capacity limit under dry weather conditions. High diffuser air flow would result in lower oxygen transfer efficiency and high head loss across the diffusers. This limitation could be addressed by increasing the diffuser density. The current operating strategy allows DO control only in the last aerated zone due to the lack of control valves along the individual drop legs. The upstream aerated zones are aerated at constant air flows, which result in fluctuations in DO concentrations and often low DO concentrations. It is recommended that control valves and air flow meters be added to the drop legs to improve DO control.

As an alternative, the system could operate in simultaneous nitrification and denitrification (SND) mode. In a SND process, nitrification and denitrification occur concurrently in the same aerobic tank operated at consistently low DO concentrations (approximately 0.4 mg/L or less). Operating in SND mode could provide a significant reduction in aeration demand for nitrification and carbon demand for denitrification but it requires precise control of the DO concentrations in different parts of the basins and thus advanced instrumentation and controls. The biomass, and nitrifiers in particular, need to be transitioned to low DO conditions over a period of several weeks. There is also still the potential risk of proliferation of low DO filaments that can lead to poor mixed liquor settleability. To prevent that, an unaerated anoxic zone will still be included. In addition to the anoxic selector, BC has demonstrated that use of hydrocyclones on the WAS stream can also be beneficial to SND performance and maintaining good settleability.

6.3.2.1.2 Secondary clarifier limitations

The secondary clarifiers are projected to reach their solids loading limit in the next few years under dry weather conditions if one clarifier is out of service. This limitation can be addressed by operating all four clarifiers, operating more than 2 aeration basins, or operating at a higher return activated sludge (RAS) rate (higher than 30 percent). Operating at a low RAS rate and turning off the RAS pump for a few hours a day to allow the sludge to thicken in the clarifiers has the potential to result in deteriorated effluent quality if there is a bulking event, especially in the winter. Without a separate thickening process, operating at a higher RAS rate would produce a thinner digester feed, thus negatively impacting the downstream digester and

dewatering operation. In addition to solids loading limitations, the original design peak clarifier surface overflow rate (SOR) is exceeded at the current projected plant peak hour flow rate. Stress testing is recommended to determine the actual peak hour SOR limit.

While not directly impacting capacity, the excessive foaming that often occur at the aeration basins may be associated with high sludge volume indices (SVIs) and cause other operational problems. Potential solutions include addition of water sprays, a classifying selector, and a foam wasting station.

6.3.2.1.3 Aerobic digestion limitations

With all four digesters in service, the digesters have sufficient capacity to meet the hydraulic retention time (HRT) requirements for Class B biosolids as long as the digester feed solids concentration is above a specific value. Without a separate thickening process, that requires thickening within the secondary clarifiers, which negatively impacts the clarifier performance and reduces their solids loading capacity as mentioned above. It is recommended that the GBT be brought into service to provide a dedicated thickening step to counteract the potential secondary clarifier limitation.

Because operating at a high solids concentration in the digesters may require increased aeration to maintain an adequate DO concentration and may also increase the risk of having the process becoming autothermal, a thickened solids concentration of no more than about 2 to 2.5% solids is recommended.

Recent digester performance and review of plant data indicate that, to consistently meet the 38% volatile solids reduction (VSR) requirement for Class B biosolids, all four digesters would be required to be in service. Having all four digesters in service also provides a higher overall HRT. However, this provides no redundancy in digester operation. An evaluation of the digester aeration system is recommended within the next 5 years to investigate the feasibility of taking one digester out of service and potentially operating at a concentration higher than the recommended 2.5% solids concentration level. Performance data after the GBT has been brought back into service should be included in the evaluation.

6.3.2.1.4 Effluent quality limitations.

While the modeling results indicate that secondary effluent concentrations would meet the current permit limits under all flows and loadings evaluated, the actual effluent quality may be reduced due to different factors including deteriorated settling characteristics, different influent wastewater characteristics, and clarifier operation. The effluent TSS concentration limit during the dry weather period (10 mg/L for the monthly average limit) has the highest risk of being exceeded, as it has occurred a couple of times since 2020. To meet the effluent limits consistently, effluent filtration is recommended.

6.3.2.2 Long-Term (after 2030) Capacity Constraints

Long-term capacity constraints for major elements of the treatment system are summarized below. The recommended improvements, upon review by OLWS staff and modified as needed,

are incorporated in the WWTP alternatives analysis. All of the capacity constraints identified in the next 20 years are loading related. The WWTP has the hydraulic capacity to pass and treat a peak flow of 20 mgd, which is higher than the projected peak hour flow in 2052. If RDII reduction work is not implemented such that the RDII volume increases, thus increasing the plant flows, then hydraulic constraints at the WWTP will occur sooner.

6.3.2.2.1 Aeration system limitations

The aeration blowers are projected to reach their firm capacity limit around 2035 under wet weather conditions. The blower capacity can be increased by placing all blowers in service but that would result in no redundant blower available. Increasing the diffuser density in the first aerated zone will increase the oxygen transfer efficiency and thus reduce the air flow requirements. Conversion to a SND process will also reduce air flow requirements. Without those changes or other process changes, a new blower will be required. OLWS could choose to convert to the SND process or increase blower capacity through installing larger blowers or adding additional blowers.

6.3.2.2.2 Aerobic digestion limitations.

Based on the findings of digester aeration system evaluation recommended above, an upgrade of the digester system is likely to be needed.

6.4 Identification and Evaluation of WWTP Alternatives

In accordance with the guidance document entitled Preparing Wastewater Planning Documents and Environmental Reports for Public Utilities (DEQ, 2018), this section describes the process used to develop and consider of all viable alternatives and to implement a transparent selection process to make recommendations to meet short- and long-term needs at the OLWS WWTP.

6.4.1 Process Methodology

OLWS and BC implemented the following methodology to identify and evaluate WWTP alternatives. It includes the following steps, discussed in more details below:

- Initial conceptual analysis
- Screening of conceptual alternatives
- Analysis of shortlisted alternatives

6.4.1.1 Initial Conceptual Analysis

BC performed a conceptual analysis to identify a range of alternatives for each unit process to meet projected flow and load conditions and potential future regulatory requirements.

6.4.1.2 Workshop to Evaluate Conceptual Alternatives

BC facilitated a workshop on September 28, 2022, to present the range of alternatives and the preliminary scoring based on criteria developed with OLWS input. The minutes and presentation from the September workshop are included in Appendix J of the WWMP. Alternatives for each

MWSC

unit process were then shortlisted for further analysis as noted in Appendix J of the WWMP and described below.

6.4.1.3 Alternative Analysis for Shortlisted Alternatives

BC performed an alternative analysis for the shortlisted alternatives that included the following, as applicable:

- Preparation of planning level layouts
- Estimation of performance
- Analysis of hydraulic impacts
- > Projection of planning level capital and operation and maintenance (O&M) costs
- > Comparative evaluation of alternatives based on economic and non-economic criteria

6.4.1.4 Workshop to Complete Alternatives Evaluation

BC facilitated a second workshop on October 26, 2022, to present the preliminary results of the alternatives analysis and updates from the September presentation based on OLWS input. The minutes and presentation from the October workshop are included in Appendix J of the WWMP.

6.4.2 Evaluation Criteria and Scoring Factors

Table 6-3 lists the evaluation criteria that were used to evaluate the WWTP alternatives.

Table 6-3: Evaluation Criteria and Scoring Factors

Evaluation Criteria

Planning for future

- Footprint and future expansion
- Potential Regulatory changes

O&M considerations

- Operability
- Maintainability
- Constructability
- Reliability

Environmental

- Risk to environment
- Energy efficiency

Cost and rate impacts

- Construction
- O&M (annual)

Wastewater Master Plan Oak Lodge Water Services

The alternatives were scored in each of the categories listed in Table 6-3 on scale of 1 (least desirable) to 3 (most desirable), so that the highest scoring alternatives were preferred. Additional information and details on the evaluation criteria are provided in the workshop minutes and presentations including the September workshop.

6.4.3 Energy Considerations

Energy efficiency is a key consideration in the evaluation of alternatives. Energy considerations include selecting efficient equipment such as blowers, utilizing gravity flow rather than pumping such as in the selection of tertiary treatment technology, and using instrumentation to allow better control of treatment processes to minimize energy usage. Energy efficiency was considered as part of the environmental category and is incorporated into life cycle cost evaluations as applicable.

6.4.4 Seismic Resilience

The WWMP does not include a seismic resilience evaluation for existing facilities. Seismic resiliency requirements for new facilities should be established as part of a basis of design. Structural condition assessments, development of site-specific response spectra, Tier 1 evaluation, and a life safety structural analysis are recommended as part of a seismic resilience evaluation.

6.5 Development of Costs

Life cycle cost evaluations were performed for evaluations of shortlisted alternatives. Opinions of probable construction costs for the alternatives were developed in accordance with the Association for the Advancement of Cost Engineering International (AACE) criteria as Class 5 estimates, unless noted otherwise. A Class 5 estimate is defined as a Conceptual Level or Project Viability Estimate. Typically, engineering is from 0 to 2 percent complete. Class 5 estimates are used to prepare planning level cost scopes or evaluation of alternative schemes, long range capital outlay planning, and can also form the base work for the Class 4 Planning Level or Design Technical Feasibility Estimate.

Expected accuracy for Class 5 estimates typically ranges from -50 to +100 percent, depending on the technological complexity of the project, appropriate reference information and the inclusion of an appropriate contingency determination. In unusual circumstances, ranges could exceed those shown.

Estimates were prepared using quantity take-offs, vendor quotes and equipment pricing furnished either by the WWMP team or by the estimator. The estimate includes direct labor costs and anticipated productivity adjustments to labor and equipment. Estimates were prepared using BC's estimating system, which consists of Sage Construction and Real Estate 300 estimating software engine (formerly Timberline) using RS Means database, historical project data, the latest vendor and material cost information, and other costs specific to the project location.

Development of ongoing costs for life cycle costs analyses are described for each section as applicable.

6.6 WWTP Alternatives Evaluation

This section summarizes the evaluation of alternatives for each unit process.

6.6.1 Liquid Stream

Section 6.6.1 summarizes the results of the alternatives evaluation for each liquid stream unit process. OLWS made a significant investment in new liquid stream facilities as part of Phases 1A and 1B completed approximately 10 years ago. These facilities remain in good condition. This was a key consideration in developing and evaluating liquid stream alternatives.

6.6.1.1 Influent Lift Station and Headworks

The Influent Lift Station, Plant Drain Pump Station, Influent Channel, and Influent Sampler were determined to be operating generally as intended, based on input from the operating staff. As described in the WWTP Operations and WWTP Condition Assessment TM, there are concerns with debris collecting in the Influent Lift Station Wet Well as well as access to these pumps. There is also concern with the location of the influent sampler suction line. Projects to address these concerns are included in the CIP presented in Chapter 7.0 of the WWMP.

The Headworks Building houses equipment to remove and process screenings and grit. The screenings equipment includes Huber Multi-Rake screens with 1/4-inch bar spacing, screenings trough, and Huber screenings compaction equipment with grinder and auger. BC identified and evaluated alternatives for screenings and grit removal based on potential improvements in performance but considered the conveyance and processing equipment acceptable in the current configuration.

The OLWS WWTP does not include a primary treatment step in the liquid stream train. As described in the WWTP Operations TM included as Appendix C to the WWMP, debris including floating material can pass through the fine screening system and cause operational problems such as becoming trapped on mixer blades in the aeration basins. There appear to be gaps in the seal between the equipment frame and concrete channel where the screens are installed that may be the reason for the lack of capture. Alternatives for screening removal that would use the existing Headworks Building to improve performance were identified and evaluated.

Screening removal alternatives included:

- 1. Keep the existing Huber Multi-Rake screens but modify channel installation to provide a better seal to prevent debris from passing through gaps between channel and equipment frame.
- 2. Replace existing screens with new equipment that would provide even finer openings of 1/4-inch or less for better debris capture.

3. Replace existing screens with perforated plate type that would provide even finer openings for better debris capture.

Table 6-4 summarizes the evaluation of screening removal alternatives. As shown in this table, the recommended alternative is to keep the existing Huber Multi-Rake screens and adjust channel fit. This alternative has a lower cost than the other two alternatives. This is included as a project in the CIP included in Chapter 7.0.

Criteria	Keep Existing Huber Multi-Rake and Adjust Channel Fit	Replace with Even Finer Screens (=1/4")</th <th>Replace with Perforated Plates</th>	Replace with Perforated Plates
Planning for future	3	3	3
 Footprint and future expansion 	3	3	3
 Potential regulatory changes 	3	3	3
O&M considerations			
 Operability 	3	2	2
 Maintainability 	3	3	3
 Constructability 	3	2	2
 Reliability 	3	3	3
Environmental	3	3	3
Cost and rate impacts			
 Construction 	3	1	1
 O&M (annual) 	2	3	3
TOTAL	26	23	23

Table 6-4: Screenings Ren	noval Equipment Alternatives
---------------------------	------------------------------

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

As noted above, no alternatives to the existing screening washing and compaction system were considered because this equipment is performing well.

The Headworks Building also houses equipment to remove and process grit. The grit equipment includes Hydro International HeadCell units for grit removal, recessed impeller centrifugal grit pumps, and Hydro International Slurry Cup and Snail units for grit dewatering. OLWS staff report that the stacked trays of the HeadCell are difficult to access and maintain because of the concrete cover. WWTP staff have been working with Hydro International to design modifications that will improve accessibility. An alternative to improving access to the HeadCell would be to replace the grit removal equipment with an alternative vortex system. Table 6-5 summarizes a comparison of these two alternatives. As shown in Table 6-5, the

recommended alternative is to keep the existing HeadCell equipment with cover modifications that are included in the CIP.

Criteria	Keep Existing Equipment and Improve Cover Access to HeadCell	Replace HeadCell with Alternative Vortex System
Planning for future		
 Footprint and future expansion 	3	2
 Potential regulatory changes 	3	3
O&M considerations		
 Maintainability 	3	2
 Constructability 	3	1
 Reliability 	3	3
Environmental	3	3
Cost and rate impacts		
Construction	3	1
• O&M	2	2
TOTAL	23	17

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

Opportunities for optimization, O&M cost savings, and reducing maintenance costs associated with these facilities have been documented in the Condition Assessment section and quantified in the CIP included in Chapter 7.0. Replacement of equipment based on projected service life age is also addressed in the CIP.

6.6.1.2 Secondary Treatment

Alternatives for replacement or modification of the secondary treatment system were evaluated with considerations for future regulatory drivers, potential cost savings, and aging equipment. A range of potential alternatives were considered and screened in the September 28, 2022, workshop, including:

- Modified Ludzack-Ettinger (MLE) (current process)
- Anoxic step-feed
- Anaerobic-Anoxic-Oxic (A2O)
- Simultaneous nitrification denitrification (SND)
- Integrated fixed film activated sludge (IFAS)
- Ballasted sedimentation (BioMag®)
- Membrane bioreactor (MBR)

Wastewater Master Plan Oak Lodge Water Services

For all these alternatives, the existing aeration basins will remain. Except for MBR, the existing secondary clarifiers will also remain as part of the process. In a MBR system, microfiltration or ultrafiltration membranes are used in the solids separation step instead of clarifiers.

6.6.1.2.1 Alternatives Screening Analysis

The initial alternatives listed above were screened based on the evaluation criteria presented in Table 6-3. The results and shortlisted alternatives are summarized in Table 6-6.

Criteria	MLE	Anoxic SF	A2O	SND	IFAS	BioMag	MBR
Planning for future							
 Footprint and future expansion 	2	1	1	2	2	2	3
 Potential regulatory changes 	1	1	3	3	2	2	3
O&M considerations							
 Operability 	3	3	3	3	2	2	1
 Maintainability 	3	3	3	3	2	2	1
 Constructability 	3	3	2	2	2	2	1
 Reliability 	3	3	3	2	2	2	3
Environmental	2	2	3	3	2	2	1
Cost and rate impacts							
 Construction 	3	3	2	2	1	1	1
• O&M	2	2	2	2	2	2	1
TOTAL	22	21	22	22	17	17	15
Note: Numerical scores were decided relative to o	her alte	natives conside	red, wher	e 1 = Le	st benefi	cial to OLWS,	and 3 = l

Note: Numerical scores were decided relative to c ther alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

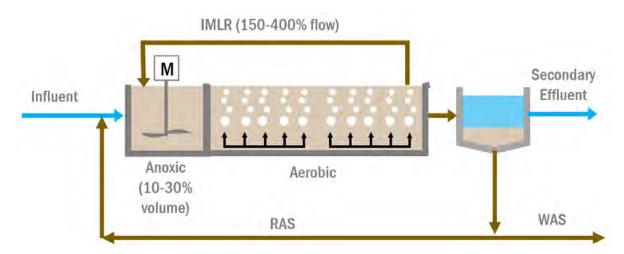
Based on the screening analysis, the following alternatives were further evaluated:

- 1. MLE
- 2. A2O
- 3. SND
- 4. SND/A2O

The SND/A2O alternative was added as a combination of A2O and SND to provide the benefits for both alternatives.

6.6.1.2.2 Alternatives Detailed Analysis

The four shortlisted secondary treatment alternatives were evaluated based on the design criteria presented in Table 6-7.


Table 6-7: Secondary Treatment Design Criteria

Parameter	Value
Design year	2052
Startup year	2032
Ammonia limits	0.5 mg/L (dry weather)
	2 mg/L (wet weather)
Total phosphorus (TP) limit	1-2 mg/L

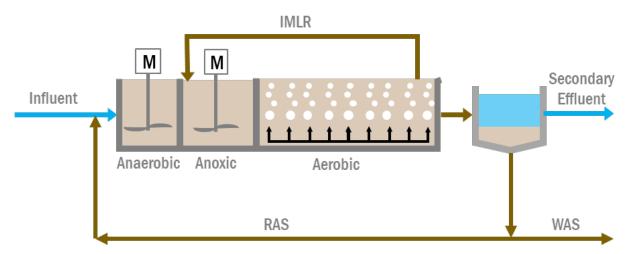
Table 6-1 provides additional details regarding the influent flows and loads associated with the 2052 design year. Brief descriptions of the four alternatives and their associated capital and process requirements are presented below.

6.6.1.2.3 MLE

The existing secondary process at the OLWS WWTP is shown as a process schematic in Figure 6-1.

Figure 6-1: MLE Process Schematic

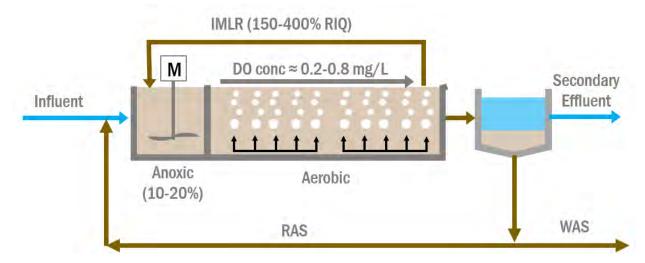
The internal mixed liquor recycle (IMLR) stream, which is routed from the end of the aerated zone to the anoxic zone, typically ranges from 150 to 400 percent of the influent flow. The anoxic zone allows denitrification and by incorporating the IMLR, the denitrification capability is increased. In evaluating this alternative to meet the design criteria listed in Table 6-7, new baffle walls were added to provide better separation of the anoxic and aerated zones. The existing diffuser grids would be replaced to increase aeration capacity. New dissolved oxygen (DO) sensors, air flow control valves, and air flow meters are also added to improve DO control.


As the MLE process is not designed to provide phosphorus removal, the TP limit will be met by chemical addition. This is typically achieved by adding metal salts such as alum or ferric chloride, followed by tertiary filtration. The dissolved fraction of the secondary effluent

phosphorus is targeted with the metal salts and forms a precipitate that is removed in the tertiary filter along with the particulate fraction of the phosphorus. For OLWS WWTP, aluminum sulfate (alum) addition is recommended since ferric chloride can be detrimental to UV disinfection. A multi-point chemical addition scheme may also be used, with chemical dosing at the secondary clarifier splitter box and upstream of the filters. Process modeling indicated that the biological treatment process would become alkalinity limited under certain operating conditions (winter maximum month loading); therefore, caustic addition is also recommended.

6.6.1.2.4 A2O

In an A2O process, an anaerobic zone is included, followed by the anoxic zone and then the aerobic zone. This sequence allows for biological phosphorus removal, denitrification, and nitrification and BOD oxidation in those respective zones. Figure 6-2 shows a process schematic for this process.


Figure 6-2: A2O Process Schematic

In addition to new baffles, diffuser grids, and instrumentation for improved DO control, this alternative would require additional mixers (for the expanded unaerated zones) and re-routing of the IMLR piping. Chemical precipitation may still be required depending on the actual effluent P limit. Process modeling indicates that alum addition would be required if the TP limit is 1 mg/L or lower, although the dosing rate will be lower than for the MLE alternative. Caustic addition is also required under the winter maximum month loading condition.

6.6.1.2.5 SND

In an SND process, nitrification and denitrification occur concurrently in the same aerobic tank operated at low DO concentrations. The main advantages of SND are reductions in oxygen demand for nitrification and carbon demand for denitrification. However, SND requires careful process control of the DO concentrations in different parts of the aeration basins. Advanced aeration controls, such as ammonia-based aeration control (ABAC), are often recommended to maximize performance and to provide process stability. An upstream anoxic zone is typically still included for filament control.

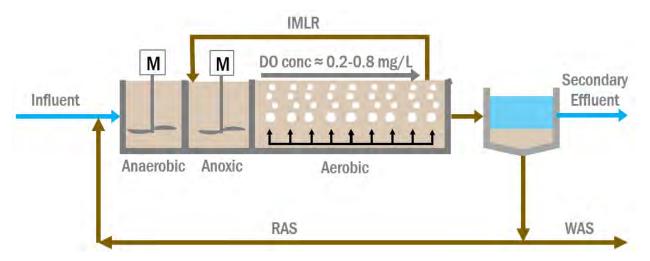

Wastewater Master Plan Oak Lodge Water Services Figure 6-3 shows a process schematic for the SND process, which is similar to the MLE process. For this analysis, an ammonia sensor was assumed to be added at the mixed liquor channel upstream of the clarifier splitter box to facilitate ABAC. Other capital improvements including new baffles, diffuser grids, DO sensors, air flow control valves, and air flow meters would be required. An alum feed system would be needed for phosphorus removal. However, caustic addition is not required because the increased denitrification in the process results in increased alkalinity recovery.

Figure 6-3: SND Process Schematic

6.6.1.2.6 SND/A2O

This alternative is a hybrid of the A2O and SND alternatives created by adding an anaerobic zone upstream of the anoxic zone. Figure 6-4 shows the process schematic. In addition to the capital improvements for SND, this alternative would require a new mixer for the expanded unaerated zone and re-routing of the IMLR piping. Chemical addition, however, would not be required for phosphorus removal and alkalinity control.

Figure 6-4: SND Process Schematic

Preliminary layouts showing the aeration basin modifications for the four alternatives are provided in the October and November 2022 workshop slides provided in Appendix J. A life cycle cost analysis was conducted for the four alternatives to account for both the capital and operating costs. Results of the cost analysis are summarized in Table 6-8. It should be noted that power costs account for aeration blower power requirements only; power costs for other equipment including mixers and pumps are considered similar among the alternatives or negligible compared to the blower power costs. Similarly, the labor costs presented are for comparison purposes only and mainly account for estimated differences in full-time equivalent (FTE) to operate and maintain the instrumentation and chemical systems.

The results show the SND/A2O alternative has the lowest net present value (NPV).

Alternatives	MLE	A20	SND	SND/A2O				
Construction Cost ¹ (2022\$)	\$1,116,000	\$2,212,000	\$1,047,000	\$1,903,000				
Annual Operating Costs (2022\$ for 2032) ²								
Power	\$32,000	\$33,000	\$26,000	\$27,000				
Labor	\$200,000	\$200,000	\$200,000	\$133,000				
Chemical	\$129,000	\$34,000	\$120,000					
Subtotal	\$361,000	\$267,000	\$346,000	\$160,000				
NPV (2022\$) ³	\$12,097,000	\$10,668,000	\$11,567,000	\$7,078,000				

Table 6-8: Secondary System Alternatives Cost Comparison

¹ Class 5 estimate, with a range from -50% to +100%, un-escalated, undiscounted.

² Operating costs include power costs for aeration, additional labor costs, and chemical costs (caustic and alum), unescalated, undiscounted. Unit power cost of \$0.045/kWh (provided by OLWS) and labor cost of \$133,133/FTE/year (derived from OLWS adopted budget 2022-23 for total treatment personnel services and FTEs) assumed.

³NPV assuming design and construction in 2029 to 2031, operating costs from 2032 to 2052, 5% escalation rate, and 3.4% discount rate.

6.6.1.2.7 Recommended Alternative

While the SND/A2O alternative has the lowest NPV in the life cycle analysis, it requires relatively significant retrofits to re-route the IMLR piping as well as more basins in service. It is thus recommended that SND be first implemented to provide energy savings and improve alkalinity recovery. New diffuser grids and baffles will be designed to allow subsequent conversion to the SND/A2O process, and space will be set aside for a potential future chemical feed system. The process could then be converted to SND/A2O in the future as needed when the nutrient permit limits are known. A chemical feed system would be needed only if it was decided in the future to implement chemical phosphorus removal instead of converting to A2O.

Figure 6-5 shows the layout for the SND/A2O alternative with phasing. The conversion from SND to SND/A2O would involve re-routing the IMLR piping and addition of a baffle and a mixer in Aeration Basin 3.

MUSC

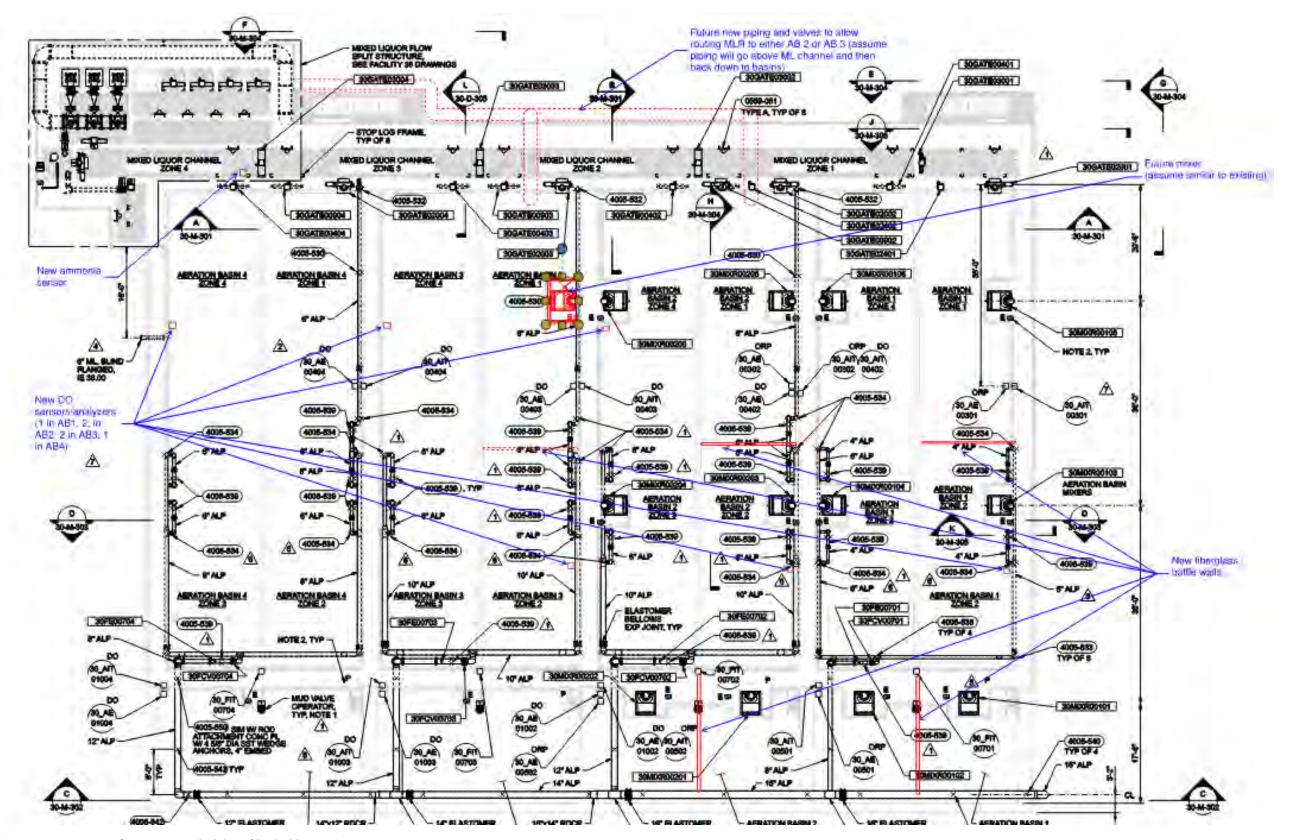


Figure 6-5: Layout of Recommended SND/A2O Alternative

Wastewater Master Plan Oak Lodge Water Services

6.0 WWTP Assessment and Analysis

6.6.1.3 UV Disinfection

A qualitative evaluation of the UV Disinfection Facility concluded the current configuration was optimal (see Table 6-9), so alternatives for replacement were not considered further in the WWMP. Opportunities for optimization, O&M cost savings, and maintenance costs associated with this facility have been documented in the Condition Assessment section and quantified in the CIP. Replacement of equipment based on projected service life age is also addressed in the CIP.

Table 6-9: Disinfection	Alternatives
-------------------------	--------------

Criteria	Keep Existing Trojan UV System and Make Gate and Actuator Improvements	Replace with Paracetic Acid	Replace with Alternative UV System
Planning for future			
Footprint and future expansion	3	2	2
 Potential regulatory changes 	3	1	3
O&M considerations			
Operability	3	2	3
Maintainability	3	2	2
Constructability	3	2	2
Reliability	3	2	3
Environmental	3	2	3
Cost and rate impacts			
Construction	3	1	1
• O&M	3	2	3
TOTAL	27	16	21

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

6.6.1.4 Tertiary Filtration

Alternatives for a new Tertiary Filtration Facility were evaluated with consideration of future regulatory drivers and cost impacts. The alternatives were evaluated based on the design criteria presented in Table 6-10.

Table 6-10: Tertiary Filtration Design Criteria

Parameter	Value
Design year	2052
Startup year	2025
Maximum Influent TSS	35 mg/L
Maximum Effluent TSS	5.0 mg/L
Design flows (mgd)	
Annual average (1 train in service)	3.5
Max month (1 train in service)	6.7
Peak hour (3 trains in service)	19.4
Filtration rate	5 gpm/sf

The following alternatives were considered for tertiary treatment and are summarized in more detail in the October 2022 workshop slides in Appendix J.

- 1. Disk filters
- 2. Downflow (granular media) filters
- 3. Membrane filters
- 4. Upflow filters
- 5. Iron-coated sand filters
- 6. Ballasted/chemical clarifiers
- 7. Compressible media filters

6.6.1.4.1 Alternatives Screening Analysis

Each of the alternatives were initially evaluated for shortlisting based on whether they would fit in 1) the available site footprint (see Figure 6-6), and 2) the available hydraulic profile allocated for tertiary filters in the 2012 WWTP upgrades.

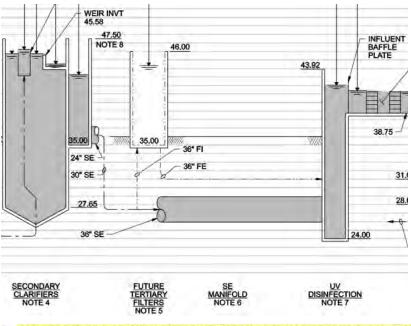

MWSC

Figure 6-6: Site Footprint Allocated for Future Tertiary Filters

(From OLWS June 2022 Online Community Conversation)

The hydraulic profile in the 2012 record drawings specifically stated that the design had considered disk filters in the hydraulic profile, as shown in Figure 6-7. Approximately 3.5 ft of available head loss is available in the hydraulic profile; the note is clarifying that 2 ft was assumed in the original hydraulic calculations.

5. ASSUMES FUTURE CLOTH MEDIA FILTERS WITH APPROXIMATELY 2 FEET OF HEADLOSS, GRANULAR FILTERS (WITH APPROXIMATELY 7-10 FEET OF HEADLOSS) WOULD REQUIRE INTERMEDIATE PUMPING. FILTER EFFLUENT FLOWS THROUGH UV DISINFECTION. MAXIMUM FUTURE FILTER CAPACITY ASSUMED TO BE 8.6 MGD.

Figure 6-7: 2012 Record Drawings Showing Hydraulic Profile Assumptions for Future Tertiary Filters

A review of the alternatives considering only whether they would fit onsite and within the hydraulic profile revealed that disk filters were by far the most viable alternative, as summarized in Table 6-11.

Table 6-11: Tertiary	v Filter Alternatives	- Site Footprint and H	ydraulic Profile Evaluation
			yaraone i forne Evaloanon

Alternatives	Will it fit onsite?	Will it fit in the hydraulic profile? (Or will additional pumping be necessary?)
Disk filters	\checkmark	\checkmark
Downflow (granular media) filters	?	X
Membrane filters	?	X
Upflow filters	?	X
Iron-coated sand filter (BluePro®)	X	X
Ballasted/chemical clarifiers	X	?
Compressible media filters	?	X

The accommodations required to fit the alternatives other than disk filters heavily influenced the initial scoring for shortlisting, as shown in Table 6-12. The scoring exercise resulted in disk filters being the only shortlisted alternative. Accordingly, a life cycle cost evaluation was not performed, and disk filters were selected for detailed evaluation.

MWSC

Table 6-12: Tertiary Filtration Alternatives Screening

			Granular M	Aedia Filters	Membrane Filters	Iron-coated sand filter (BluePro®)	Ballasted/ chemical Clarifiers	Compressible
Criter	ia	Disk Filters	Downflow	Upflow				
Planr	ning for future							
•	Footprint and future expansion	3	2	2	2	1	1	
•	Potential regulatory changes	2	3	3	3	3	1	
O&M	considerations							
•	Operability	3	2	2	2	2	1	
•	Maintainability	3	2	2	1	1	2	
•	Constructability	3	2	2	2	1	1	
•	Reliability	3	2	2	1	1	1	
Envir	onmental	3	2	2	1	2	2	
Cost	and rate impacts							
•	Construction	3	2	2	1	1	1	
•	O&M	3	2	2	1	1	2	
	TOTAL	26	19	19	14	13	12	

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

6.0 WWTP Assessment and Analysis

ole media filters

2	
2	
1	
2	
2	
2 2	
2	
2	
2 2	
17	

MUSC

6.6.1.4.2 Tertiary Filtration Recommended Alternative

The detailed evaluation of disk filters focused on equipment from the following manufacturers:

- > Aqua Aerobic cloth media (outside-in flow pattern)
- Veolia woven fabric media (inside-out flow pattern)
- Nuove Energie stainless steel mesh media (inside-out flow pattern)

Table 6-13 presents a summary of the proposed equipment from each manufacturer based on the OLWS design criteria.

Table 6-13: Summary of Proposed I	Disk Filter Equipment
-----------------------------------	-----------------------

Manufacturer	Aqua Aerobic	Veolia	Nuove Energie (Aggressive)	Nuove Energie (Conservative)
Equipment Cost	\$1.57 M	\$1.42 M	\$1.13 M	\$2.00 M
Pore Size	10 micron	10 micron	20 micron	
Hyd Loading Rate at ADF (gpm/sf)	3.23	2.56	5.5 ¹	
Hyd Loading Rate at PHF (gpm/sf)	5.96 ¹	4.73	10.2 ¹	4.8
# of Units	3	3	3	
Total No. of Disks	42	66	Not reported	
Total Filter Area per Unit	753	1,463	441	
Total Filter Area	2,260	4,389	1324	
Submerged Filter Area	2,260	2,847	1321	
Disk Material	Cloth	Woven fabric	316 SST mesh	
Tank Material	Painted steel	304 SST	304 SST	
Shaft Material	304 SST	304 SST	304 SST	(DOES NOT FIT IN AVAILABLE
Max Headloss (ft)	3.06	2.18	2.20	FOOTPRINT)
Height (ft)	12	8.2	7.6	
Dry Weight (lbs) per Unit	17,000	11,244	13,200	
Wet Weight (lbs) per Unit	75,000	40,785	45,100	
Drive Motor HP	2	1.5	3	
Backwash pump HP	2	20	15	
Power Consumption (kWh/d)	114	134	69	
Backwash Flow (% of INF)	1%-3%	1.6%	1.5%	

1. Exceeds design criterion of 5 gpm/sf.

All the disk filter equipment alternatives are modular, packaged systems with their own steel tanks and control systems for backwash and performance monitoring. Aqua Aerobic and Veolia are reputable manufacturers with multiple similar installations in the Pacific Northwest. Although Aqua Aerobic's proposal exceeds the 5 gpm/sf design criteria at peak hour flow, the offering is close enough to keep in consideration during preliminary design. Further refinement of the design criteria and equipment scope of supply during design may allow increased competition between Veolia and Aqua Aerobic, as well as other manufacturers of similar equipment.

Nuove Energie provided two proposals, but the only one that was potentially viable and competitive with Aqua Aerobic and Veolia (the "aggressive" offering shown in Table 6-13) did not meet the design criteria for hydraulic loading rate or pore size. Therefore, their equipment would be more susceptible to solids pass-through during peak flow events. In addition, there are very few similar installations of this equipment in the Pacific Northwest for operational evaluation and comparison to the other equipment alternatives. Accordingly, Nuove Energie is not likely to be considered further during preliminary design.

The Tertiary Filtration project will be selected for early implementation following completion of the WWMP due to regulatory drivers. Accordingly, additional details were developed for the project concept to provide greater refinement on anticipated cost.

A conceptual layout for the Tertiary Filtration Facility based on the Veolia disk filter proposal is presented in Figure 6-8 and Figure 6-9.

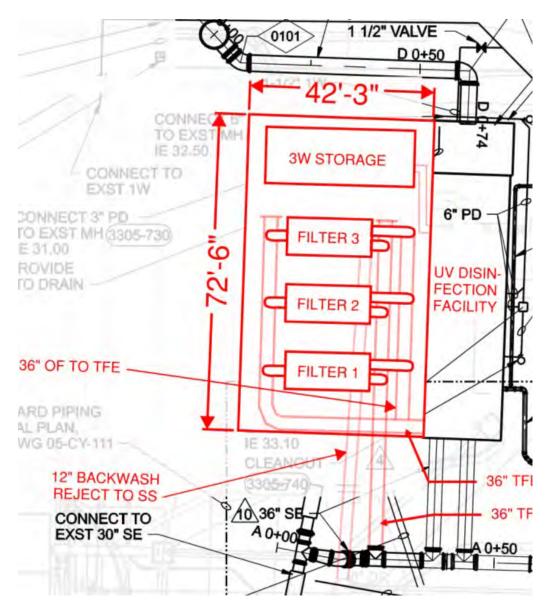
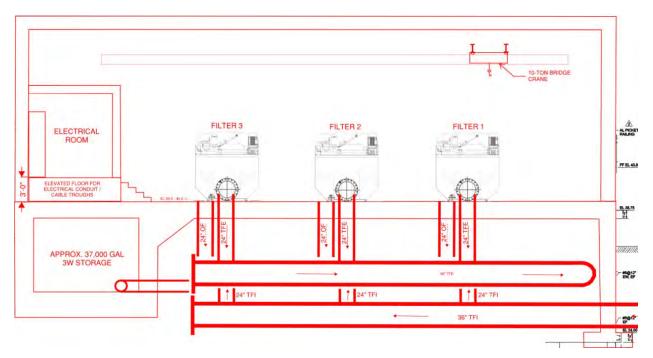



Figure 6-8: Tertiary Filtration Facility Conceptual Layout - Plan View

Figure 6-9: Tertiary Filtration Facility Conceptual Layout - Section View

The opinion of probable construction cost (OPCC) for the Tertiary Filtration Facility is considered to be an AACE Class 4 estimate due to the additional level of detail for this project. The accuracy range is -30% to +50%, and included the following assumptions:

- The new structure will include additional storage volume for treated effluent (3W) in a subgrade tank to resolve issues with insufficient 3W supply for WWPT uses during low flows.
- > The foundation and operating floor of the building will be cast-in-place concrete.
- > The superstructure will be a steel frame and masonry building.
- > A 10-ton bridge crane will be provided for maintaining the filters.
- > The filter room will be heated only with no air conditioning.
- An interior electrical room will be provided with air conditioning to mitigate the heat load from the electrical equipment.
- The subgrade conditions are unknown; no support piles, rock anchors, or other geotechnical features are included under the structure.
- No modifications to existing yard piping are required, other than connections to new piping.
- > Costs escalated to midpoint of construction (October 2024).
- > Includes 40% design level contingency.

Design for the Tertiary Filtration Facility is anticipated to begin in 2023, with construction occurring in 2024 and 2025. Table 6-14 presents the anticipated project costs.

Table 6-14: Anticipated Project Costs - Tertiary Filtration Facility

Description	Value
OPCC	\$ 10.2 M
Accuracy Range	- 30% to + 50%
Estimated Design Fees	\$1.0 M
Estimated Construction Management Fees	\$0.5 M
TOTAL PROJECT COST	\$11.7 M

6.6.2 Solids Stream

This section summarizes the alternatives considered for solids handling system improvements.

6.6.2.1 Current System Operation

The current solids handling system consists of four aerobic digesters and thickening and dewatering equipment. Aerobic Digesters 1 and 2 (previously interchange bioreactor (IBR) tanks associated with the Cannibal system that is no longer used at the OLWS WWTP) were constructed in 2012. Aerobic Digesters 3 and 4, which operate in series with Digesters 1 and 2, were constructed in 1995. A Solids Handling Building (SHB) was constructed in 2002 and includes a GBT, BFP, and all other appurtenant equipment. The layout of the existing solids handling system is shown in Figure 6-10.

Currently, OLWS sends WAS to Digesters 1 and/or 2 and then onto Digesters 3 and 4 to meet the time and temperature criteria and the volatile solids reduction needed to meet Class B biosolids regulatory requirements. Solids are pumped from Digester 4 to the BFP at a concentration of approximately 1.5 to 2 percent solids. Liquid polymer is used to help dewater the solids to approximately 14 to 17 percent solids. The dewatered solids are conveyed to a dump truck outside the SHB and hauled to an onsite covered storage shed as shown on Figure 6-10. A contract hauler then picks up biosolids 1 to 2 times per week and hauls them to Madison Farms in Echo, Oregon, for land application.

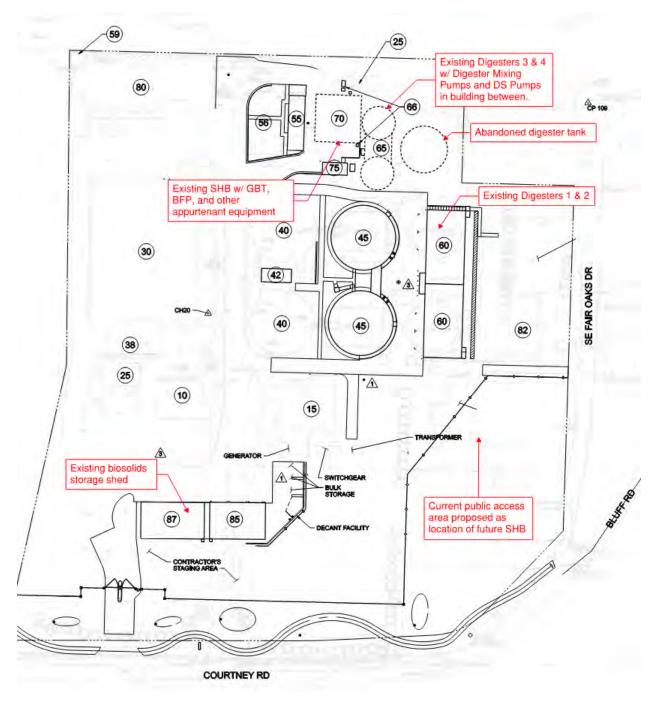


Figure 6-10: Existing Solids Handling Facilities

6.6.2.2 Biosolids Handling and End Use Alternatives

MUSC

Alternatives for biosolids handling and end use were presented during the September 28, 2022, workshop. The minutes and presentation from the September workshop are included in Appendix J of the WWMP. The alternatives with their initial screening criteria are summarized in Table 6-15.

Although Alternative 1, which consists of continuing to transport and store biosolids in an existing onsite storage shed, scored slightly higher than Alternative 2, which includes a drive under storage hopper, it is the preference of OLWS to have a drive under storage hopper for ease of biosolids storage and loading for contract hauling. Therefore, all the alternatives developed for the solids handling facilities include a drive under storage hopper.

The initial screening for thermal drying to produce Class A biosolids scored low and was not incorporated in the solids handling facility alternatives, but future regulatory changes for biosolids recycling could trigger reconsideration.

6.6.2.3 Solids Handling Alternatives

Alternatives for replacement and reconfiguration of the Solids Handling system were evaluated with consideration of future regulatory drivers, potential cost savings, and aging equipment. The alternatives were evaluated based on the aerobic digestion design criteria presented in Table 6-16.

The current Biosolids Management Plan indicates OLWS gets a credit for running the digesters in series, resulting in a lower required HRT. However, for purposes of this WWMP, it was assumed the full hydraulic residence time (HRT) of 40 days at 20 degrees Celsius (°C) will need to be met as indicated in Table 6-16. It was also assumed there will be three digesters in service with one on standby for redundancy (assumes only one of Digesters 1 and 2 would be in operation) and that WAS flow combined with tertiary filter backwash flow would be thickened to at least 2% solids prior to being sent to the digesters.

Additionally, the alternatives assume there will be two new blowers dedicated to Digesters 1 and 2 and two for Digesters 3 and 4. They would be sized such that there would be one duty and one standby blower for each pair of digesters.

The digester volume and blower capacities provided in Table 6-16 are based on estimated solids production for the SND alternative for secondary treatment as described in Section 6.6.1.2.5. Solids from addition of a tertiary treatment system as described in the previous section are also taken into consideration. Future evaluation would be needed following any upgrades to the secondary treatment system to determine the actual solids loading, necessary digester volume, and aeration capacity needed.

Table 6-15: Biosolids Handling and End Use Alternatives

Criteria	Alternative 1 - Continue to produce/store Class B biosolids in onsite storage shed with contract hauling to land applicatio	Alternative 2 - New drive under storage hopper with contract hauling of Class B biosolids to land application	Alternative 3 - Thermal drying to produce Class A biosolids		
Planning for fut	ire				
 Footprir future expansi 	3	2	2		
 Potentia regulato changes 	ry 3	3	2		
O&M considera	ions				
 Operabi 	ity 2	3	2		
 Maintair 	ability 3	3	1		
 Constru 	stability 3	2	2		
 Reliabili 	у З	3	2		
Environmental	2	3	3		
Cost and rate in	npacts				
 Constru 	ction 3	1	2		
• O&M	2	3	1		
	TOTAL 24	23	17		

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

6.0 WWTP Assessment and Analysis

Table 6-16: Aerobic Digestion Design Criteria

Parameter	Value
Design year	2052
Startup year	2037
Digesters in service	3 duty/1 Standby
HRT ¹	40 days at 20 °C
Max month WAS production ²	
Solids load (lb/day)	4,200
Flow (gpm)	39
Tertiary filter backwash solids ³	
Solids load (lb/day)	1,000
Solids Load (lb/day) ³	5,210
Digester Volume (gal)	
Existing Digesters 1 & 2, ea	430,000
New Digesters 3 & 4, ea	375,000
Max. TWAS flow to digesters ⁴ (gpm)	20.6
Blower capacity, ea (scfm) ⁵	
Digesters 1 & 2	2,500
Digesters 3 & 4	2,200

¹ HRT required to meet pathogen reduction requirements for Class B biosolids, 40 CFR Part 503 and OAR 340-050. Does not assume any credit is given for operating digesters in series.

² Assumes SND alternative is implemented for secondary treatment.

³ Includes chemical sludge and TSS removed from tertiary filters.

⁴ Assumes TWAS includes thickened solids from WAS and tertiary filter backwash combined and is 2% solids. This is the maximum flow that can be sent to the digesters to maintain a 40-day HRT given the digester volumes provided.

⁵ Blower capacity calculations assume two blowers dedicated to each pair of digesters with one duty and one standby. Assumes additional mechanical mixing for the digesters.

The following alternatives for the overall solids handling system were considered and are summarized in more detail in the October and November 2022 workshop slides in Appendix J:

- 1. North Solids Handling Facility and Expansion of the Rectangular Digesters
- 2. South Solids Handling Facility and Expansion of the Rectangular Digesters
- 3. South Solids Handling Facility and New North Circular Digesters

Each of the alternatives listed above would include a new SHB with all new redundant thickening and dewatering units, thickened waste activated sludge (TWAS) and digested sludge (DS) pumps, polymer equipment, odor control equipment, an electrical room, drive under solids storage hopper, and other appurtenant equipment.

For Alternative 1, the new SHB would be located where the existing SHB and Digesters 3 and 4 are in the northeast corner of the plant. For Alternatives 2 and 3, the new SHB would be located south of existing Digesters 1 and 2 in an area that is currently not part of the plant. It is property owned by OLWS but currently outside of the fenced plant property and available for public access. The public access area is shown in Figure 6-10, and can be seen in the aerial view in Figure 2-5.

The three alternatives also include two new aerobic digesters to replace existing Digesters 3 and 4, which were constructed in 1995 and will be nearing the end of their useful life. Those new digesters would either be located east of existing Digesters 1 and 2 for Alternatives 1 and 2, or in the vicinity of the existing SHB for Alternative 3.

6.6.2.3.1 Solids Processing Equipment Alternatives

Alternatives for solids digestion were presented during the September 28, 2022, workshop and additional information is included in Appendix J. Those alternatives, with their initial screening criteria, are summarized in Table 6-17. The overall solids handling system alternatives that are described in the following section include variations of all three of the digestion alternatives presented in in Table 6-17. Alternative 1, which consists of replacing Digesters 3 and 4 in their current location, scored the highest overall mainly due to criteria related to footprint and future expansion and construction. However, it scored lowest for operability and maintainability.

Alternatives for solids thickening and dewatering equipment were also presented at the September workshop and are summarized in Table 6-18 and Table 6-19.

Based upon the criteria listed and information available at the time of evaluation, rotary drum thickeners (RDTs) and BFPs scored the highest for thickening and dewatering equipment, respectively. Future evaluation is recommended as equipment and needs of the WWTP are likely to change prior to design of a new solids handling facility.

Figure 6-11 provides a process schematic for the proposed solids handling system.

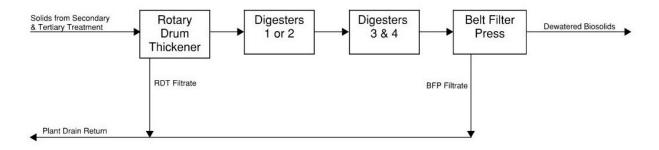


Figure 6-11: Proposed Solids Handling Process Flow Schematic

Table 6-17: Digestion Alternatives

Criteria	Alternative 1 - Replace Digesters 3 & 4 in current location and refurbish Digesters 1 & 2 and make necessary aeration and pump improvements	east of Digesters 1 & 2 and utilize Digester 3	Alternative 3 - Replace Digesters 3 & 4 to the east and refurbish Digesters 1 & 2 and make necessary aeration and pump improvements
Planning for future			
 Footprint and future expansion 	3	1	2
 Potential regulatory changes 	3	3	3
O&M considerations			
 Operability 	2	3	3
Maintainability	2	3	3
Constructability	3	1	1
Reliability	3	3	3
Environmental	3	2	3
Cost and rate impacts			
Construction	3	1	1
- O&M	2	3	3
TOTAL	24	20	22

Note: Numerical scores were decided relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial to OLWS.

Table 6-18: Thickening Equipment Alternatives

Criteria	Gravity Belt Thickeners	Centrifuges	Rotary Drum Thickeners
Planning for future			
 Footprint and future expansion 	2	2	2
 Potential regulatory changes 	3	3	3
O&M considerations			
Operability	3	1	3
 Maintainability 	3	1	2
Constructability	2	2	3
Reliability	3	3	3
Environmental	2	3	3
Cost and rate impacts			
Construction	3	1	3
• O&M	2	1	3
TOTAL	23	17	25

Note: Numerical scores are relative to other alternatives considered, where 1 = Least beneficial to OLWS, and 3 = Most beneficial.

Table 6-19: Dewatering Equipment Alternatives

Criteria	Belt Filter Presses	Centrifuges	Screw Presses
Planning for future			
 Footprint and future expansion 	2	2	2
 Potential regulatory changes 	3	3	3
O&M considerations			
Operability	3	2	2
 Maintainability 	3	2	2
Constructability	2	2	3
 Reliability 	3	3	1
Environmental	3	3	2
Cost and rate impacts			
Construction	3	1	3
• O&M	2	1	2
TOTAL	24	19	20

Table 6-20 provides preliminary design criteria for the thickening and dewatering equipment based on solids calculations completed at the time this WWMP was prepared, assuming the SND alternative for secondary treatment and addition of tertiary treatment.

Table 6-20: Thickening and Dewatering	Equipment Design Criteria
---------------------------------------	---------------------------

Parameter	Value
Design year	2052
Startup year	2037
Rotary Drum Thickeners	1 duty/1 Standby
Max. Day RDT Feed ¹ (lb/hr)	256
Max. Day RDT Flow ¹ (gpm)	333
Belt Filter Presses	1 duty/1 Standby
Max. Month Feed ² (lb/hr)	600
Max. Month Flow ² (gpm)	82
¹ Assumes RDT is operated continuously, 24 hours per day, 7 days per week. ² Assume BFP is operated 6 hours per day, 7 days per week.	

6.6.2.3.2 Solids Handling System Alternatives Analysis

Three alternatives for replacing and reconfiguring the existing solids handling system, including biosolids handling and end use, were developed and evaluated. Based upon the initial thickening and dewatering equipment screenings presented in Table 6-18 and Table 6-19, RDTs and BFPs were used in the evaluation for each of the three alternatives. As mentioned above, variations of the digester alternatives presented in Table 6-17 are used in each of the three alternatives described in further detail below.

Alternative 1 – New North Solids Handling Facility and Expansion of the Rectangular Digesters

For this alternative, the existing SHB and circular aerobic digesters located at the northeast corner of the WWTP would be demolished. Two new rectangular digesters would be constructed east of existing Digesters 1 and 2 and a new SHB would be constructed in the location of the existing SHB and circular digesters. The new SHB would be larger than the existing to house a second thickening and dewatering unit for redundancy and to house all the pumps and other appurtenant equipment needed.

A drive under storage hopper would be constructed south of the building to store dewatered solids conveyed from the BFPs. A contract hauler would drive under the hopper to load biosolids for transport for land application.

Figure 6-12 provides a conceptual layout of the layout for Alternative 1. The blue arrows indicate the proposed truck route for the contract hauler. OLWS operations staff have indicated this route would likely not be possible for the size of truck used. Construction of this alternative would require temporary dewatering and thickening facilities during the construction of the SHB after new Digesters 3 and 4 are constructed.

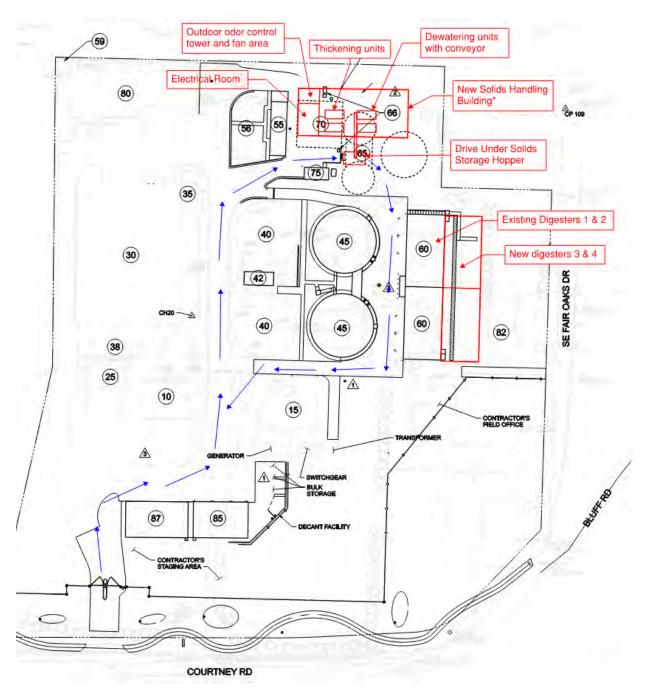


Figure 6-12: Alternative 1 - North Solids Handling Facility and Expansion of Rectangular Digesters

Alternative 2 – South Solids Handling Facility and Expansion of the Rectangular Digesters

For this alternative, the existing SHB and circular aerobic digesters located at the northeast corner of the WWTP would be demolished. Two new rectangular digesters would be constructed east of existing Digesters 1 and 2 and a new SHB would be constructed south of the digesters in an area that is owned by OLWS but currently outside of the fenced plant property and used for public access.

Similar to Alternative 1, the new SHB would be larger than the existing to house a second thickening and dewatering unit for redundancy and to house all the pumps and other appurtenant equipment needed. A drive through storage hopper and truck loading area would be constructed as part of the SHB on the north end. A new entrance road would be constructed on the east side of the WWTP connecting to SE Fair Oaks Drive to provide access for biosolids contract hauling trucks.

Figure 6-13 provides a conceptual layout of the layout for Alternative 2. The blue arrows indicate the proposed truck route. Temporary dewatering and thickening facilities would not be needed during construction of this alternative because the equipment in the existing SHB can remain operational until the new SHB is constructed and the equipment brought online.

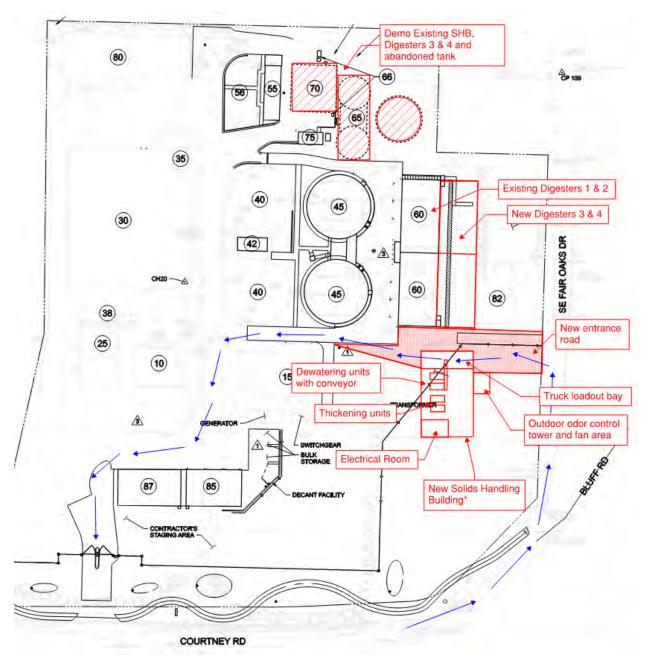


Figure 6-13: Alternative 2 - South Solids Handling Facility and Expansion of Rectangular Digesters

Alternative 3 – South Solids Handling Facility and New North Circular Digesters

For this alternative, the existing SHB and Digesters 3 and 4 located at the northeast corner of the WWTP would be demolished, and two new circular digesters with a solids mixing and pumping facility would be constructed in that location. Like Alternative 2, a new SHB would be constructed south of existing Digesters 1 and 2 in an area that is currently outside of the fenced plant property and being used for public access. The new SHB would house a second thickening and dewatering unit for redundancy and any other appurtenant equipment needed, and a drive through storage hopper and truck loading area would be constructed as part of the SHB on the north end. A new entrance road would be constructed on the east side of the WWTP connecting to SE Fair Oaks Drive to provide access for biosolids contract hauling trucks.

Figure 6-14 provides a conceptual layout of the layout for Alternative 3. The blue arrows indicate the proposed truck route. Temporary dewatering and thickening facilities may not be needed during construction of this alternative because the new SHB can be constructed and brought online prior to the existing building being demolished. For purposes of the cost estimate for this alternative, it was assumed that temporary facilities are not needed.

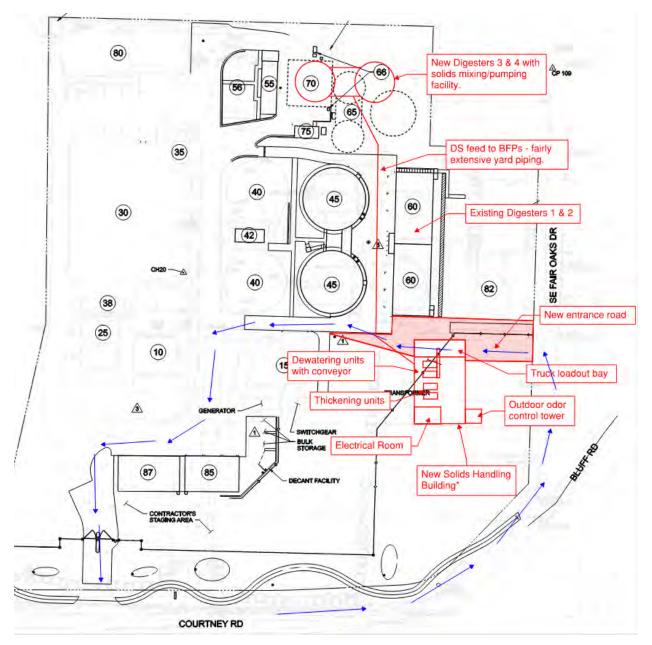


Figure 6-14: Alternative 3 - South Solids Handling Facility and North Circular Digesters

6.6.2.3.3 Solids Handling System Alternatives Cost Analysis

Class 5, conceptual level construction cost estimates were completed for the three alternatives. As described in Section 6.5, the OPCC have an accuracy level of -50 to +100 percent. As indicated in Table 6-21, the costs for all three alternatives are essentially the same; thus, cost does not really provide a differentiator between the alternatives and will not be a large factor in alternative selection. Other factors. such as truck access, ability to expand into the current public access area, constructability, and ease of operation and maintenance will have a much larger impact on alternative selection.

Alternative	Upper Range (+100%)	Estimated Cost	Lower Range (-50%)
1	\$59,402,000	\$29,701,000 ¹	\$14,850,500
2	\$58,772,000	\$29,386,000	\$14,693,000
3	\$58,350,000	\$29,175,000	\$14,587,500

Table 6-21: Solids Handling System Alternative Cost Estimate

¹Costs for temporary thickening and dewatering facilities were included in Alternative 1

6.6.2.3.4 Recommended Alternative

Because the OPCC for the three alternatives are approximately equal, capital cost is not a significant factor in alternative selection. Other factors, such as truck access, constructability, ease of operation and maintenance, and the ability to be able to expand into the current public access area south of Digesters 1 and 2 have a more significant impact on alternative selection.

Table 6-22 presents a comparison of the advantages and disadvantages of each alternative taking these factors into account. As outlined in the table, Alternatives 2 and 3 would have the better truck access.

All three alternatives will have their own constructability issues and require extensive demolition and construction of new facilities; however, Alternative 1 would require temporary dewatering and thickening facilities during construction and Alternative 3 would require extensive yard piping placement through a very congested area between the Secondary Clarifiers and Digesters 1 and 2.

The initial response from OLWS during the October 26, 2022, workshop was that Alternative 2 seemed most desirable; it is the preferred alternative. This alternative will be incorporated into the CIP included in Chapter 7.0.

Alternative	Advantages	Disadvantages
1	Would make use of the existing WWTP site and not require expansion outside of the current fenced plant property.	Truck access for solids pickup could be challenging at the far north side of the WWTP. Temporary dewatering and thickening facilities would be needed for many months during demo of the existing SHB and construction of a new one.
2	Truck access to the solids loading bay as part of the new SHB would be easier and more accessible.	Expansion into the public access area south of Digesters 1 & 2 may require permitting and community acceptance.
3	Truck access to the solids loading bay as part of the new SHB would be easier and more accessible.	Expansion into the public access area south of Digesters 1 & 2 may require permitting and community acceptance Would require extensive yard piping through a likely congested area to pump digested sludge from new Digesters 3 & 4 to the new building.

Table 6-22: Solids Handling System Alternatives Comparison

6.6.3 Support Systems

Support systems at the WWTP include the 3W disinfection system, 3W pumps, odor control systems for the ILS/Plant Drain PS, Headworks Building, Aerobic Digesters 1 and 2, and the SHB, and the outfall. WWTP personnel requested additional storage volume for the 3W pumps due to capacity shortages during low influent flows, so this additional volume will be incorporated into the Tertiary Treatment Project.

The other processes were determined to be operating as intended, so alternatives for replacement were not considered in the WWMP. Opportunities for optimization, O&M cost savings, and maintenance costs associated with these facilities have been documented in the Condition Assessment section and quantified in the CIP. Replacement of equipment based on projected service life age is also addressed in the CIP.

6.6.4 Outfall

Ballard Marine Construction performed an inspection and prepared the Oak Lodge Outfall Inspection Report dated October 28, 2020. The report indicates that the secondary diffusers were all in good condition and in no need of repair. However, the report also notes that the area had an accumulation of heavy timber and debris. The inspection team also located the primary diffusers further offshore. These diffusers were found to be in good condition requiring little to no repair.

The current NPDES permit requires that an outfall inspection be performed once every permit cycle with a report documenting the findings. The permit requires that the next report be submitted by December 15, 2026, in the fourth year of the permit.

7.0 Capital Improvement Plan

This chapter summarizes the identified improvement projects that address hydraulic capacity deficiencies, condition of aging infrastructure, and improvements anticipated to meet future regulations for the wastewater system. A recommended wastewater Capital Improvement Plan (CIP) is provided summarizing anticipated projects over the thirty-year planning horizon that includes a schedule for implementation and the anticipated costs. The following sections describe the methodology for estimating project costs and prioritization, a recommended implementation plan, brief descriptions of individual projects and plans, and a recommendation for financing through customer rates and system development charges.

IN THIS SECTION

- Methodology
- Recommended Capital
 Improvement Plan
- Capital Improvement Projects
- Funding and Financing
- CIP Summary

PREPARED BY:

7.1 CIP Development Methodology

The following sections describe the basis and assumptions used to develop cost estimates for recommended projects, estimate system development charge (SDC) eligible costs, and the criteria used to prioritize individual projects within the CIP.

7.1.1 Cost Estimating Basics and Assumptions

An engineering opinion of probable construction costs (estimate) has been developed for each of the improvement projects identified in previous chapters. Project definitions and associated costs presented in this CIP are conceptual in nature due to the limited design information that is available at this stage of project planning. For pipeline replacement projects, OLWS GIS data was used to estimate quantities for pipeline length, depth, manholes, service laterals, and pavement restoration. The scope of work for non-pipeline projects and studies were approximated based on equipment and/or facility size and comparison with similar replacement projects. As each project progresses into design and construction, the associated costs may vary as project-specific requirements are identified.

All estimates provided in this chapter were prepared in accordance with a Class 5 Opinion of Probable Construction Costs as defined by the Association for the Advancement of Cost Engineering. A Class 5 estimate is appropriate for projects that have been developed to a conceptual level only. The purpose of a Class 5 Estimate is to provide a cost that can be used in budgetary planning. The expected range in accuracy of a Class 5 estimate is from -50 percent low and +100 percent high and is typically developed through analogy to costs from similar construction, judgment, and parametric models. These cost estimates are based on unit costs developed using a combination of data from RS Means CostWorks® and recent bids, experience with similar projects, and foreseeable regulatory requirements. Costs are tied to an Engineering News Record (ENR) Seattle Construction Cost Index (CCI) of 15202.68 for November 2022. The ENR CCI can be used to adjust projected future costs based on monthly updates to the CCI.

The Class 5 estimate for each project includes an allowance for "soft costs" and for contingency. The "soft costs" are the portion a project's total cost required to plan, design, and manage each project through construction and are estimated at the planning level using a percentage markup applied to the estimated construction cost. The contingency allowance accounts for aspects of the work that are currently unknown and that cannot be reasonably identified at the conceptual phase. The contingency allowance is also estimated at the planning level using a percentage markup, which can be reduced as the project is better understood through detailed design.

MUSC

Adjustments to each project estimate were made using the following markups:

- A 30 percent markup of the itemized construction sub-total was added to account for construction contingency and unforeseen work items
- A 30 percent markup of the total construction cost including contingency was added to account for project development services including project administration, planning, alternatives analysis, engineering design, surveying, permitting, construction administration, inspection, materials testing, etc.

Detailed cost estimates for each project are included in Appendix K.

7.1.2 System Development Charges

ORS 223.297 to 223.314 authorize OLWS to establish SDCs to recover a fair share of the cost of existing and planned facilities that provide capacity to serve future growth. The SDC is a one-time fee on new development that is paid prior to connection to the wastewater collection system.

To calculate a defensible SDC for the OLWS wastewater system, three elements of costs can be recovered improvement, reimbursement, and administrative costs. Improvement costs include those portions of future costs that will provide increased capacity that could serve new connections. Reimbursement costs include the eligible costs for existing facilities associated with the unused capacity that could benefit new connections. Administrative costs include the annual expenses associated with managing and administering the SDC program. The total eligible costs are divided by the number of EDUs of anticipated growth in the OLWS wastewater service area through 2052 to determine the cost per EDU.

An SDC study is being prepared by FCS group outside of this master plan. This study will outline the methodology for developing the SDCs and will determine the percentage of SDC eligibility for each of the projects identified within this WWMP.

7.1.3 Project Scheduling and Prioritization

In addition to developing a cost estimate for each project and determining the SDC eligible costs, the timing of each project was considered. Timing was determined using a prioritization matrix for each type of project (collection system, treatment plant, and planning). The list of projects within each type were prioritized independently of the other project types. Projects with the highest scores using the prioritization matrix were given the highest priority and included in earlier fiscal years.

The prioritization matrix scoring criteria and weighting is included in Table 7-1.

MUSC

Table 7-1: Prioritization Matrix Criteria and Weights

Objective	Scoring Factor	Criteria 5	Criteria 4	CriteriaCriteria32		Criteria 1	Questions	
Asset Criticality and Condition	4.00	Extreme risk; Very likely failure with severe consequences	High risk; Poor condition asset with moderate to high consequences or fair condition asset with severe consequences	Moderate risk; Fair to poor condition with moderate consequences or fair condition with high consequences	Low risk; Better than fair condition and/or low consequences	New asset	 What is the risk of failure? (Risk = Likelihood x Consequences) What is the asset condition? Is it critical infrastructure? 	
Customer Criticality	2.00	Low Cost/High benefit	High Cost/High Benefit	Low Cost/Low Benefit	High Cost/Low Benefit		Level of importance based on cost per customer benefit	
Regulatory Mandates	3.00	Required by existing regulations; Severe penalty for noncompliance	Required by pending regulations; Severe penalty for noncompliance	Required by existing or pending regulations; Moderate penalty	Required by existing or pending regulations; Minor penalty	No regulatory requirement	 Is the project required to meet existing or pending regulations? 	
Relationship to Other Projects/ Coordination	2.00	Required for the delivery of other concurrent or subsequent projects and/or greatly improves efficiency when delivered in conjunction with other projects	Opportunity exists for efficient packaging and economies of scale when combined with other projects	Neutral effect on other projects	May hinder the efficient delivery of concurrent or future projects	Prevents execution of other projects and/or requires other projects to be completed prior to delivery	 Will this project enable coordination and economy of scale when bundled with concurrent or adjacent projects? Do other projects depend on the completion of this project? Does it depend on completion of others? 	
Leverages Outside Funding	1.00	External funding assured and Board has ability to provide any required match	External and match funding likely available	External and match funding possible	Slim chance at external funding and/or limited by ability to match external funds	No opportunity to leverage external funds	Is external funding available for this project?Do we have available funding resources to provide required match?	
Level of Service	2.00	Significantly improves or expands existing level of service	Improves level of service and/or required to prevent noticeable drop in level of service	Preserves existing level of service	Neutral impact on level of service	Negative impact on level of service	• Will this investment preserve or increase customer service to our citizens?	
OLWS Board Goals and Adopted Plans	2.50	Project specifically called for in Board Goals and master plan documents	Project specifically required by a Board Goal or planning document or measurably boosts the achievement of multiple adopted goals and objectives	Project generally aids in execution of Board Goals and master plan objectives	No impact on Board goals and plans	Negatively impacts achievement of Board goals and/or policies	 Is the project identified in Board Goals, Utility Master Plans, or other planning documents? Does it help achieve policy aims of the Board? 	
Public Interest	1.00	Project will have a significant positive impact on public opinion and political environment OR prevent major negative impacts if project is not addressed in the short term	Project will have a noticeable impact on public opinion and political environment OR address issues likely to escalate in the public arena	Project has potential for significant public opinion or political impacts OR could prevent long-standing minor issues from escalating in the public arena	Project has minor impact on public opinion and political environment	Minimal public awareness or change in political environment due to project	 Is the Issue politically charged? Is there high public awareness of this issue. 	
Operation & Maintenance (O&M) Effectiveness/ Efficiency	2.50	Project will measurably result in least life cycle cost for assets involved	Project will result in measurable improvements in O&M efficiency	Project will marginally improve operational efficiency	Neutral impact on O&M	Negative impact on O&M	 Will this project enhance our O&M effectiveness and efficiency? Will operations costs be minimized? 	

7.2 Recommended Capital Improvement Plan

Using the scheduling, prioritization and cost estimating methodology described in the previous sections, a plan was developed to project the annual capital spending required to address deficiencies within the wastewater collection system and water reclamation facility over the 30-year planning period. Project timing was adjusted to keep the annual spending projections as consistent as possible to minimize spikes in spending from year to year. A detailed spending plan is provided for the initial 10 years through fiscal year 2032. The recommended year for implementing each improvement was established using the methodology described in Section 7.1.3 above. Some projects were separated into multiple phases across two or more fiscal years to keep the annual average capital spending as consistent as possible. Projects that are lower priority or that are anticipated to occur beyond 2032 are not assigned to a specific year but are collectively allocated for spending in fiscal years 2033 through 2052. The recommended CIP plan is provided in Table 7-2, Table 7-3, Table 7-4, and Table 7-5.

A total of approximately \$159.9M in capital improvements was identified. \$88.4M of this was identified for the wastewater collection system, \$69.2M for the WWTP, and \$2.2M for planning work. It is important to note that although the collections and treatment projects are listed separately, they are not mutually exclusive. For example, if RDII reduction projects listed for the collections system are deferred or eliminated, assumptions of a constant volume of RDII through 2052 at the WWTP will no longer be valid and the sizing and timing of WWTP projects would likely be impacted.

In current dollars, the average annual capital spending would be \$5.3M per year over the 30-year planning period and \$8.0M per year over the first 10 years. Average annual spending exceeds the current FY23-FY28 budget, which averages \$3.3M in wastewater CIP annual spending during the 6-year period.

7.3 Capital Improvement Projects

The following sections provide a brief description of each of the prioritized CIP projects including collection system projects, treatment plant projects, and planning studies. All CIP projects are also identified on a system map provided as a plate in Appendix L.

7.3.1 Collection System Projects

A total of 18 collection system projects were identified as part of this wastewater master plan. C-1 through C-11 were identified as part of the hydraulic modeling analysis and are described in Chapter 5.0. Table 5-16 provides a description of the scope for these projects. The remaining projects (C-12 through C-18) are projects previously identified by OLWS outside of the master planning process and are included in the current CIP (FY23 – FY28). Annual repair programs were extended to continue to provide services beyond FY28. The Trunk Main Capacity (River Forest SSO) project was removed from the existing CIP as the deficiencies will be addressed through Projects C-1 through C-3 and C-8. Based on conversations with OLWS, additional

projects (C-19 and C-20) were added to cover additional lift station rehabilitation work at LS4 and LS6 that OLWS has planned but is not within their current 6-year CIP. A summary of the existing OLWS CIP projects is provided below in Table 7-6.

It is worth noting that the proposed collection system projects will reduce RDII in the system, which will produce energy savings over time by reducing the volume of water that must be pumped and treated. Projects included within the FY23-FY28 CIP include lift station rehabilitation projects that will include seismic resiliency and standby power elements to improve the ability to continue wastewater conveyance during and after unexpected natural hazard events, such as earthquakes or large power outages from winter storms.

MUSC

Table 7-2. Collection System (C) Capital Improvement Program Implementation

Ductort		Ductost	Project Total					CIP \	/alue in FY23	CIP Value in FY23 Dollars					
Project	Description	Project	(FY 2023	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33-52	
ID		Rank	Dollars)	1	2	3	4	5	6	7	8	9	10	11-30	
C-1	Lift Station 5 Basin RDII Reduction Pilot	1	\$3,021,000	\$383,000	\$2,638,000										
C-2	Lift Station 2 Basin RDII Reduction Program	1	\$4,954,000		\$810,000	\$4,144,000									
C-3	Lift Station 6 Basin RDII Reduction Program	1	\$495,000		\$75,000	\$420,000									
C-4	Influent Lift Station Basin RDII Reduction Program	1	\$7,167,000			\$1,102,000	\$3,033,000	\$3,032,000							
C-5	Lift Station 4 Basin RDII Reduction Program	5	\$205,000				\$41,000	\$164,000							
C-6	Lift Station 3 Basin RDII Reduction Program	6	\$8,367,000									\$733,000	\$7,634,000		
C-7	Annual Condition Rehabilitation	7	\$25,658,000											\$25,658,000	
C-8	Trunk Main A Upsizing	13	\$11,852,000						\$1,185,000	\$5,334,000	\$5,333,000				
C-9	Trunk Main B Upsizing	13	\$10,364,000							\$1,036,000	\$4,664,000	\$4,664,000			
C-10	Trunk Main 2A Upsizing	15	\$1,943,000								\$194,000	\$1,749,000			
C-11	Trunk Main C Upsizing	16	\$144,000									\$14,000	\$130,000		
C-12	Lift Station 5 Rebuild	8	\$160,000	\$160,000											
C-13	Lift Station 2 Construction	10	\$1,450,000	\$800,000	\$650,000										
C-14	Lateral Repair Program	18	\$3,050,000	\$50,000	\$100,000	\$100,000	\$100,000	\$150,000	\$150,000	\$100,000	\$100,000	\$100,000	\$100,000	\$2,000,000	
C-15	Hillside and Boardman Sewer Line Replacement	17	\$1,000,000		\$1,000,000										
C-16	Lift Station 3 Rehabilitation	10	\$1,800,000			\$200,000	\$800,000	\$800,000							
C-17	Manhole Repair Program	10	\$2,900,000		\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$2,000,000	
C-18	Mainline Repair Program	9	\$2,900,000		\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$2,000,000	
C-19	Lift Station 4 Rehabilitation	20	\$239,000									\$24,000	\$108,000	\$107,000	
C-20	Lift Station 6 Rehabilitation	19	\$769,000									\$77,000	\$346,000	\$346,000	
Collection	n System Project Subtotal		\$88,438,000	\$1,393,000	\$5,473,000	\$6,166,000	\$4,174,000	\$4,346,000	\$1,535,000	\$6,670,000	\$10,491,000	\$7,561,000	\$8,518,000	\$32,111,000	

Note: OLWS' fiscal year runs from July 1 – June 30. The 2023 fiscal year begins on July 1, 2022. Project costs are rounded to the nearest \$1,000. All costs are based on an Engineering News and Review Seattle Construction Cost Index of 15202.68 for November 2022

MUSC

Table 7-3. Treatment (T) Capital Improvement Program Implementation

Dip Description Raik P123	Project		Project	Project Total	CIP Value in FY23 Dollars										
Image: controls of a control of a cont	-	Description	-	(FY 2023	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33-52
T.2 Chemical resolution blowers: KT undo ta hybrid PD 4 \$480,000 \$230,000			Nalik	Dollars)	1	2	3	4	5	6	7	8	9	10	11-30
T-3 Replace (2) arraidon blowers: K-turbo to Hybrid PD 4 \$460,000 \$220,000 \$220,000 \$150,000 \$150,000 \$150,000 T-4 Replace Arraiton Basin Bffusses' 18 \$1,300,000 \$140,000 \$11,60,000 \$11,60,000 \$11,60,000 \$11,60,000 \$11,700 \$20,000 \$220,000 \$220,000 \$220,000 \$220,000 \$220,000 \$150,000 \$150,000 \$150,000 \$150,000 \$150,000 \$150,000 \$150,000 \$150,000 \$100,000 \$	T-1	Aeration Instrumentation & Controls ²	10	\$340,000						\$40,000	\$300,000				
T-4 Replace Araton Basin Diffuses' 2 \$340,000 \$150,000 \$120,000	T-2	Chemical Feed Systems ²	21	\$160,000						\$20,000	\$140,000				
T-5 Replace Networs ² 18 \$1,100,000 \$1,160,000 \$320,000 \$300,000	T-3	Replace (2) aeration blowers: K-Turbo to Hybrid PD	4	\$460,000		\$230,000	\$230,000								
T-6 Replace Internal Miked Liquor Recycle Puping ¹ 18 \$720,000 \$320,000	T-4	Replace Aeration Basin Diffusers ²	2	\$340,000						\$20,000	\$150,000				\$170,000
17-7 Replace (3) Internal Mixed (upor Recycle Pumps* 18 \$ \$ 200,000 \$ \$ 210,000 \$ \$ 200,000 \$ \$ 100,000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	T-5	Replace Mixers ²	18	\$1,300,000						\$140,000	\$1,160,000				
T-8 Foam Management / Wasting Facility 27 \$170, 000 \$20,000 \$150,000 \$100,000 T-9 Ascondary (Lariffer 1 and 2 Rehab 3 \$2,580,000 \$1,200,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$1,000,000 \$20,000 \$1,000,000 \$20,000 \$1,000,000 <td>T-6</td> <td>Replace Internal Mixed Liquor Recycle Piping²</td> <td>18</td> <td>\$720,000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$80,000</td> <td>\$320,000</td> <td>\$320,000</td> <td></td> <td></td> <td></td>	T-6	Replace Internal Mixed Liquor Recycle Piping ²	18	\$720,000						\$80,000	\$320,000	\$320,000			
T-9 Secondary Clarifier 1 and 2 Rehab 3 S2280,000 S1200,000 S1,100,000 S1,00,000 S1,0	T-7	Replace (3) Internal Mixed Liquor Recycle Pumps ²	18	\$240,000						\$30,000	\$210,000				
T-10 RAS Control Center Pefurbishment 9 \$1,140,000 \$1,140,000 \$1,000,000 \$1,000,000 \$230,000 \$230,000 \$230,000 \$230,000 \$230,000 \$230,000 \$300,000 \$25,000<	T-8	Foam Management / Wasting Facility	27	\$170,000						\$20,000	\$150,000				
Arration Basin Balfie Walls to separate anoxic / aerobic 11 \$260,000 \$30,000 \$230,000 \$230,000 \$300,0	T-9	Secondary Clarifier 1 and 2 Rehab	3	\$2,580,000		\$280,000	\$1,200,000	\$1,100,000							
1-11 aerobic 11 520,000 \$30,000 \$30,000 \$30,000 \$30,000 T-12 Tertiary Filtration Reality and Future Media englacement ³ 1 \$12,300,000 \$1,000,000 \$6,000,000 \$5,000,000 \$85,000 \$85,000 T-13 Digester Blower Design and Replacement 4 \$17,000 \$85,000 \$85,000 \$25,000 <t< td=""><td>T-10</td><td>RAS Control Center Refurbishment</td><td>9</td><td>\$1,140,000</td><td></td><td></td><td></td><td></td><td></td><td>\$140,000</td><td>\$1,000,000</td><td></td><td></td><td></td><td></td></t<>	T-10	RAS Control Center Refurbishment	9	\$1,140,000						\$140,000	\$1,000,000				
Initial Part Part Part Part Part Part Part Part	T-11	•	11	\$260,000				\$30,000	\$230,000						
T-14 UV Disinfection Rehabilitation 12 \$390,000 \$25,000 <t< td=""><td>T-12</td><td></td><td>1</td><td>\$12,300,000</td><td>\$1,000,000</td><td>\$6,000,000</td><td>\$5,000,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$300,000</td></t<>	T-12		1	\$12,300,000	\$1,000,000	\$6,000,000	\$5,000,000								\$300,000
T-15 UV Disinfection Equipment Replacement 17 \$2,090,000 \$25,000	T-13	Digester Blower Design and Replacement	4	\$170,000	\$85,000			\$85,000							
T-16 Influent Lift Station Reconstruction 25 \$1,010,000 \$450,000 \$450,000 \$450,000 T-17 Influent Pump Replacement 28 \$200,000 \$110,000 \$450,000 \$450,000 \$450,000 T-18 3rd screen: multi-rake 1/4" bar screen (or per plate?) 16 \$500,000 \$500,000 \$500,000 \$500,000 T-19 Improved seals on two existing influent screens 24 \$85,000 \$85,000 \$500,000 \$500,000 T-20 Grit system cover replacement 21 \$170,000 \$22,800,000	T-14	UV Disinfection Rehabilitation	12	\$390,000					\$40,000	\$350,000					
T-17 Influent Pump Replacement 28 \$200,000 \$200,000 \$200,000 T-18 3rd screen: multi-rake 1/4" bar screen (or perf plate?) 16 \$500,000 \$500,000 \$500,000 T-19 Improved seals on two existing influent screens 24 \$\$5,000,000 \$\$5,000 \$\$5,000 T-20 Grit system cover replacement 21 \$\$170,000 \$\$2,800,000 \$\$2,800,000 T-22 Biofilter Fan Replacement 30 \$\$120,000 \$\$2,800,000 \$\$2,800,000 T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$\$250,000 T-24 GBT Refurbishment 13 \$280,000 \$\$250,000 \$\$250,000 T-25 TWAS Pump Replacement 13 \$\$250,000 \$\$75,000 \$\$75,000 T-26 Solids Handling Upgrades 4 8 \$35,000,000 \$\$75,000 \$\$53,000,000 T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$\$75,000 \$\$170,000 T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$\$75,000 \$\$35,000, \$35,000 \$35,000, \$35,000, \$35,000, \$35,000, \$35,000, \$35,000,	T-15	UV Disinfection Equipment Replacement	17	\$2,090,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25 <i>,</i> 000	\$25,000	\$25,000	\$25,000	\$25,000	\$165,000	\$1,700,000
T-18 3rd screen: multi-rake 1/4" bar screen (or perf plate?) 16 \$500,00 T-19 Improved seals on two existing influent screens 24 \$85,000 \$85,000 T-20 Grit system cover replacement 21 \$170,000 \$85,000 \$170,000 T-21 2012 Screening and Grit Equipment Replacement 21 \$2,800,000 \$22,800,000 \$22,800,000 \$120,000 T-22 Biofilter Fan Replacement 30 \$120,000 \$80,000 \$200,000 \$120,000 \$	T-16	Influent Lift Station Reconstruction	25	\$1,010,000				\$110,000	\$450 <i>,</i> 000	\$450,000					
T-19 Improved seals on two existing influent screens 24 \$85,00 \$85,00 T-20 Grit system cover replacement 21 \$170,000 \$170,000 \$170,000 T-21 2012 Screening and Grit Equipment Replacement 21 \$2,800,000 \$22,800,000 \$22,800,000 T-22 Biofilter Fan Replacement 30 \$120,000 \$120,000 \$120,000 T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$250,000 T-24 GBT Refurbishment 13 \$250,000 \$250,000 \$250,000 T-25 TWAS Pump Replacement 13 \$75,000 \$75,000 \$75,000 T-25 Solids Handling Upgrades ⁴ 8 \$35,000,000 \$75,000 \$150,000 T-26 Solids Handling Upgrades ⁴ 8 \$35,000,000 \$35,000 \$35,000 \$35,000 \$35,000,000 T-28 Secondary Clarifier 3 and 4 Rehab Project 6 \$3,700,000 \$35,000 \$35,000, \$35,	T-17	Influent Pump Replacement	28	\$200,000											\$200,000
T-20 Grit system cover replacement 21 \$170,000 \$170,000 T-21 2012 Screening and Grit Equipment Replacement 21 \$2,800,000 \$2,800,00 T-22 Biofilter Fan Replacement 30 \$120,000 \$120,000 \$120,000 T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$120,000 \$120,000 \$120,000 T-24 GBT Refurbishment 13 \$250,000 \$250,000 \$250,000 \$17.27 T-25 TWAS Pump Replacement 13 \$250,000 \$250,000 \$250,000 \$35,000,000,000 \$35,000,000,000,000,000,00,00,00,00,00,00,	T-18	3rd screen: multi-rake 1/4" bar screen (or perf plate?)	16	\$500 <i>,</i> 000											\$500,000
T-21 2012 Screening and Grit Equipment Replacement 21 \$2,800,00 \$2,800,00 T-22 Biofilter Fan Replacement 30 \$120,000 \$120,000 \$120,000 T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$250,000 T-24 GBT Refurbishment 13 \$250,000 \$250,000 \$275,000 T-25 TWAS Pump Replacement 13 \$75,000 \$35,000,000 \$35,000,000 T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$35,000 \$35,000,000,000 \$35,000,000,000 \$35,000,000,000 \$35,000,000,000 \$35,000,000,000 \$35,000,000,000 \$35,000,000,000,000,000 \$35,000,000,00,000,00,000,000,000,000,000	T-19	Improved seals on two existing influent screens	24	\$85 <i>,</i> 000											\$85,000
T-22 Biofilter Fan Replacement 30 \$120,000 \$120,000 T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$250,000 T-24 GBT Refurbishment 13 \$250,000 \$250,000 \$250,000 T-25 TWAS Pump Replacement 13 \$75,000 \$75,000 \$75,000 T-26 Solids Handling Upgrades ⁴ 8 \$35,000,000 \$75,000 \$150,000 T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$120,000 \$35,000,000 T-28 Secondary Clarifier 3 and 4 Rehab Project 6 \$3,700,000 \$35,000, \$3	T-20	Grit system cover replacement	21	\$170,000											\$170,000
T-23 WWTP Air Piping Inspection 13 \$80,000 \$80,000 \$250,000 T-24 GBT Refurbishment 13 \$250,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000 \$350,000,000,000 \$350,000,000,000,000,000,000,000,000,000,	T-21	2012 Screening and Grit Equipment Replacement	21	\$2,800,000											\$2,800,000
T-24 GBT Refurbishment 13 \$250,000 \$250,000 T-25 TWAS Pump Replacement 13 \$75,000 \$75,000 T-26 Solids Handling Upgrades ⁴ 8 \$35,000,000 \$75,000 T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$35,000 \$35,000 \$35,000,000 T-28 Secondary Clarifier 3 and 4 Rehab Project 6 \$3,700,000 \$35,000 \$35,000 \$35,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000 \$35,000,000,000 \$35,000,000 \$35,000,000,000 \$35,000,000,000,000,000 \$35,000,000,000,000,000,000,000,000,000,0	T-22	Biofilter Fan Replacement	30	\$120,000											\$120,000
T-25 TWAS Pump Replacement 13 \$75,000 \$75,000 T-26 Solids Handling Upgrades 4 8 \$35,000,000 <td>T-23</td> <td>WWTP Air Piping Inspection</td> <td>13</td> <td>\$80,000</td> <td>\$80,000</td> <td></td>	T-23	WWTP Air Piping Inspection	13	\$80,000	\$80,000										
T-26 Solids Handling Upgrades 4 8 \$35,000,000	T-24	GBT Refurbishment	13	\$250,000				\$250,000							
T-27 W3 Sodium Hypochlorite System Replacement 29 \$150,000 \$150,000 T-28 Secondary Clarifier 3 and 4 Rehab Project 6 \$3,700,000 \$3,700,000 \$35,0	T-25	TWAS Pump Replacement	13	\$75,000				\$75,000							
T-28 Secondary Clarifier 3 and 4 Rehab Project 6 \$3,700,000 <	T-26	Solids Handling Upgrades ⁴	8	\$35,000,000											\$35,000,000
T-29 Ongoing Electrical Equipment Replacement and Upgrades 26 \$2,315,000 \$35,000	T-27	W3 Sodium Hypochlorite System Replacement	29	\$150,000									\$150,000		
1-29 Upgrades 26 \$2,315,000 \$35,000	T-28	Secondary Clarifier 3 and 4 Rehab Project	6	\$3,700,000											\$3,700,000
	T-29		26	\$2,315,000	\$35,000	\$35,000	\$35,000	\$35,000	\$35,000	\$500,000	\$35,000	\$35,000	\$35,000	\$35,000	\$1,500,000
Treatment Projects Subtotal \$69,235,000 \$1,225,000 \$6,570,000 \$6,490,000 \$1,710,000 \$780,000 \$1,815,000 \$3,490,000 \$380,000 \$210,000 \$46,245,0	T-30	Plant Drain Pump Replacement	7	\$120,000				\$120,000							
	Treatme	ent Projects Subtotal		\$69,235,000	\$1,225,000	\$6,570,000	\$6,490,000	\$1,710,000	\$780,000	\$1,815,000	\$3,490,000	\$380,000	\$210,000	\$200,000	\$46,245,000

Notes:

1. OLWS' fiscal year runs from July 1 – June 30. The 2023 fiscal year begins on July 1, 2022. Project costs are rounded to the nearest \$1,000. All costs are based on an Engineering News and Review Seattle Construction Cost Index of 15202.68 for November 2022

2. Secondary Treatment Upgrades (SND/A2O alternative) as described in Section 6

3. Tertiary Treatment (disk filter alternative) as described in Section 6. Includes future media replacement as recommended by disk filter manufacturers.

4. Solids Handling Upgrades (independent of a preferred alternative as costs were similar) as described in Section 6.

Wastewater Master Plan Oak Lodge Water Services

Table 7-4. Planning (P) Capital Improvement Program Implementation

		Project Rank	Project Total (FY 2023 Dollars)	CIP Value in FY23 Dollars										
Project ID	Description			FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33-52
				1	2	3	4	5	6	7	8	9	10	11-30
P-1	Wastewater Master Plan Update		\$2,220,000					\$370,000					\$370,000	\$1,480,000
Planning Projects Subtotal			\$2,220,000					\$370,000					\$370,000	\$1,480,000

Note: OLWS' fiscal year runs from July 1 – June 30. The 2023 fiscal year begins on July 1, 2022. Project costs are rounded to the nearest \$1,000. All costs are based on an Engineering News and Review Seattle Construction Cost Index of 15202.68 for November 2022

Table 7-5. Capital Improvement Program Implementation Summary

	Project Total	ct Total CIP Value in FY23 Dollars										
Project Type	(FY 2023	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33-52
	Dollars)	1	2	3	4	5	6	7	8	9	10	11-30
Collection System Project Subtotal	\$88,438,000	\$1,393,000	\$5,473,000	\$6,166,000	\$4,174,000	\$4,346,000	\$1,535,000	\$6,670,000	\$10,491,000	\$7,561,000	\$8,518,000	\$32,111,000
Treatment Projects Subtotal	\$69,235,000	\$1,225,000	\$6,570,000	\$6,490,000	\$1,710,000	\$780,000	\$1,815,000	\$3,490,000	\$380,000	\$210,000	\$200,000	\$46,245,000
Planning Projects Subtotal	\$2,220,000					\$370,000					\$370,000	\$1,480,000
Total	\$159,893,000	\$2,618,000	\$12,043,000	\$12,656,000	\$6,004,000	\$5,496,000	\$3,350,000	\$10,160,000	\$10,871,000	\$7,670,000	\$8,634,000	\$79,383,000

Note: OLWS' fiscal year runs from July 1 – June 30. The 2023 fiscal year begins on July 1, 2022. Project costs are rounded to the nearest \$1,000. All costs are based on an Engineering News and Review Seattle Construction Cost Index of 15202.68 for November 2022

7.0 Capital Improvement Plan

Table 7-6: Projects from Existing Collections CIP

Project ID	Capital Project Description
C-12	LS5 Rebuild: Refurbish the existing concrete structure with an anti- corrosive epoxy lining and replace pumps with submersible non-clog designs.
C-13	LS2 Construction: Reconstruct the dry well area to a larger wet well with submersible non-clog pumps and increase the wet well size. Replace the backup generator and improve sound attenuation at the site.
C-14	Lateral Repair Program: Repair and replace the public portion of wastewater laterals within the right-of-way. Priority will be given to laterals allowing inflow and infiltration through breaks and which cause the greatest impact to operating budget.
C-15	Hillside and Boardman Wastewater Main Replacement: Replace 638 LF of 12-inch diameter pipe that has settled. This settlement causes sediment, grease, and fats to accumulate in the line which causes field staff to maintain this line more often than desired.
C-16	LS3 Rehabilitation: Reconstruct the dry well area to a larger wet well with submersible non-clog pumps and increase the wet well size. Replace the backup generator and improve sound attenuation at the site.
C-17	Manhole Repair Program: Rehabilitate manholes identified as having poor structural integrity. Projects are identified based on routine system monitoring and/or maintenance done by the Field Crews.
C-18	Mainline Repair Program: Perform spot repairs where structural or inadequate flow conditions exist. Projects are identified based on routine system monitoring and/or maintenance done by the Field Crews.
C-19	LS4 Rehabilitation: Provide an access driveway to provide vehicle access to the wet well and driveway, a new electrical and control kiosk, and new electrical and control equipment.
C-20	LS6 Rehabilitation: Modify the wet well/dry well configuration to allow for liquid storage in both portions. Install submersible non-clog pumps and a new valve vault. Upgrade electrical and control kiosk.

7.3.2 Treatment Plant Projects

A total of 30 treatment system projects were identified as part of this wastewater master plan. Some of the recommended projects overlapped with current projects that are in the 2023-2028 OLWS 6-year CIP and have been modified accordingly. Although each project was assigned a unique prioritization score, the schedule for implementation for some projects can be grouped together to reduce costs and improve the ability to design and construct holistically. The highest priority project is T-12 which will provide a new tertiary treatment facility to improve reliability in meeting new waste discharge permit limits, particularly for TSS. A summary of the existing projects is provided below in Table 7-7.

Table 7-7: Projects from Existing Treatment CIP

Project ID	Capital Project Description
T-1,2,4,5, 6, 7, 8 & 11	Secondary Treatment Upgrades for SND/A2O: Adding diffusers to increase density and improving controls to the existing aeration system, modifying the mixed liquor return system, and other improvements will allow the WWTP to address capacity constraints and provide the ability to meet potential future nutrient discharge limits.
Т-3	Replace Aeration Blowers: Current aeration blower replacement is needed to provide reliable operations. This project is in the current OLWS CIP.
T-9,10	Rehab Secondary Clarifiers 1 & 2 and RAS Control Center: Recent condition assessment conducted by OLWS identified the need to rehab the secondary clarifiers.
T-12	Tertiary Filtration Facility: A new treatment process will improve reliability to meet new waste discharge permit limits.
T-13	Digester Blower Replacement: Current digester blower replacement is needed to provide reliable operations. This project is in the current OLWS CIP.
T-14,15	UV Disinfection Upgrades: Ongoing replacement of UV bulbs and upgrades to the flow control gates are necessary.
T-16,17	ILS Rehab: Pump replacement and other improvements are necessary to provide reliable operations. This project is in the current OLWS CIP.
T-18,19,20 21,22	Headworks Improvements: Upgrades to screen seals in channel, access to HeadCell, providing a third mechanical screen, and other improvements at the headworks will improve operations.
T-23	WWTP Air Piping Inspection: Inspection and identification of necessary repairs to the air piping is needed for reliable operations. This project is in the current OLWS CIP.
T-24,25	GBT and TWAS Refurbishment: A refurbishment of the existing GBT unit and replacement of TWAS pumps are necessary to provide reliable operations.
T-26	Solids Handling Upgrades: A new solids handling building south of existing Digesters 3 & 4 and the replacement of Digesters 1 & 2 will provide improved reliability and operations for solids handling.
T-27	W3 Sodium Hypochlorite Replace: Replacement of the system is needed for reliable operations.
T-28	Secondary Clarifier 3&4 Rehab: Rehabilitation of mechanical elements are needed for reliable operations.
T-29	Ongoing Electrical Upgrades: Plant staff typically replace sensitive electrical equipment, such as variable frequency drives, to provide reliable operations.
Т-30	Plant Drain Lift Station Rehab: Pump replacement and other improvements are necessary to provide reliable operations. This project is in the current OLWS CIP.

7.3.3 Planning Projects

WSC recommends an update to the WWMP on an approximate 5-year basis to keep the CIP plan refreshed to improve the utility of the wastewater master plan. As time passes from the completion of each WWMP update, new regulations may be implemented, system conditions gradually deteriorate, and priorities for OLWS can shift. Updating the master plan every 5 years also requires less effort than developing a completely new master plan document. Project P-1 allocates budget every 5 years to provide an update to this wastewater master plan to facilitate future CIP development and reflect improvements made within the wastewater system. In particular, the next update to the WWMP will be important for assessing the results of the proposed RDII reduction projects so that the resulting post-rehab PWWF can be estimated. The post-rehab PWWF could change the extents, costs, and timing of trunk capacity upsizing and WWTP improvement projects.

7.4 Staffing Considerations

Developing the WWMP has shown a need to conduct a detailed staffing analysis to determine OLWS' appropriate level of staff for current and future operations. A description of impacts to staffing, particularly operations and maintenance, for both the collections and treatment systems are described in the following sections.

7.4.1 Collections System

Operations and maintenance staff for the collections system are also responsible for addressing the storm water infrastructure in the OLWS service area, and sometimes also support the drinking water operations team. As described in Section 2.4 of this WWMP, collections system operations staff conduct preventative maintenance and routine inspections of the wastewater manholes and mains. Currently, OLWS relies on outside contractors to complete repairs to the collection system.

The recommended CIP projects and associated estimates of implementation costs assume that OLWS will use contractors to complete smoke testing, flow monitoring, all repairs to wastewater manholes, mains, and laterals, and all upgrades to existing lift stations. As projected growth within the service area is anticipated to come from infill development, expansion of the collections system infrastructure is not anticipated.

7.4.2 Treatment System

According to the OLWS adopted budget for FY22-23, there are 8.30 full-time equivalent (FTE) positions in the Wastewater Treatment Division (Division 21). The major funding source for the positions are wastewater service charges billed to OLWS customers. The WWTP Superintendent directly oversees treatment staff operations and maintenance that includes five operators, two mechanics, and the asset resource specialist position. The Asset Resource Specialist is allocated at 0.3 FTE to the Treatment and Collection Divisions.

Additional FTEs should be evaluated for operations and maintenance of new equipment including:

- > Operation of tertiary filters described in Section 6.6.1.4.2
- Operation of the SND process described in Section 6.6.1.27 for process control and maintenance of new instrumentation and process controllers
- Solids handling processes described in Section 6.6.2.3.4

During design of the above improvements, staffing requirements should be considered in more detail. Many decisions during the design process can impact personnel demands, and each project should be balanced appropriately between ongoing O&M budgets and capital expenditures.

7.4.3 Technical Services and Engineering

Currently OLWS has two full-time engineers that function as project managers for CIP projects. In discussions with the District Engineer, each position can typically manage between 2 to 5 projects per year depending on the size and complexity. The proposed CIP represents a significant increase in the anticipated dollar value of CIP to be delivered each year. The engineering team also have the responsibility for project management time of water and stormwater system CIP projects that are outside of the scope of this WWMP. Additional technical services and engineering staff are anticipated to be necessary and would likely include one additional full-time project manager and one engineering technician that could provide inspection services. The costs for project staffing are included within each individual CIP project as part of the project development costs described in Section 7.1.1.

7.5 Funding and Financing

OLWS has several options to fund the CIP including user fees, bonds, grants from outside agencies, and SDCs. The following sections will describe the potential for funding the recommended capital improvements through user fees and SDCs, bonds, or grants from outside agencies.

7.5.1 Rates and SDCs

With relatively low levels of projected growth in the OLWS service area, SDCs are not likely to contribute significantly to fund the recommended CIPs. The recommended increase in annual capital improvement spending will likely require increases in rates to fund the improvements. An estimate of potential rate increases is beyond the scope of this WWMP, however a rate study is recommended to estimate the magnitude and timing of rate increases necessary.

7.5.2 Bonds

Debt financing of capital improvements through issuance of revenue bonds is common practice, but typically will incur a higher interest rate than low-interest government loans. The adopted FY22-23 OLWS budget indicates that the wastewater fund currently budgets for \$3,434,144 in debt service as part of the Wastewater Revenue Bond Debt Service fund. Issuance of public

debt could be considered to help fund the implementation of the CIP in addition to rate increases.

7.5.3 Grants and Loans

As an alternative to bond financing, there are several state and federal programs that offer lowinterest financing. Projects meeting certain criteria may also qualify for loan forgiveness or grant funding. Several potential programs are listed below and could be considered for funding specific capital improvements:

- Clean Water State Revolving Fund (CWSRF): The CWSRF is managed through the Oregon DEQ and provides loans with below market rates. Loans can be used for wastewater system improvements, including designing and planning costs, with no limit on total project cost. Projects approved for funding must begin within two years of receiving the funding agreement.
- Water/Wastewater Financing Program: The water/wastewater financing program is managed through Business Oregon Infrastructure Finance Authority and provides low interest loans and occasionally grants to municipalities for compliance with the Safe Drinking Water Act and Clean Water Act. Loans can be used for wastewater system improvements, including design and planning costs, up to \$10,000,000 per project.
- Federal Emergency Management Agency Pre-Disaster Mitigation Loans: Projects for mitigating seismic risk can be eligible for this program but must be consistent with the goals and objectives identified within the County's Natural Hazard Mitigation Plan.
- Sewer Overflow and Stormwater Reuse Municipal Grants (OSG) Program: The OSG program through the EPA provides funding to plan, design, or construct projects that correct combined sewer overflows (CSOs), sanitary sewer overflows (SSOs), stormwater needs, or subsurface drainage needs. The program is administered through the State. For fiscal year 2022, funding is prioritized for financially distressed communities, communities implementing long-term control plans for CSOs or SSOs, those requesting funding for a project on the State's Intended Use Plan for the CWSRF, and those in an Alaskan native village.

7.6 CIP Summary

The recommended CIP identifies approximately \$156.2M in projects, with roughly 50% of the work to be completed within the next 10 years. An implementation schedule that provides for an average capital improvement budget of \$7.9M per year for the next 10 years appears feasible but will likely require rate increases or additional funding mechanisms. Prioritization of projects is based upon the currently known deficiencies within the system but as continued inspections and assessments of wastewater mains, manholes, lift stations, and wastewater treatment plant facilities provide new information, there may be a need to adjust the prioritization and timing of the CIP.

References

A Toolbox for Sanitary Sewer Overflow Analysis and Planning (SSOAP) and Applications. **Fu-hsiung Lai, Srinivas Vallabhaneni, Carl Chan, Edward H. Burgess, Richard Field.** s.l. : U.S. Environmental Protection Agency.

Brown and Caldwell. 2013. *Inflow and Infiltration Update Report.* Sweet Home, OR : s.n., 2013.

CH2M Hill. 2007. Sanitary Sewer Master Plan. 2007.

Environmental Protection Agency. April 2015. *Condition Assessment of Underground Pipes.* April 2015.

Gettring More From Flow Monitoring - Interpreting Sewer Flow Data to Yield the Maximum Benefit. **Paul S. Mitchell, P.E. and Patrick L. Stevens, P.E. 2005.** Huntington Beach, CA : Water Environment Federation, 2005, Vols. Collection Systems 2005 - Sustaining Aging Infrastructure: System, Workforce, and Funding.

J.F. Miller, R.H. Frederick, and R.J. Tracey. 1973. *Atlas 2: Precipitation-Frequency Atlas of the Western United States.* s.l. : NOAA, 1973.

Portland State University. 2020. 2019 Population Estimates. 2020.

State of Oregon. Oregon Administrative Rule, Chapter 660, Division 11. *Public Facilitites Planning.*

Weather-US. 2021. Weather-US. *Monthly Weather Forecast and Climate Oak Grove, OR.* [Online] 2021. [Cited: August 18, 2021.] https://www.weather-us.com/en/oregon-usa/oak-grove-climate#rainfall.

Appendix A WWTP Description and Condition Assessment of Unit Processes

Wastewater Master Plan Oak Lodge Water Services

Technical Memorandum

6500 S Macadam Avenue, Suite 200 Portland, OR 97239-3552

T: 503.244,7005

- Prepared for: Oak Lodge Water Services
- Project Title: Wastewater Master Plan
- Project No.: 156789.061.001

Technical Memorandum

Subject: Wastewater Treatment Plant (WWTP) Description and Condition Assessment

- Date: January 13, 2023
- To: Brad Albert, P.E., District Engineer, Oak Lodge Water Services (OLWS) Sarah Jo Chaplen, General Manager, OLWS
- From: Art Molseed, P.E., WWTP Lead, Brown and Caldwell
- Copy to: David Hawkins, Plant Superintendent, OLWS Scott Duren, P.E., Project Manager, Water Systems Consulting

Prepared by:

Heather Lough, P.E.

OR License #60332PE, Exp. 12/31/24

Reviewed by:

Patricia Tam, P.E.*

Reviewed by:

Art Molseed, P.E. OR License #15224PE, Exp. 12/31/24

*Professionally registered in the State of Washington

EXPIRES: DECEMBER 31, 2024

EXPIRES: DECEMBER 31, 2024

Limitations:

This document was prepared solely for Oak Lodge Water Services (OLWS) and Water Systems Consulting, Inc. (WSC) in accordance with professional standards at the time the services were performed and in accordance with the contract between WSC and Brown and Caldwell dated May 18, 2021. This document is governed by the specific scope of work authorized by OLWS and WSC; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by OLWS and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

Section 1: Ir	ntroduction	1
Section 2: B	ackground	
2.1 History	~	4
2.2 Sanitary	Sewer Master Plan	4
	pproach	
3.1 Docume	entation from Prior Projects	5
3.2 Review of	of Previous Reports and Documents	5
3.3 Conditio	n Assessment Site Visit	6
3.4 Data Col	llection and Management	6
3.4.1	Data Fields	6
3.4.2	Enterprise Asset Management Software	7
3.4.3	Field Observations	7
3.4.4	Condition and Performance Ratings	7
3.5 Factors	that Affect Asset Condition	9
Section 4: W	/WTP Description and Condition Assessment	10
4.1 Liquid S [.]	tream	10
4.1.1	Influent Pump Station	11
4.1.2	Plant Drain Pump Station	13
4.1.3	Influent Channel and Sampler	15
4.1.4	Influent Mechanical Screens and Influent Bypass Bar Screen	19
4.1.5	Screenings Conveyance	21
4.1.6	Screenings Washer/Compactor	22
4.1.7	Mixed Liquor Screen and Screenings Compactor	24
4.1.8	Grit Removal	26
4.1.9	Grit Pumps	26
4.1.10) Grit Washing/Dewatering	
4.1.11	L Aeration Basins	29
4.1.12	2 Anoxic Zone Mixers	30
4.1.13	3 Aeration Basin Diffusers	31
4.1.14	1 Weir Gates and Hydraulics	33
4.1.15	5 Aeration Blowers	34
4.1.16	S Mixed Liquor Recycle Pumps	36
4.1.17	7 Screened Mixed Liquor Pumps	37
4.1.18	3 Waste Activated Sludge/Scum Pumps	37
4.1.19	9 Secondary Clarifiers	41
4.1.20) RAS Pumps	43
	L UV Disinfection	
4.1.22	2 Effluent Flow Measurement and Sampling	47

4.2 Solids St	ream	
4.2.1	Aerobic Digesters, Mixing Systems, and Blowers	
4.2.2	Digested Sludge Pumps	54
4.2.3	Thickening	55
4.2.4	Dewatering	
4.3 Support	Systems	
4.3.1	3W Disinfection and Pumps	
4.3.2	IPS/Plant Drain PS and Headworks Foul Air Treatment	62
4.3.3	Aerobic Digester 1 and 2 and Solids Handling Building Foul Air Treatment	63
4.3.4	Outfall	66
Section 5: Su	ummary of Results	67
Section 6: Re	eferences	74
Attachment /	A: Plant Asset Registry	A-1

List of Figures

Figure 1. WWTP process schematic	1
Figure 2. Aerial view of WWTP with major facilities labeled	2
Figure 3. IPS and Plant DPS, at grade	
Figure 4. IPS and Plant DPS controls at grade	
Figure 5. Drain pump station wet well	
Figure 6. Headworks Building	
Figure 7. Influent Pump and Plant Drain Pump force mains	
Figure 8. Raw sewage discharge into end of influent channel	
Figure 9. Influent composite sampler	
Figure 10. Debris accumulation on influent sampler suction strainer	
Figure 11. Multi-rake influent screens	
Figure 12. Influent screens with influent and effluent gates	
Figure 13. Screenings sluice system	21
Figure 14. Screenings washer/compactors	
Figure 15. Screenings washer/compactor side view	
Figure 16. Mixed liquor rotary drum screen	
Figure 17. Grit Pump 1	27
Figure 18. Grit Pump 2	27
Figure 19. Grit washing and dewatering equipment	
Figure 20. Aeration basin structure	
Figure 21. Aeration basin 1 with mixers and fine bubble diffusers visible	
Figure 22. Aeration basin showing use of hoses for spray water	
Figure 23. Hydraulic restriction trapping foam at aeration basin horseshoe turn	
Figure 24. Aeration blowers	
Figure 25. Internal mixed liquor recycle pumps	
Figure 26. WAS/scum pump	
Figure 27. IBR feed pumps in RAS/WAS pump station	
Figure 28. WAS Pump 3 in RAS/WAS pump station	
Figure 29. Original secondary clarifier	
Figure 30. Newer secondary clarifier	
Figure 31. West RAS pumps in RAS/WAS pump station	
Figure 32. East RAS pumps	
Figure 33. East RAS pump discharge	
Figure 34. UV channels and equipment	
Figure 35. Effluent flow meter panels and composite sampler	
Figure 36. Top of Aerobic Digesters 1 and 2	
Figure 37. Aerobic Digesters 1 and 2 from below	
Figure 38. Aerobic Digesters 1 and 2 vertical turbine mixer motor	
Figure 39. Circular aerobic digester	51

Figure 40. Digester mixing pump	52
Figure 41. Digester blowers	53
Figure 42. Digested sludge pump	54
Figure 43. Gravity belt thickener	
Figure 44. Thickened waste activated sludge pump	56
Figure 45. BFP1	58
Figure 46. Truck loadout at Solids Handling Building	58
Figure 47. BFP2 Installation	59
Figure 48. Sodium hypochlorite metering system	60
Figure 49. Sodium hypochlorite storage tank	
Figure 50. 3W pumps located at disinfection facility	61
Figure 51. 3W strainers	62
Figure 52. Biofilter building and foul air piping	
Figure 53. Chemical scrubber tower and foul air fan	65
Figure 54. Chemical recirculation pump	
Figure 55. Outfall location	66

List of Tables

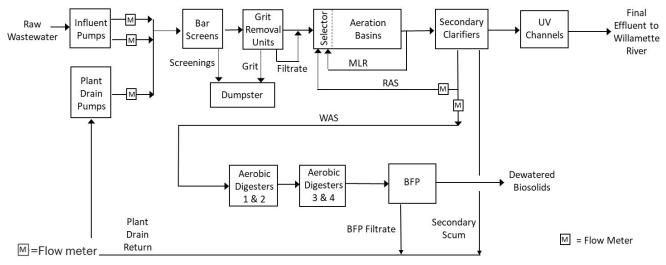
Table 1. Previous NPDES Permit Waste Discharge Limits	
Table 2. Current NPDES Permit Waste Discharge Limits	3
Table 3. OLWS WWTP Improvements	4
Table 4. Data Fields in Asset Database	6
Table 5. Physical Condition Ratings	7
Table 6. Operational Performance Score	
Table 7. Recommendations	
Table 8. Liquid Stream Influent Flows and Loads	
Table 9. Liquid Stream Effluent Requirements	11
Table 10. Influent Pump Station	
Table 11. Plant Drain Pump Station	14
Table 12. Influent Mechanical Screens	19
Table 13. Screening Conveyance System	21
Table 14. Screening Washer/Compactors	22
Table 15. Mixed Liquor Screens	24
Table 16. Mixed Liquor Screenings Compactor	24
Table 17. Grit Removal	26
Table 18.Grit Pumps	
Table 19. Grit Washing/Dewatering System	
Table 20. Aeration Basins	29
Table 21. Anoxic Zone Mixers	

Table 22. Aeration Basin Diffusers	
Table 23. Aeration Blowers	
Table 24. Mixed Liquor Recycle Pumps	
Table 25. Screened Mixed Liquor Pumps	
Table 26. WAS/Scum Pumps	
Table 27. IBR Feed Pumps	
Table 28. WAS Pump 3	
Table 29. Secondary Clarifiers	41
Table 30. RAS Pumps	43
Table 31. UV Disinfection System	45
Table 32. Aerobic Digesters 1 and 2	
Table 33. Aerobic Digesters 3 and 4	50
Table 34. Jet Mix Digester Mixing System	51
Table 35. Process Blowers (Aerobic Digesters)	52
Table 36. Digested Sludge Pumps	54
Table 37. Thickening	55
Table 38. Dewatering	57
Table 39. 3W Sodium Hypochlorite System	59
Table 40. 3W Pumps	61
Table 41. Headworks Foul Air Treatment	62
Table 42. Chemical Scrubber System	64
Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment	68

vi

List of Abbreviations

3W AB B&Bs BC BFP BMP BOD₅ CIP CMMS DEQ DO DPS ft GBT gpm IPS IBRs IR hp MCC mgd mg/L MLE MLR NPDES OAR OLWS OAR OLWS OAR OLWS OAR OLWS OAR ST SSI FJ SSI	3-water aeration basins and blowers Brown and Caldwell belt filter press Biosolids Management Plan five-day biochemical oxygen demand capital improvement program computerized maintenance management system Oregon Department of Environmental Quality dissolved oxygen Drain Pump Station feet/foot gravity belt thickener gallons per minute Influent Pump Station interchange bioreactors interchange return horsepower motor control center millignams per Liter modified Ludzack-Ettinger mixed liquor recycle National Pollutant Discharge Elimination System Oregon Administrative Rules Oak Lodge Water Services operation and maintenance pounds per square inch pounds per square inch gounds per squa	WWTP WSC UV	wastewater treatment plant Water Systems Consulting, Inc. micromho ultraviolet
TWAS	thickened waste activated sludge		
WAS	waste activated sludge		
WC	water column		
WWMP	Wastewater Master Plan		


Section 1: Introduction

This technical memorandum (TM) provides background and history of development of the Oak Lodge Water Services (OLWS) Water Reclamation Facility (WWTP). This TM also provides a description of the WWTP including design data and an evaluation of the present condition and service life of the equipment and facilities.

Separate TMs are being prepared to describe and provide additional performance evaluations of the WWTP as listed below:

- 1. Existing WWTP Operations
- 2. Historical Performance
- 3. Capacity Assessment

Figure 1 shows a process flow schematic of the existing liquid and solid stream treatment systems.

Figure 1. WWTP process schematic

(Note: Existing gravity belt thickener [not shown in the schematic] could be used in the future to thicken WAS prior to digestion)

Figure 2 shows an aerial view of the current OLWS WWTP site and identifies major process facilities.

This TM is intended to meet the Oregon Department of Environmental Quality's (DEQ) guidelines for preparing a wastewater facility planning document and includes the following information:

- WWTP expansion history
- Approach used to assess the facility
- Description of the existing conditions/expected service life of the equipment
- Condition assessment findings
- Summary of results and recommendations for equipment

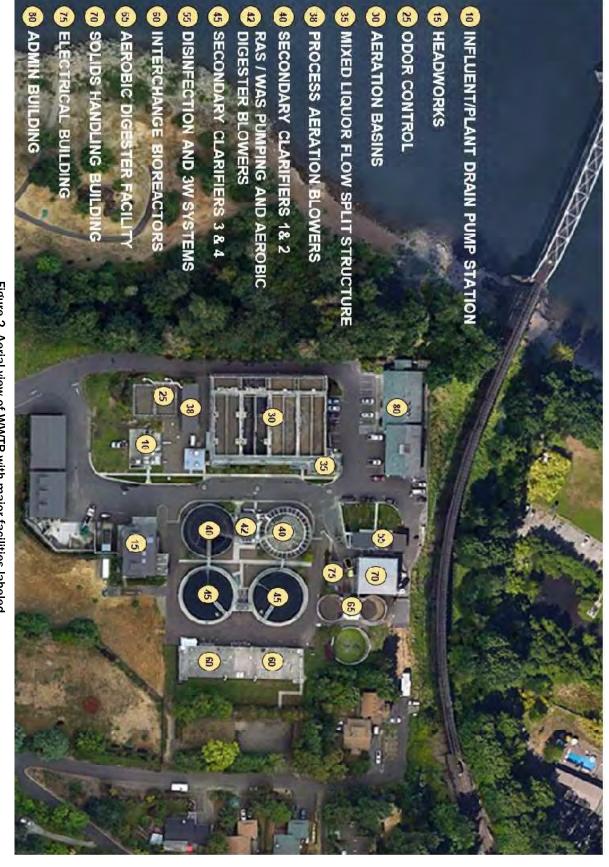


Figure 2. Aerial view of WWTP with major facilities labeled

Brown AND Caldwell

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Ν

Section 2: Background

This section provides background and history for the OLWS WWTP located at 13750 SE Renton Avenue in Oak Grove, Oregon. Treated effluent is discharged to the Willamette River at river mile 20.1. The facility uses conventional activated sludge treatment. The National Pollutant Discharge Elimination System (NPDES) permit for the WWTP was renewed in 2022 by DEQ. The previous permit was issued on December 30, 2004. Table 1 summarizes the waste discharge limitations for key parameters in the 2004 permit.

Table 1. Previous NPDES Permit Waste Discharge Limits					
Deremeter	Average Effluent Concentrations		Manthly Average and	Weekly Averege and	Daily Marine and a
Parameter	Monthly Weekly Monthly Average, ppd		Weekly Average, ppd	Daily Maximum, pounds	
May 1-October 31					
CBOD ₅ a	15 mg/L	25 mg/L	500	750	1,000
TSS	20 mg/L	30 mg/L	670	1,000	1,300
November 1–April 30					
BOD ₅ ^a	30 mg/L	45 mg/L	1,500	2,250	3,000
TSS	30 mg/L	45 mg/L	1,500	2,250	3,000

Source: Adapted from NPDES permit issued in December 2004.

a. The CBOD₅ concentration limits are considered equivalent to the minimum design criteria for BOD₅ specified in Oregon Administrative Rules (OAR) 340-01. These limits and CBOD₅ mass limits may be adjusted (up or down) by permit action if more accurate information regarding CBOD₅/BOD₅ becomes available.

Abbreviations:

 $CBOD_5 = 5$ -day carbonaceous biochemical oxygen demand

mg/L = milligrams per Liter

ppd = pounds per day

TSS = Total suspended solids

The current permit was issued on April 7, 2022, and has been effective since May 1, 2022. WWTP Waste discharge limits for the permit renewal, as listed in the new permit, are summarized in Table 2. Two of the most significant changes are the lower concentration limits during dry weather and changes in the mass loading limits. The latter in the current permit are based on the maximum month dry weather design flow of 5.9 mgd for the dry weather monthly average and weekly average limits and the maximum month wet weather design flow of 10.5 mgd for the wet weather monthly average and weekly average limits. The daily maximum limits are set to be twice the monthly average limits.

Table 2. Current NPDES Permit Waste Discharge Limits						
Devementer	Average Effluent Concentrations		Manthly Arounds and		Dell Martin and de	
Parameter	Monthly	Weekly	Monthly Average, ppd	Weekly Average, ppd	Daily Maximum, pounds	
May 1-October 31						
CBOD ₅	10 mg/L	15 mg/L	490	740	980	
TSS	10 mg/L	15 mg/L	490	740	980	
November 1-April 30						
BOD ₅	30 mg/L	45 mg/L	2,600	3.900	5,200	
TSS	30 mg/L	45 mg/L	2,600	3,900	5,200	

Source: Adapted from NPDES permit effective May 1, 2022.

2.1 History

OLWS provides sanitary sewer service and surface water management to portions of the cities of Gladstone and Milwaukie and unincorporated areas of Clackamas County. The OLWS WWTP began operating in 1960 and treats mostly domestic sewage. Original WWTP processes included primary and secondary treatment (activated sludge) with anaerobic digestion of solids. Various improvements have been made over the past 60 years, as summarized in Table 3. Note that some earlier documentation refers to the WWTP as the Water Reclamation Facility (WRF). OLWS standardized on the term WWTP in 2022.

Table 3. OLWS WWTP Improvements			
Year	Improvement(s)		
1960	Original construction with 1.5 mgd capacity including primary anaerobic digester		
1970	Increased capacity to 2.0 mgd		
1973	Increased capacity to 4.0 mgd including two secondary anerobic digesters		
1981	Added influent screening and rock trap		
1986	Converted to fine bubble diffusion in the aeration basins		
1995/1996	Replaced secondary clarifiers and installed new return and waste activated sludge pumping facilities		
1999	Constructed new outfall with diffusers		
2002	Constructed new solids handling facility with gravity belt thickening and belt filter press (BFP) dewatering		
2005	Replaced aeration blowers		
2008	Replaced influent screens		
2012	Constructed major plan improvements including new influent and drain pump stations, headworks, aeration basins and blowers (AB&Bs), additional secondary clarifiers, ultraviolet (UV) disinfection, Plant water facilities, interchange bioreactors, increased aerobic digestion and secondary treatment capacity, and foul air treatment systems		
2020	Upgraded BFP dewatering		
2020	Upgraded solids piping		

The major improvements completed in 2012 were implemented in two phases and were based on a Master Plan completed in 2007 (CH2M 2007), a Project Definition Report completed in 2008 (CH2M 2008), and a Schematic Design Report completed in 2009 (CH2M 2009). These documents projected a 20-year design basis to meet anticipated growth and future regulatory requirements. The improvements increased the WWTP's capacity to a maximum month flow of 10.5 mgd with a peak wet weather capacity of 18 mgd.

Prior to 2010, biosolids generated at the WWTP have been seasonally applied at local land application sites in rural Clackamas County. From 2010 through 2014, anaerobically treated biosolids were transported to Madison Farms in Echo, Oregon, and beneficially re-used. Following the decommissioning of the anaerobic digestion system as part of the Phase 1B improvements, the production of aerobic biosolids has been increasing. These solids have been transported to Heard Farms in Roseburg, Oregon, and to the landfill for disposal. In late 2016, OLWS received approval from DEQ to apply aerobic solids at Madison Farms. Since then, Madison Farms has been the sole receiver of biosolids from OLWS. OLWS meets 40 CFR Part 503 requirements and continues to land apply Class B biosolids on approved sites in accordance with its BMP.

2.2 Wastewater Master Plan

OLWS has contracted with Water Systems Consulting, Inc. (WSC) to prepare their Wastewater Master Plan (WWMP). The WWMP will evaluate the adequacy of the wastewater collection and treatment systems to provide safe and reliable service to customers and recommend capital improvements necessary to maintain that level of service into the future. The analysis will be based on estimated wastewater demand projections

and a set of evaluation criteria designed to meet regulatory requirements, accepted engineering practices, and OLWS preferences. This TM is designed to work in concert with the WWMP document and will be included as an attachment.

Section 3: Approach

OLWS staff provided relevant background information, including record documents from previous WWTP improvements projects, and other documentation including manufacturer's operation and maintenance (O&M) manuals, to facilitate the condition assessment. Brown and Caldwell (BC), as a subconsultant to WSC, reviewed the documentation provided as part of the condition assessment activities.

3.1 Documentation from Prior Projects

The following documents from previous WWTP improvements projects were reviewed:

- Wastewater Treatment Plant Solids Thickening, Dewatering and Reuse Project Contract Documents, Oak Lodge Sanitary District (Brown and Caldwell, January 2000)
- WWTP Improvements, Phases 1A, Record Drawings, Oak Lodge Sanitary District (CH2MHill, March 2012)
- WWTP Improvements, Phases 1B, Record Drawings, Oak Lodge Sanitary District (CH2MHill, December 2012)
- OLWS BFP Installation, Contract Documents (Brown and Caldwell, April 2020)
- OLWS Solids Piping Project, Drawings (Murraysmith, August 2020)
- OLWS Aeration Blower and Baffle Project, Drawings (Murraysmith, July 2021)

3.2 Review of Previous Reports and Documents

A variety of historical data and previous reports and documents were reviewed in order to prepare the description of the WWTP and prepare for the condition assessment. One of these reports included the Aeration Basin Evaluation prepared by Murraysmith in 2019 to evaluate components in the aeration system (basins, blowers, and aerobic digesters). The purpose of the evaluation was to identify alternatives and make recommendations to improve operations of these systems for current and future flows and loads. Design of the recommended improvements was completed early in 2021 and construction is planned for 2022. Some of the findings from this evaluation are incorporated into the discussion of existing WWTP facilities and proposed modifications. The following documents, prepared in 2021 as part of OLWS's ongoing coordination effort with DEQ to renew the WWTP's NPDES permit, were also reviewed.

- Updated Fact Sheet Facility Description
 - DEQ and OLWS worked together to prepare an updated Fact Sheet Facility Description to be incorporated into a new NPDES permit for the WWTP. Information from this updated Fact Sheet Facility Description is reflected in this evaluation of current WWTP operations.
- Biosolids Management Plan
 - OLWS staff coordinated with DEQ to prepare an updated BMP that was included in the public notice for the NPDES permit renewal. Information from this updated BMP is incorporated into this evaluation of existing WWTP operations.

3.3 Condition Assessment Site Visit

BC performed a site visit and visual inspection on October 20, 2021. The objective of the condition assessment was to assess the physical condition, functional integrity, and operability of the equipment at the WWTP. The information and data collected during the assessment was based primarily on visual observations and interviews with OLWS staff. The observations and input, along with other documentation, were used to evaluate the extent and severity of any deterioration and to identify and locate specific areas of wear or damage.

Based on the time available, BC performed a rapid visual assessment of major equipment assets at the WWTP. More focus was given to those assets identified through staff interviews and document review as worthy of special attention. The condition assessment database, or asset registry, described in this section includes the major equipment assets that were selected from records in OLWS's computerized maintenance management system (CMMS). Some of the assets, such as submersible pumps and slide gates, were submerged and not visible on the day of the inspection. In other cases, the assets observed were considered typical of similar units. Table 43 in Section 5 summarizes the assets that were visually assessed and documented with photos during the October 20, 2021, site visit. The plant asset registry is also provided in Attachment A.

3.4 Data Collection and Management

The asset registry is the basis of the condition assessment and data collection efforts for this evaluation. The asset registry is a database containing records for assets to be evaluated by BC. Prior to field assessments, BC built the asset registry using information provided by OLWS. The registry was pre-populated with asset records and identifying information necessary for BC to locate those assets in the field. The primary sources of information used to pre-populate the asset registry was an export from the OLWS Maximo asset database supplemented by the record drawings and submittal documentation.

On the day of the site visit, BC had the Fulcrum app pre-loaded onto their mobile devices. Using Fulcrum allowed them to effectively document their respective observations, including any photos or videos they captured on individual WWTP assets, and access and update the asset registry while in the field. As a result, BC was able to create a single repository of inspection findings using a consistent methodology for collecting and managing the condition assessment data.

3.4.1 Data Fields

Table 4 lists the data fields used in the asset database. Much of the information was obtained from the OLWS CMMS database. Additional information including drawing references for equipment, field observations, ratings, recommendations, and photos were added by members of BC. The Asset Registry that includes a selection of key data fields from the condition assessment database is provided in Attachment A.

Table 4. Data Fields in Asset Database			
Data Fields	Condition Assessment Fields		
Asset Number	Asset number assigned by OLWS		
Equipment Number	Equipment number assigned by OLWS		
Description	Description from OLWS CMMS database or added		
Company	Company from OLWS CMMS database or added		
Serial Number	Description from OLWS CMMS database		
Installation Date	Installation date from CMMS database		
Model Number	Model number from OLWS CMMS database		

Table 4. Data Fields in Asset Database				
Instrumentation Drawing Number	Added if applicable			
Piping &Instrumentation Diagram Sheet Number	Added if applicable			
Other Drawing Number	Added if applicable			
Mechanical Sheet Number	Added if applicable			
Condition Score	Added			
Performance Score	Added			
Photos	Links to photos added			

3.4.2 Enterprise Asset Management Software

OLWS uses the Maximo enterprise asset management software as part of its CMMS. OLWS staff exported a list of assets and associated data that were imported into the Fulcrum database to preserve asset IDs, equipment names and numbers, and other relevant information and maintain consistency between records. Use of asset IDs and equipment numbers will facilitate identification of assets during field assessments and follow-up evaluation.

3.4.3 Field Observations

Field observations were limited to equipment that was in service at the time of the October 20, 2021, site visit (equipment operation was not rotated during the site visit). In most cases, the observed condition of at least one example of each asset was documented with at least one date- and time-stamped photo taken of the asset being assessed when visible. In some cases, multiple examples were documented with photos. Additional photos were taken to document observations, as needed. These digital image files were associated with the asset through links in the database. Some assets, such as diffusers and some instruments, were not directly observable. However, two of the aeration basins (ABs) were empty, or partially empty, during the site visit, and some photos were taken. Field observations and input from OLWS staff were applied to general categories of equipment based on the site visit, as reflected in the evaluation of individual assets in the condition assessment database.

3.4.4 Condition and Performance Ratings

BC assigned a condition and a performance rating to each asset or asset category based on review of documentation, input from OLWS, and visual assessment. BC used the International Infrastructure Management Manual to the extent possible and applicable, as modified for the equipment being evaluated for this project. BC established a set of standardized condition, performance, and recommendation ratings to ensure consistent documentation of asset conditions.

BC used the condition ratings listed in Table 5 and the performance or operational ratings in Table 6 to make the recommendations presented in Section 5.

Table 5. Physical Condition Ratings

Rating	Description	
1	New or near new condition.	
2	Minor cosmetic surface abrasion or coating deterioration.	
3	Good condition and average surface or structural wear and tear based on the asset age.	
4	Fair to poor condition based on observations or other indication.	
5	Higher risk of failure due to condition and should be examined more closely.	

Note: The same condition ratings were used for all disciplines. There were some differences in the performance ratings for the disciplines due to obsolescence of equipment that is more typical of electrical and instrumentation and control components.

Table 6. Operational Performance Score		
Rating	Description	
1	Runs like new.	
2	Minor performance impacts typical of asset age.	
3	Performs as anticipated for asset age.	
4	Operates but does not meet performance or operational expectations	
5	Does not meet industry standards.	

Note: The same condition ratings were used for all disciplines. There were some differences in the performance ratings for the disciplines due to obsolescence of equipment that is more typical of electrical and instrumentation and control components.

Performance ratings were based on observation of operational equipment, along with input from OLWS staff and written documentation, such as maintenance records and test reports. Performance scores also consider the typical service life for that type of equipment. Similar to the condition scores, performance ratings were applied to general categories of assets unless specific information warranted a different value. Based on the results of the field assessment, a recommendation for further actions for categories of equipment were made using the options listed in Table 7.

Table 7. Recommendations		
Options	Recommended Action	
1	No immediate action, continue to perform preventive maintenance.	
2	Plan more frequent preventive maintenance.	
3	Monitor performance on a more frequent basis in anticipation of inspection and/or repair in the next 3 to 5 years.	
4	Monitor performance more frequently and plan for rehabilitation or replacement in the next 5 to 10 years due to performance or obsolescence.	
5	Incorporate project into Capital Improvement Program.	

3.5 Factors that Affect Asset Condition

Several key factors likely to impact equipment condition at a wastewater treatment facility are summarized below.

- Age and Frequency of Operation. Equipment has a useful or expected life. As run-time hours increase, the condition of the equipment naturally degrades. This criterion also includes operational history, such as frequency of starting and stopping and frequency of use, as factors that can impact equipment condition.
 - Some of the liquid stream equipment dates back to 1995 when Secondary Clarifiers 1 and 2 were replaced and the RAS/WAS Pump Station was installed. The tanks associated with the circular aerobic digesters were constructed as anaerobic digesters in 1962, while new equipment for aerobic digestion treatment was installed as part of Phase 1B improvements completed in 2012. The solids handling facilities date back to 2002. Most of the remaining equipment dates back to 2012 when major Plant upgrades included the influent and plant drain pump stations, headworks, AB, and interchange bioreactors. Equipment associated with conversion of the two anaerobic digesters to aerobic digestion, addition of secondary clarifiers 3 and 4, and UV disinfection was also added in 2013.
 - A second BFP purchased by the OLWS was also installed in 2020 to be used as a backup to the BFP installed in the Solids Handling Building. The unit was temporarily installed while the main BFP was being rebuilt and then removed. It is stored by the interchange bioreactor tanks (Aerobic Digesters 1 and 2). The portable BFP can be installed outside the Solids Handling Building as needed.
- **Maintenance History.** Predictive maintenance activities enable equipment to achieve or go beyond the predicted service life or lifespan. Predictive maintenance can also reduce downtime caused by system failure. On the other hand, corrective maintenance can increase maintenance costs by reducing labor productivity and increasing costs of obtaining spare parts.

The consequences of not performing predictive maintenance can be far greater than the additional cost of individual equipment items. Equipment failure can lead to more damaging and costly system failures.

- Environment. Environmental factors that can impact service life and condition include corrosion, heat, and dust, and whether equipment is located indoors or outdoors. Corrosion can be caused by contaminants such as hydrogen sulfide and its associated contaminants. Hydrogen sulfide results from anaerobic conditions and presence of sulfites and sulfates in wastewater collection systems and in wastewater treatment Plant systems. Hydrogen sulfide can be converted into sulfuric acid that can attack concrete and steel as well as other metals in the presence of oxygen. Moist air is also more corrosive than dry air. High temperatures can reduce service life of electrical and other equipment due to material degradation including insulation.
- **Power Quality.** The quality of electrical power supplied by the electrical utility affects the life of electric motors. Power quality is a measure of voltage and current quality based on several criteria including magnitude, frequency, wavelength, and symmetry. Harmonics and voltage interruptions, imbalance or frequency fluctuation represent deviations that affect power quality and can cause overloading of the electrical system and reduce equipment life.

Section 4: WWTP Description and Condition Assessment

This section presents the findings of the October 20, 2021, condition assessment. It also summarizes information gathered during discussions with OLWS staff during an on-site workshop and subsequent facility inspection. Relevant equipment design criteria, and the findings from a review of prior WWTP projects, reports, and documents, are also provided. The section is organized by process treatment units installed at the WWTP including liquid stream, solids stream, and support facilities.

On September 1, 2021, members of BC and OLWS staff participated in a workshop at the WWTP to discuss current Plant operations and to collect information needed for an operations evaluation of existing facilities. The workshop also gave BC an opportunity to gather preliminary information related to equipment and facility conditions. The findings of the workshop are documented in the Existing Water Reclamation Facility Operations TM (BC 2023). On October 20, BC performed a visual inspection of WWTP facilities. During this visit, BC observed the operation and condition of major assets and discussed equipment performance with OLWS staff.

4.1 Liquid Stream

The OLWS WWTP is a secondary treatment system that uses conventional activated sludge without primary treatment. Table 8 provides the liquid stream flow and load design criteria used as the basis for the Phase 1A and 1B WWTP Improvements.

Parameter	Design Value	Parameter	Design Value
Tows, mgd		TSS loadings, lbs/day	
Average annual	4.3	Average annual	7,450
Average dry weather	3.5	Maximum month wet weather	8,390
Average wet weather	5.2	Maximum week wet weather	10,010
Maximum month wet weather	10.5	Maximum day wet weather	13,290
Maximum week wet weather	13.5	Maximum month dry weather	8,960
Maximum day wet weather	17.3	Maximum week dry weather	10,070
Maximum day dry weather	8.6	Maximum day dry weather	12,970
Peak hour	18 a		
OD loadings, lbs/day		Total Kjeldahl Nitrogen loadings, lbs/day	
Average annual	6,680	Average annual	994
Maximum month wet weather	7,440	Maximum month wet weather	1,244
Maximum week wet weather	8,910	Maximum month dry weather	1,354
Maximum day wet weather	11,090		
Maximum month dry weather	7,250	Ammonia loadings, lbs/day	
Maximum week dry weather	8,790	Average annual	775
Maximum day dry weather	10,900	Maximum month wet weather	970
Average annual	994	Maximum month dry weather	1,055
Maximum month wet weather	1,244		
Maximum month dry weather	1,354		

a. Hydraulic carrying capacity of all facilities is designed to pass a peak instantaneous flow (PIF) of 20 mgd to avoid overtopping of walls, flooding of weirs, etc.

Table 9 summarizes the liquid stream effluent requirements for dry weather and wet weather conditions to achieve waste discharge requirements listed in Table 1 for the current NPDES permit.

Table 9. Liquid Stream Effluent Requirements		
Parameter	Value	
Dry weather		
BOD mg/L, 7-day average	15	
TSS mg/L, 7-day average	15	
BOD mg/L, 30-day average	10	
TSS mg/L, 30-day average	10	
Wet weather		
BOD mg/L, 7-day average	45	
TSS mg/L, 7-day average	45	
BOD mg/L, 30-day average	30	
TSS mg/L, 30-day average	30	

The Headworks Building receives pumped flow from the Influent Pump Station (IPS) and Plant Drain Pump Station (DPS). The wastewater is screened and degritted at the Headworks Building then continues to flow by gravity to the activated sludge secondary treatment system. The AB train includes an anoxic zone that is used to promote denitrification, with nitrification occurring in the aerobic zones. The activated sludge system is configurated with the ability to operate in different modes based on operational and effluent permit goals. The secondary process was previously operated as a Cannibal process resulting from the Phase 1A expansion completed in 2012 but the Cannibal process has since been abandoned.

AB effluent flows by gravity to secondary clarifiers where settled solids can be returned to the ABs as return activated sludge (RAS) or pumped as waste activated sludge (WAS) to the solids treatment system. UV disinfection is used to treat the effluent before discharge to the Willamette River. Treated effluent is also reused as 3-water (3W) as described under Section 4.3.1.

The following sections provide a description and condition assessment of individual process and pump systems associated with the OLWS WWTP liquid stream.

4.1.1 Influent Pump Station

All flow into the OLWS WWTP is conveyed to the IPS constructed as part of the Phase 1A expansion. The IPS was designed to meet the 2030 raw sewage design flow of 20 mgd with one of the larger pumps out of service. The IPS is a below grade structure that houses five submersible solids handling pumps. The wet well is partitioned into two sections with a manually operated gate separating the two sumps. Three pumps are placed in one wet well and the other two pumps are in the second wet well. The original KSB submersible pumps were replaced with Flygt submersible pumps in 2019. Discharge check valves and isolation valves for the influent pumps are located in a valve vault. The DPS was built adjacent to the IPS with a common wall separating the two facilities.

Table 10 presents the design criteria for the IPS.

Table 10. Influent Pump Station		
Parameter Value		
Pump type	Solids handling, submersible	
Number of units	5	
Capacity/unit, mgd	4@5.5,1@3.5	
Discharge pressure (ft)	63	
Motor, ea, horsepower (hp)	4 @ 100, 1 @ 60	
Drive type	Adjustable speed	

Figure 3 and Figure 4 show the IPS and Plant DPS at grade.

Figure 3. IPS and Plant DPS, at grade

Figure 4. IPS and Plant DPS controls at grade

The original submersible pumps experienced frequent plugging with rags and other debris. The replacement Flygt submersible pumps are more effective at passing rags to the screening channel at the Headworks Building. To maintain the minimum pumping capacity required by DEQ, the manually operated gate is typically kept open so that the wet well functions as a single sump. At lower dry weather flows, the wet well is oversized, and debris can collect in the corners of the rectangular wet well. As discussed at the September workshop, rounding the corners of the wet well, retrofitting the Flygt pumps with the Flygt Flush Valve, and adding an automatic actuator to the wet well separation gate may improve operability of the influent pumping system. These will be considered as projects for future upgrades as they are developed.

The lack of a built-in lifting system at the IPS makes maintenance of the pumps more difficult. Currently, staff must bring in a mobile crane to lift the submersible pumps out of the wet well. Structural support for a lifting device such as a bridge crane and providing additional electric power to new equipment at the IPS have been identified as challenges to implementing these improvements. These upgrades will be evaluated as part of alternatives development.

The Meltric plugs at the IPS are uncovered and can become wet; the addition of covers would provide protection from moisture. OLWS has included budget in its capital improvement program (CIP) for reconstruction of the IPS in a future year.

4.1.2 Plant Drain Pump Station

The two Plant drain pumps are also the submersible solids handling type located in a shallower wet well located to the east of the IPS wet well. The original KSB pumps installed in 2012 are still used and are equipped with adjustable speed drives but operated in a constant speed, fill-and-draw mode. Solids have a tendency to settle out in the wet well when pumps are not operating. A system to stir the contents of the wet well such as the Flygt Flush Valve may help to minimize collection of solids and other debris in the Plant drain pump wet well.

Table 11 presents the design criteria for the DPS.

Table 11. Plant Drain Pump Station		
Parameter Value		
Туре	Solids handling, submersible	
Number of units	2	
Capacity/unit, mgd	1.75	
Discharge pressure (ft)	50	
Motor, ea, hp	25	
Drive type	Adjustable speed	

The Plant drain wet well is connected to the Plant drain inlet box. The Plant drain inlet box receives flow from the Plant drain manhole and drainage from the ABs. Discharge check valves and isolation valves for the Plant drain pumps are in a valve vault.

Figure 5 shows the DPS wet well taken from an open hatch at grade.

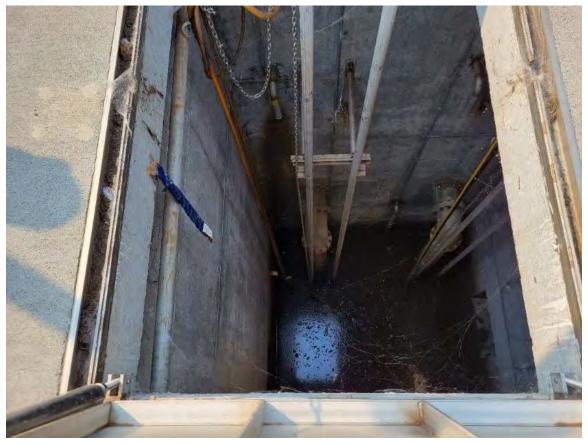


Figure 5. Drain pump station wet well

4.1.3 Influent Channel and Sampler

Equipment associated with preliminary treatment at the OLWS WWTP is located at the Headworks Building. Figure 6 shows the Headworks Building.

Figure 6. Headworks Building

Raw sewage and Plant drainage are pumped to the Headworks Building through force mains routed through the lower level of the Headworks Building, as shown in Figure 7. Each force main is equipped with a magnetic flow meter to measure the raw wastewater and Plant drainage. The raw sewage flow meters measure influent flow for NPDES permit reporting. The two raw sewage force mains combine into a single pipe before discharge at the Headworks Building. The influent pump force main discharges at one end of the raw sewage influent channel, and the Plant drain pump force main discharges near the mid-point of that channel.

As shown in Figure 6, the upper level of the Headworks Building is not enclosed. The raw sewage influent channel, the screens, and grit basins are covered and air is withdrawn for foul air treatment. Figure 8 shows a view of the raw sewage influent channel where the combined influent pump force main discharges into the end of the influent channel.

15

Figure 7. Influent Pump and Plant Drain Pump force mains

Figure 8. Raw sewage discharge into end of influent channel

The influent sampler collects a composite sample from this channel near the discharge point of the influent pump force main and upstream of the discharge of the Plant drain pump force main (except when the manual screen is in service). The sampler is located as shown in Figure 9.

Figure 9. Influent composite sampler

As described in the *Existing WWTP Operations TM*, debris tends to accumulate at the end of the influent channel, and the strainer on the suction tubing for the influent sampler also occasionally plugs with debris, as shown by the rags in Figure 10. This photo was taken on August 11, 2021, which was the first day of the wastewater characterization sampling program implemented to help calibrate the process models. Moving the influent sampler downstream of the screens is not an option, as the screened sewage includes the plant drainage, and the samples would then not be representative of plant influent.

Figure 10. Debris accumulation on influent sampler suction strainer

4.1.4 Influent Mechanical Screens and Influent Bypass Bar Screen

At the Headworks Building, wastewater passes through multi-rake bar screens with 1/4-inch spacing. Typically, one screen is in service and the other serves as a standby. There is also a third bypass channel fitted with a manual bar screen having 1/2-inch bar spacing.

Table 12 presents the design criteria for the Plant's influent mechanical screens.

Table 12. Influent Mechanical Screens		
Parameter	Value	
Units	2	
Туре	Multi-Rake Bar Screen	
Size (width), in.	42	
Capacity/unit, mgd	11.75	
Opening size, in.	1/4	
Motor, ea, hp	1	
Drive type	Constant speed-Reverse	
Influent Bypass Bar Screen		
Units	1	
Туре	Static	
Size (width), in.	42	
Capacity, mgd	11.75	
Opening size, in.	1/2	

As noted in Section 4.1.1, installation of the Flygt submersible pumps has resulted in greater passage of rags and other debris to the influent screenings channel. This has reduced maintenance requirements of the influent pumps, but there is now a greater tendency for the rags to accumulate in the channel, and to even pass downstream of the screens and into the ABs where they can accumulate on the anoxic zone mixer blades and other locations. Rags reach downstream of the screens by passing through the bars and/or through gaps between the screen frame and channel. There is a rubber seal at the channel and frame opening, but it does not always provide an effective seal. OLWS has considered replacing the screens with equipment having finer spaced bars or perforated plates to minimize passage of rags.

Figure 11 shows the Huber multi-rake screens and Figure 12 shows the screens with the channel influent and effluent gates.

Figure 11. Multi-rake influent screens

Figure 12. Influent screens with influent and effluent gates

4.1.5 Screenings Conveyance

A sluice trough that uses 3W conveys screenings to the washer compactor. There is approximately a 30-foot drop from the screens to the washer/compactors as shown in Figure 13.

Table 13 presents the design criteria for the Plant's screening conveyance system.

Table 13. Screening Conveyance System		
Parameter Value		
Units	1	
Туре	Sluice through	
Flow, gpm	80	

Figure 13. Screenings sluice system

When the 3W system is taken out of service for pump or other equipment maintenance, the sluice system must also be taken off-line. After an outage, there can be a slug load of debris to the compactors. Previously, the compactor door would occasionally open when there was a slug load of screenings. However, WWTP staff have made modifications to address this issue as discussed in the next section.

4.1.6 Screenings Washer/Compactor

The screenings sluice discharges into the washer/compactors in the lower level of the Headworks Building shown in Figure 14. WWTP staff added a baffle to prevent the door from opening when a slug load of screenings is received after an outage. Compacted screenings are transported off-site for disposal.

Table 14 presents the design criteria for the Plant's screening washer/compactors.

Table 14. Screening Washer/Compactors		
Parameter Value		
Units	2	
Туре	Grinder/auger	
Capacity, cubic feet per hour	150	
Motor, hp	10/3	
Drive type	Cs-R/Cs-R	

Figure 14. Screenings washer/compactors

Figure 15 shows the screenings washer/compactors from the side.

Figure 15. Screenings washer/compactor side view

4.1.7 Mixed Liquor Screen and Screenings Compactor

The mixed liquor screen and screenings compactor were installed as part of the Cannibal process. The mixed liquor screen is a rotary drum located on the upper level of the Headworks Building, and the mixed liquor screenings compactor is a screw press located on the lower level. A chute from the screen conveys the screenings to the press. Tables 15 and 16, respectively, list design criteria for the Plant's mixed liquor screens and screenings compactor and provide details on the current facilities.

Table 15. Mixed Liquor Screens		
Parameter	Value	
Units	1	
Туре	Rotary drum	
Opening size, µm	250	
Capacity/unit, (clean water/mixed liquor, gallons per minute (gpm)	2,100/1,800	
Motor (each), hp	2	
Drive type	Constant speed	

Table 16. Mixed Liquor Screenings Compactor		
Parameter	Value	
Units	2	
Туре	Screw Wash Press	
Motor (each), hp	3	

Although the Cannibal process was abandoned a few years ago, the mixed liquor screen and screenings compactor were used into 2020. WWTP staff found that the equipment was effective at removing depleted cellulose from mixed liquor. However, there had been stress fractures due to wear on the polyurethane guides at the compactor. Due to the difficulty of obtaining spare parts for the equipment, this system is no longer being used.

The City of Albany, Oregon, previously used a mixed liquor screening and compaction system for its Cannibal system which is also no longer in use. The compactor at Albany has a gear reducer while the unit at OLWS does not. The OLWS unit tends to trip out on high amperage draw, as well. There were some attempts to obtain the unit from Albany to replace the one at OLWS, but those negotiations were unsuccessful.

Figure 16 shows the mixed liquor screen at the upper level.

Figure 16. Mixed liquor rotary drum screen

4.1.8 Grit Removal

Screened influent flows by gravity to the Eutek Headcell grit removal system that uses stacked trays. The equipment is located in the lower level of the Headworks Building and is difficult to access and maintain because of its cover. WWTP staff have been working with the manufacturer to design modifications that will improve accessibility. Because the tanks are hidden behind concrete, no photos are provided for this feature.

Table 17 presents design criteria for the Plant's grit removal system.

Table 17. Grit Removal		
Parameter	Value	
Units	2	
Туре	Eutek Head Cell	
Capacity/unit, mgd	11.75	

4.1.9 Grit Pumps

Wemco recessed impeller pumps, also located on the lower level of the Headworks Building, are used to transfer grit to a grit washing and dewatering system. No issues with the grit pumping system were identified.

Table 18 presents the design criteria for the Plant's grit pumps.

Table 18.Grit Pumps		
Parameter	Value	
Units	3 (2 duty/1 standby)	
Туре	Recessed impeller centrifugal	
Motor (each), hp	20	
Drive type	Adjustable	

Figure 17 shows Grit Pump 1 and Figure 18 shows Grit Pump 2.

Figure 17. Grit Pump 1

Figure 18. Grit Pump 2

4.1.10 Grit Washing/Dewatering

A Eutek Slurry Cup and Snail located on the upper level of the Headworks Building provide grit washing and dewatering. The Cannibal system was based on maximizing transfer of BOD to the ABs, so this system was designed to return finer solids to the liquid stream. Therefore, some grit passes through this equipment and is returned to the secondary treatment system where it collects in the ABs. Dewatered grit is transported off-site for disposal.

Table 19 presents the design criteria for the Plant's grit washing/dewatering system.

Table 19. Grit Washing/Dewatering System		
Parameter	Value	
Units	1	
Туре	Eutek slurry cup and snail	
Motor (each), hp	1/3	
Drive type	Adjustable	

Figure 19 shows the grit washing/dewatering equipment.

Figure 19. Grit washing and dewatering equipment

4.1.11 Aeration Basins

There are four ABs designed for use with the Cannibal system at a mixed liquor concentration of 15,000 to 20,000 mg/L. Currently, the aeration system is operated as a modified Ludzack-Ettinger (MLE) process that assumes 17 to 25 percent of the basin is in an anoxic mode and the remaining 75 to 83 percent is aerobic. Two ABs are used during the dry weather and two or three are used during the wet weather, depending on flows and loads. Tanks 1, 2, and 3 or 2, 3, and 4 can be used in combination.

Table 20 presents the design criteria for the Plant's ABs.

Table 20. Aeration Basins		
Parameter	Value	
Units	4	
Volume, ea, gallons	571,000	
Length x width (each), ft	109 x 35	
Sidewater depth, ft	20	
Anoxic volume, gallons	571,000	
Aerobic volume, gallons	1,713,000	
Design Solids Retention Time (SRT), days	10	

Figure 20 provides a panoramic view of the aeration basin structure.

Figure 20. Aeration basin structure

4.1.12 Anoxic Zone Mixers

There are six vertical turbine-type anoxic zone mixers manufactured by Lightnin in each of the first two ABs. Mixers are taken off-line once a year to collect oil samples. There have been stress fractures on some of the mixers.

Table 21 presents the design criteria for the Plant's anoxic zone mixers.

Table 21. Anoxic Zone Mixers	
Parameter	Value
Туре	Vertical turbine
Number of units, Basin 1	6
Number of units, Basin 2	6
Capacity, hp	1.5

Figure 21 shows Aeration Basin 1 that was out of service on the date of the site visit. Rags that have passed through preliminary treatment are visible on the mixer blades.

Figure 21. Aeration basin 1 with mixers and fine bubble diffusers visible

4.1.13 Aeration Basin Diffusers

The fine bubble diffusers in the ABs are visible in Figure 21. These are Sanitaire 9-inch-disc type diffusers. The diffusers are from the original installation in 2012. OLWS has purchased enough new diffuser membranes for one basin and will be scheduling replacement for some of this equipment. The OLWS may only do second half of basins 1 and 2 (as the first half would typically operate as the anoxic zone), so there would be enough diffusers for both basins.

Table 22 presents the design criteria for the Plant's aeration basin diffusers based on the 2012 record drawings. The actual number of diffusers in the basins should be verified by reviewing the shop drawing submittal for the diffusers and any installation drawings available.

Table 22. Aeration Basin Diffusers		
Parameter	Value	
Туре	Fine bubble (9" disc diffusers)	
Number of units		
Basin 1	296	
Basin 2	1,145	
Basin 3	1,145	
Basin 4	810	

When two ABs are in use, the first basin is operated with the first half without air (but with the mixers on) and the second half with constant air flow, and the second basin operated with dissolved oxygen (DO) control based on measurements by a DO probe at the U bend. When three ABs are in use, the first basin is half without air (and with mixing) and half constant air flow, the second basin has constant air flow, and the third basin uses DO control based on measurements by the probe at the U bend. The DO probes in the first half of each basin are not reliable. Air cannot be balanced within each basin because there are no air flow meters and control valves on the drop legs.

As noted above, the system was designed for Cannibal process, which is no longer being used. Currently, both mixers and diffusers are used in the second half of basin 2 because the diffuser air (at a constant flow rate) alone may not provide sufficient mixing. There is risk of solids settling without adequate air.

OLWS had Michael Richards examine foam and crust that occurred on the ABs approximately 6 years ago. Multiple microorganisms including *Nocardia* were identified.

Figure 22 shows an aeration basin with some foam evident at the surface. The ABs do not have a built-in spray system. However, as shown in Figure 22, spray hoses are used to help promote movement of the foam. Foaming is less severe in the winter when higher flows help move foam downstream.

31

Figure 22. Aeration basin showing use of hoses for spray water

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

4.1.14 Weir Gates and Hydraulics

Murraysmith prepared an aeration basin evaluation report in 2019 (Murraysmith 2019) to evaluate alternatives and make recommendations for process improvements. The report noted that there are no internal baffles or weirs within the basins, which limits operational flexibility. The report adds that because of foaming and hydraulic challenges, WWTP staff have created a hydraulic drop across each train by adjusting level of the effluent weir gates.

Figure 23 shows the hydraulic constriction at the horseshoe turn at the end of an aeration basin.

OLWS staff have added temporary baffles made of 2 x 4s to Aeration Basin 1. The temporary baffles have worked well. In 2022, the OLWS completed the Aeration Blower and Baffle project that was partially funded by the Energy Trust. The project originally included replacement of one of the aeration blowers and baffle wall in basin 1. However, during construction, the addition of this permanent baffle wall was removed from the project.

Figure 23. Hydraulic restriction trapping foam at aeration basin horseshoe turn

A classifying selector might also help with removal of foam and could be considered as part of a future project. Consideration will need to be made where foam would be routed to (e.g., impact on aerobic digesters). Sludge volume index (SVI), which is a measure of sludge settleability, typically fluctuates between approximately 100 and 250 milliliters per gram. They operate at about 8-day SRT during the winter months and 11–12 days during the summer.

4.1.15 Aeration Blowers

There were originally three K-Turbo centrifugal blowers that serve the ABs. Each turbo blower with air-foil bearings has a 100 hp motor. One of the blowers was not functioning properly and was out of service for several years. As part of the Aeration Blower and Baffle project recently implemented at the WWTP, a new screw hybrid blower was added, replacing the out-of-service high-speed blower. The minimum practical turndown for the K-Turbo blowers is 1,100 to 1,200 scfm, so that when the OLWS tried to provide an air flow of 1,000 standard cubic feet per minute (scfm) or less to the basins using one of the K-Turbo blowers, the blower was operating in an unstable area of its curve. As the screw hybrid blower has a higher turndown capability, its addition allows the OLWS to achieve greater operational control and energy efficiency.

The blowers are located in a three-sided shed adjacent to the ABs as shown in Figure 24. Along with the 3 original blowers that serve the ABs, there is also a fourth blower (also K-Turbo blower) in the shed that serves Digesters 1 and 2. That blower also recently failed, and one of the other blowers has been used for digester aeration. OLWS plans to replace the remaining K-Turbo blowers with screw hybrid blowers.

In addition to the K-Turbo blowers having issues stemming from operating in an unstable area on their curve, there are also issues due to the blowers being located in an open environment. There have been several surge events, overpressure events, premature filter clogging, core meltdowns, and corrosion in the inverter cabinet. It is becoming harder to find spare parts for the K-Turbo blowers. In an attempt to prevent as many operator and maintenance issues as possible, the operators limit starts and stops of the blowers as much as practicable.

Table 23. Aeration Blowers	
Parameter	Value
High speed turbo blower	
Units	3 a
Design capacity, scfm @ psig	1,824@9.7
Screw hybrid blower	
Units	1
Design capacity, scfm @ psig	1,800@9.5

Table 23 presents the design criteria for the aeration blowers serving the aeration basins and Digesters 1 and 2.

a. One of the high speed turbo blowers has failed, to be replaced by another screw hybrid blower.

Blower control is currently cascade control with a DO set point of 2.0 mg/L in one basin, with the control valve for that basin adjusted and then the blower speed adjusted to maintain air header pressure. The DO set point is applied in the last aeration basin whether there are two or three ABs in service.

Figure 24. Aeration blowers

4.1.16 Mixed Liquor Recycle Pumps

Three vertical turbine, axial flow pumps convey recycled mixed liquor to the mixed liquor recycle (MLR)/RAS/ interchange return (IR) conduit and then to the first aeration basin in service. These pumps are shown in Figure 25. WWTP personnel noted that each of these pumps has been rebuilt multiple times since original installation. When these pumps are replaced in the future, a different type of pump should be considered.

Table 24 presents the design criteria for the Plant's mixed liquor recycle pumps.

Table 24. Mixed Liquor Recycle Pumps	
Parameter	Value
Туре	Vertical turbine, axial flow
Number of units	3
Capacity (each), gpm @ ft Total Design Head (TDH)	4,400 @ 11 ft
Power (each), hp	30
Drive type	Adjustable speed

Figure 25. Internal mixed liquor recycle pumps

4.1.17 Screened Mixed Liquor Pumps

The two screened mixed liquor submersible pumps are not currently used because the mixed liquor screen and compactor are off-line. This equipment was not able to be photographed.

Table 25 presents the design criteria for the Plant's screened mixed liquor pumps.

Table 25. Screened Mixed Liquor Pumps		
Parameter	Value	
Туре	Submersible	
Number of units	2	
Capacity (each), gpm @ ft TDH	900 @ 35 ft	
Drive type	Constant speed	

4.1.18 Waste Activated Sludge/Scum Pumps

The RAS/WAS Pump Station houses WAS/scum pumps, as well as interchange bioreactor (IBR) feed pumps. Figure 26 shows one of the two WAS/scum pumps in the RAS/WAS Pump Station. The IBR feed pumps, shown in Figure 27, are used to pump WAS from the RAS header of Secondary Clarifiers 1 and 2 to Aerobic Digesters 1 and 2.

Figure 28 shows a third WAS pump that was recently added as part of the Solids Piping Project to convey WAS to the gravity belt thickeners (GBTs). Once the programming for this new pump is completed, it will be operational and the OLWS will be able to thicken WAS prior to sending it to the aerobic digesters. The new WAS pump will pull off the header from all four clarifiers rather than the RAS header that services only Clarifiers 1 and 2. At that point, the IBR feed pumps will be decommissioned.

Table 26 presents the design criteria for the Plant's WAS/scum pumps.

Table 26. WAS/Scum Pumps	
Parameter	Value
Туре	Submersible
Number of units	2
Capacity (each), gpm @ ft TDH	115 @ 15 ft
Power (each), hp	5
Drive type	Constant speed

Figure 26. WAS/scum pump

Table 27 presents the design criteria for the Plant's IBR feed pumps.

Table 27. IBR Feed Pumps	
Parameter	Value
Туре	Non-clog centrifugal
Number of units	2
Capacity (each), gpm @ ft TDH	950 @ 18 ft
Power (each), hp	7.5 hp
Drive type	Constant speed

Figure 27. IBR feed pumps in RAS/WAS pump station

Table 28 presents the design criteria for the new WAS pump that feeds the GBTs.

Table 28. WAS Pump 3	
Parameter	Value
Туре	Rotary lobe
Number of units	1
Capacity (each), gpm @ ft TDH	200 @ 12 ft
Power (each), hp	5 hp
Drive type	Variable speed

Figure 28. WAS Pump 3 in RAS/WAS pump station

4.1.19 Secondary Clarifiers

There are four secondary clarifiers currently operating at the WWTP. Secondary Clarifiers 1 and 2 were constructed in 1995 and Secondary Clarifiers 3 and 4 were built as part of the major upgrade in 2012. OLWS will be implementing a project to rebuild Secondary Clarifiers 1 and 2, currently scheduled for 2024 or later. The mechanisms and rotating catwalks will be replaced.

Figure 29 shows one of the secondary clarifiers built in 1995. Figure 30 shows one of the newer clarifiers.

Table 29 presents the design criteria for the Plant's four secondary clarifiers.

Table 29. Secondary Clarifiers	
Parameter	Value
Secondary Clarifiers 1 and 2	
Number	2
Туре	Circular
Diameter (each), ft	70
Sidewater depth , ft	18
Peak hour surface overflow rate, gpd/sf	1,186
Max month solids loading rate, ppd/sf	38
Secondary Clarifiers 3 and 4	
Number	2
Туре	Circular
Diameter (each), ft	70
Sidewater depth , ft	18
Peak hour surface overflow rate, gpd/sf	1,186
Max month solids loading rate, ppd/sf	38

Figure 29. Original secondary clarifier

Figure 30. Newer secondary clarifier

4.1.20 RAS Pumps

There are four RAS pumps that serve Secondary Clarifiers 1 and 2 located in the RAS/WAS pump station. These are referred to as the West RAS pumps. Each secondary clarifier has two dedicated RAS pumps. Two of the West RAS pumps are shown in Figure 31. Three additional RAS pumps, referred to as the East RAS pumps, serve Secondary Clarifiers 3 and 4. They are submersible pumps located in a structure between the clarifiers. Each clarifier has a single dedicated RAS pump, while the third pump can operate as a standby pump for either clarifier. Figure 32 shows the control panels and access hatches for the East RAS pumps. The discharge for the pumps is shown in Figure 33.

Table 30 presents the design criteria for the RAS pumps.

Table 30. RAS Pumps	
Parameter	Value
West RAS Pumps	
Туре	Non-clog centrifugal
Number of units	4
Capacity (each), gpm @ ft TDH	700 @ 36 ft
Power (each), hp	10
Drive type	Adjustable speed
East RAS Pumps	
Туре	Non-clog submersible
Number of units	3
Capacity (each), gpm @ ft TDH	1,400 @ 12 ft
Power (each), hp	7.5
Drive type	Adjustable speed

Figure 31. West RAS pumps in RAS/WAS pump station

Figure 32. East RAS pumps

Figure 33. East RAS pump discharge

4.1.21 UV Disinfection

Secondary effluent flows to a Trojan UV3000 low-pressure, high-intensity UV disinfection system. There are four banks with a total of 224 bulbs placed in two channels. The system was designed for a UV transmittance of 65 percent.

Table 31. UV Disinfection System	
Parameter	Value
Туре	Low pressure, high intensity
Number of channels	2
Capacity, mgd	22
Channel width (each), in.	28
Number of lamps	224
Number of banks	4
Number of lamps/banks	56
Power (each channel), kilowatt	28
UV dosage	35,000 mW-s/cm^2
UV transmittance	65%

Table 31 presents the design criteria for the Plant's UV disinfection system.

WWTP staff note that there are issues with both the upstream and downstream gates associated with the UV channels. The upstream gate gearboxes are located at the bottom of the channel but were apparently not designed for submerged service because they have Zerk fittings. This equipment has failed, so the gates are kept open all the time. The upstream gates are expected to be replaced during the Tertiary Filtration Project.

The downstream gates do not effectively control flow through the UV system, and OLWS has been unable to modify the proprietary programming for the UV equipment. OLWS has budgeted gate modifications in its CIP for 2028. OLWS has used an aftermarket supplier for replacement bulbs, and they have a satisfactory service life. In 2022, the plant has reverted back to using genuine OEM bulbs. Figure 34 shows the UV channels and equipment.

Figure 34. UV channels and equipment

4.1.22 Effluent Flow Measurement and Sampling

Two Doppler type Accusonic flow meters measure effluent flow in the UV channels. These flow meters are no longer supported by the manufacturer and will be replaced as part of the UV rehabilitation project. A composite sampler at this facility also collects effluent for NPDES reporting. Figure 35 shows the flow meter panels and the composite sampler.

Figure 35. Effluent flow meter panels and composite sampler

4.2 Solids Stream

The OLWS solids treatment train consists of four aerobic digesters and thickening and dewatering equipment. Aerobic digesters 1 and 2 are the recently converted rectangular IBR tanks, and they operate in series with the two circular aerobic digesters (3 and 4) constructed in 1995. Together, the aerobic digestion system produces a Class B biosolids that meets time and temperature criteria and volatile solids reduction requirements of 40 CFR Part 503.

OLWS is implementing the Solids Piping Project, which will provide the ability to pump WAS to the GBT for thickening prior to sending to the digesters 1 and 2 for aerobic digestion. Currently solids into Digester 4 are around 1.7 percent solids, but with the piping modifications, feed to Digester 4 is expected to be around 2.3 to 2.4 percent solids.

Digested sludge is pumped from digesters 3 and 4 to a BFP that produces a cake having a concentration of 12 to 15 percent solids. Solids are conveyed by an auger into a dump truck and OLWS staff then move the dewatered solids to a storage shed near the Plant entrance for temporary storage. A contract hauler then comes once or twice a week to load up the solids for transport to land application sites.

4.2.1 Aerobic Digesters, Mixing Systems, and Blowers

The rectangular Aerobic Digesters 1 and 2 (converted from IBRs) have a combined volume of about 862,000 gallons. Figure 36 and Figure 37, respectively, show the two aerobic digesters from the top and from below. Figure 38 shows a close-up view of one of the vertical turbine mixer motors.

In the current operation, both digesters are typically in service. These digesters are fed by the IBR feed pumps and have two vertical turbine mixers per tank as well as aeration diffusers. Sludge from these two digesters is manually transferred to Digester 3. Originally, one K-Turbo blower with a 100 hp motor (Blower #4), shown in Figure 24, provided air to the diffusers. A valve was added to the air piping as part of the Aeration Blower and Baffle Project so that a second blower can also be used to provide air to the diffusers for redundancy. As mentioned in Section 4.1.15, Blower #4 recently failed, and Blower #3 has been used for digester aeration. OLWS plans to replace the remaining K-Turbo blowers with screw hybrid blowers.

The addition of WAS Pump 3, along with piping improvements in the Solids Piping Project, will provide the ability to use the thickening equipment and then transfer thickened sludge to the aerobic digesters.

Table 32. Aerobic Digesters 1 and 2	
Parameter	Value
Units	2
Interior length x width (each), ft	40 X 80
Sidewater depth, ft	18
Number of diffusers (each)	120
Mixers, number (each)	2
Mixers, type	Vertical turbine
Mixer power (each), hp	1
Floating decanter, number (each)	1

Table 32 presents the design criteria for the Aerobic Digesters 1 and 2.

Brown AND Caldwell

Figure 36. Top of Aerobic Digesters 1 and 2

Figure 37. Aerobic Digesters 1 and 2 from below

Figure 38. Aerobic Digesters 1 and 2 vertical turbine mixer motor

Aerobic Digesters 3 and 4 are 35 feet in diameter and have an operating depth of about 25 feet. The combined volume of these two digesters is about 370,000 gallons. These were converted from anaerobic digesters in 2012. Figure 39 shows one of the circular aerobic digesters.

Table 33 presents the design criteria for Aerobic Digesters 3 and 4.

Table 33. Aerobic Digesters 3 and 4	
Parameter	Value
Units	2
Diameter (each), ft	35
Sidewater depth, ft	1@25.8,
	1@26.3
Volume (each), gallons	1@185,400,
	1@189,000

Figure 39. Circular aerobic digester

Aerobic Digesters 3 and 4 have radial jet pod, non-clog centrifugal mixing systems. Figure 40 shows the mixing pump at Aerobic Digester 4.

Table 34 presents the design criteria for the Plant's jet mix digester mixing system.

Table 34. Jet Mix Digester Mixing System	
Parameter	Value
Units	2
Туре	Radial jet pod
Pump type	Non-clog centrifugal
Capacity (each), gpm @ ft TDH	1,075@21
Power (each), hp	15

Figure 40. Digester mixing pump

Aerobic Digesters 3 and 4 are served by two Neuros turbo blowers with 30 hp motors. These blowers are housed in 50 hp enclosures. Figure 41 shows the digester blowers, which are located in a shed between Secondary Clarifiers 1 and 2. The blower in position 2 recently failed, and OLWS has recently replaced it with a screw hybrid blower.

Table 35 presents the design criteria for the two original process blowers for Aerobic Digesters 3 and 4.

Table 35. Process Blowers (Aerobic Digesters)	
Parameter Value	
Units	2
Туре	High speed direct drive turbo blowers
Capacity (each), cfm @ ft TDH	280 @ 11.2, 420 @ 7.8, 150 @ 6.5
Power (each), hp	30
Drive type	Adjustable speed

The aeration basin evaluation project completed by Murraysmith in 2019 also considered solids treatment modifications including impact of resuming operation of the GBT on aerobic digestion. The report notes that aerobic digester mixing, and aeration requirements may be impacted by this process change.

Figure 41. Digester blowers

4.2.2 Digested Sludge Pumps

Two rotary lobe pumps with 10 hp motors and adjustable speed drives serve as digested sludge pumps to convey the digested sludge to the BFP. Figure 42 shows one of the digested sludge pumps.

Table 36 presents the design criteria for the Plant's digested sludge pumps.

Table 36. Digested Sludge Pumps	
Parameter Value	
Units	2
Pump type	Rotary lobe
Capacity (each), gpm @ psi TDH	150 @ 10
Power (each), hp	10
Drive type	Adjustable speed

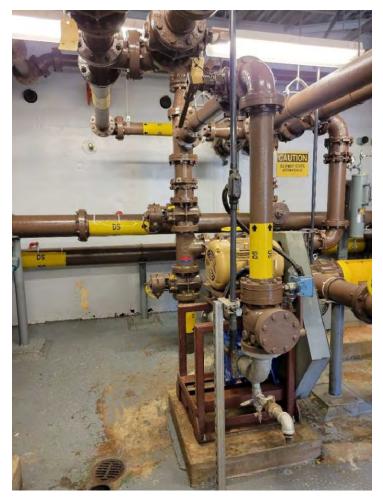


Figure 42. Digested sludge pump

4.2.3 Thickening

A GBT located in the Solids Handling Building has not been used since the 2012 Plant upgrade. With implementation of the recent Solids Piping Project, however, OLWS staff will soon be able to pump WAS to the GBT and thicken prior to pumping to digesters 1 and 2. This will increase the percent total solids in digester 4 from 1.7 to approximately 2.3 percent solids and will ultimately increase the percent solids of the dewatered cake from the BFP. Figure 43 shows the GBT in the Solids Handling Building.

OLWS installed a new WAS pump that can be used to pump WAS to the GBT and thickened waste activated sludge (TWAS) pumps will pump the TWAS to digesters 1 and 2. The concentration of the WAS being pumped to the GBT will range from approximately 0.5 to 1.5 percent total solids, and the TWAS is expected to be an average of 2 to 2.5 percent total solids. Figure 44 shows one of the TWAS pumps.

Table 37. Thickening	
Parameter	Value
GBT	
Units	1
Туре	GBT
Width (meter)	2.2
TWAS Pumps	
Units	2
Туре	Rotary lobe
Capacity (each), gpm @ psi TDH	160@25
Power (each), hp	7.5
Drive type	Constant speed

Table 37 presents the design criteria for thickening system.

Figure 43. Gravity belt thickener

Figure 44. Thickened waste activated sludge pump

4.2.4 Dewatering

Digested sludge is pumped to BFP1. Until the beginning of 2022, dry polymer was used in the process and the dewatered cake had a concentration of approximately 12 to 15 percent total solids. In the beginning of 2022, a liquid polymer system was installed, and the dewatered cake concentration has increased to an average of approximately 16.5 percent total solids. Figure 45 shows BFP1 located in the Solids Handling Building.

The dewatered cake coming off BFP1 is loaded into a dump truck using an auger/conveyor system. Figure 46 shows the truck loadout facility outside of the Solids Handing Building. Biosolids are temporarily stored in a shed building located near the Plant entrance before being picked up by a contract hauler and transported to Madison Farms in Echo, Oregon, for land application.

In addition to BFP1, a second BFP (BFP2) was temporarily installed as part of the BFP Installation Project in 2020 to provide redundancy for the dewatering system. The OLWS had purchased a used BFP that was temporarily installed in the area between the Solids Handling Building and Electrical Building #75 to be used when BFP1 had to be taken out of service or to provide additional dewatering if needed. A dedicated local control panel was installed for it outside the building, as well as an air compressor for the pneumatic belt tensioning and tracking system. As part of the project, a new main PLC panel was also installed inside the building to replace the obsolete PLC; it controlled all the existing equipment in the building and was integrated with BFP2. After initial installation of BFP2, BFP1 was taken out of service and refurbished. Once BFP1 was put back online, BFP2 was uninstalled and is currently being stored by Aerobic Digesters 1 and 2. Figure 47 shows a photo of BFP2 when it was installed.

Table 38. Dewatering	
Parameter	Value
BFP1	
Units	1
Width (meter)	2.0
Cake solids, percent dry weight	15
Solids capture, percent	90
BFP2	
Units	1
Width (meter)	1.5
Cake solids, percent dry weight	15
Solids capture, percent	90

Table 38 presents the design criteria for the Plant's dewatering system.

Figure 45. BFP1

Figure 46. Truck loadout at Solids Handling Building

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Figure 47. BFP2 Installation

4.3 Support Systems

Support systems at the WWTP include the 3W disinfection system, 3W pumps, and odor control systems for the IPS/Plant Drain PS, Headworks Building, Aerobic Digesters 1 and 2, and the Solids Handling Building. The outfall is also described in this section.

4.3.1 3W Disinfection and Pumps

Utility (3W) is disinfected with sodium hypochlorite before Plant distribution and use. Two positive displacement metering pumps are used to dose the sodium hypochlorite. No issues with the 3W disinfection system were reported. Figure 48 shows the sodium hypochlorite metering pumps while Figure 49 shows the storage tank.

Table 39. 3W Sodium Hypochlorite System	
Parameter	Value
Concentration, percent	12.5
Metering pumps, number	2
Pump type	Positive displacement diaphragm
Capacity (each), gph @ psi	4.3 @ 150 psi
Power (each) hp	1/2

Table 39 presents the design criteria for the Plant's 3W sodium hypochlorite system.

Figure 48. Sodium hypochlorite metering system

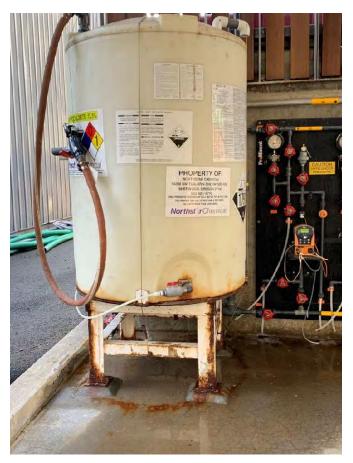


Figure 49. Sodium hypochlorite storage tank

There are three vertical turbine pumps that supply 3W for Plant use. Two of the pumps have 100 hp motors and the third has a 50 hp motor. Figure 50 shows the 3W pumps.

Table 40 presents the design criteria for the Plant's 3W pumps.

Table 40. 3W Pumps	
Parameter	Value
Туре	Vertical turbine
Number of units	3
Pump 1 & 2 power Capacity (each), gpm @ ft TDH	800 @ 300 ft
Pump 1 & 2 power (each), hp	100
Drive type	Adjustable speed
Pump 3 capacity, gpm @ ft TDH	450 @ 300 ft
Pump 3 power, hp	50
Drive type	Adjustable speed

Figure 50. 3W pumps located at disinfection facility

There are two strainers associated with the 3W system; one is motorized and the other is a manual strainer on a bypass line. Access to the equipment for maintenance is limited. The equipment could be shifted away from the wall but there is a road that limits its movement. Figure 51 shows the strainers.

Figure 51. 3W strainers

4.3.2 IPS/Plant Drain PS and Headworks Foul Air Treatment

Foul air withdrawn at the IPS/Plant Drain PS and the Headworks Building is treated with a two-bed biofilter containing a 5-foot depth organic media. Two FRP centrifugal fans with 7.5 hp motors are used to exhaust air and supply the biofilter. Figure 52 shows the building housing the biofilter beds and some of the foul air piping.

Table 41 presents the design criteria for the Plant's headworks foul air treatment system.

Table 41. Headworks Foul Air Treatment	
Parameter	Value
Headworks Biofilter	
Туре	Organic media
Number of beds	2
Number of treatment stages	1
Capacity, cfm	5,000
Media depth, ft	5
Size (each), square feet	1,000
Odorous Air Exhaust Fans	
Units	2
Fan type	FRP centrifugal
Capacity (each), cfm	2,500
Static pressure, in. water column (wc)	7
Power (each) , hp	7.5

Brown AND Caldwell

Figure 52. Biofilter building and foul air piping

4.3.3 Aerobic Digester 1 and 2 and Solids Handling Building Foul Air Treatment

Foul air withdrawn at Aerobic Digesters 1 and 2 and from the GBT and BFP in the Solids Handling Building is treated with a chemical scrubber system originally installed with construction of the Solids Handling Building in 2002. The system consists of a packed bed vertical absorption tower, a chemical solution recirculation pump, two chemical solution dosing pumps, and a foul air fan. Figure 53 shows chemical scrubber tower and foul air fan located north of the Solids Handling Building. The chemical recirculation and dosing pumps are located inside the building. Figure 54 shows the chemical recirculation pump. Foul air piping from Aerobic Digesters 1 and 2 was tied into the existing foul air piping from the Solids Handling Building as part of the 2012 Plant upgrade.

Table 42 presents the design criteria for the chemical scrubber foul air treatment system.

Table 42. Chemical Scrubber System	
Parameter	Value
Chemical Scrubber Tower	
Туре	Packed bed vertical absorption
Number of units	1
Capacity, cfm	11,500
Vessel diameter, ft	7
Packed bed depth, ft	10
Chemical Recirculation Pump	
Number of units	1
Pump type	Horizonal, end suction centrifugal
Capacity (each), gpm @ psi TDH	230@27
Power (each), hp	5
Chemical Metering Pumps	
Number of units	2
Pump type	Positive displacement diaphragm
Capacity (each), gph @ psi	1.5 @ 150 (NaOH) 2.5 @ 150 (NaOCI)
Sodium Hypochlorite	2.5@150
Foul Air Fan	
Number of units	1
Fan type	Centrifugal
Capacity, cfm	11,500
Static pressure, inch wc	6
Power (each) , hp	20

Figure 53. Chemical scrubber tower and foul air fan

Figure 54. Chemical recirculation pump

4.3.4 Outfall

The outfall for the OLWS WWTP is located east of the Plant in the Willamette River approximately 165 feet east of the riverbank. Figure 55 shows the location of the outfall as provided in the Oak Lodge Outfall Inspection Report (Ballard Marine Construction, October 2020). There is a primary and secondary discharge outfall. The primary outfall is 426 feet in length with 19, 6-inch duckbill diffuser ports at 5-foot intervals. The secondary outfall is 234 feet in length with 4, 48-inch ports at 5-foot intervals. Both outfalls are constructed of 48-inch HDPE pipe.

There was an outfall inspection done in October 2020 by Ballard Marine Construction, and it was reported that all the diffusers were in good working order and none were in need of repair. The report did indicate that there was heavy buildup of timber and debris along the outfall that should be monitored and maintained. Primary diffusers 1-6 also had some sediment buildup that that should be monitored and removed as needed to avoid impeding the flow.

Figure 55. Outfall location Source: Outfall Inspection Report, Ballard Marine Construction

Section 5: Summary of Results

The previous section provides a description of OLWS WWTP facilities and observations related to condition based on the October 20, 2021, site visit, the September 1, 2021, operations workshop, and additional communications with OLWS staff. This section summarizes the results, conclusions, and recommendations from those discussions and evaluations.

Table 43 provides a summary of the ratings, conclusions, and recommendations for the equipment assessed during the October 20, 2021, site visit.

A majority of the equipment was installed as part of the 2012 plant upgrade. Most of that equipment received condition and performance ratings of 3, which indicates that the equipment condition and performance are both as expected for the asset age. In rare instances, scores of 4 or 5 were given for equipment that has reached the end of its useful life or does not function for some reason.

In general, most of the equipment is performing satisfactorily. There are a few areas that are recommended for further evaluation and possible upgrade in the near future. As appropriate, projects have been incorporated into the CIP for equipment replacement and facility upgrades.

9	
8	
ö	
글	
ē	
ŝ	
0	
ň	
5	
Sil	
S	
5	
ee	
÷	
<u>.</u> .	
gins	
Ě	
D.	
jec	
2	
õ	
the	
ē	
=-	
В	
nita	
at	
tion	
su	
73	
ā	
2	
cified	
d	
0)	
÷	
ē	
o	
ē	
ŝ.	
inn	
nin	
3	
Ť	
÷	
Ы.	
\sim	
õ	
Ę	
\square	
ent	
Ť.	

Brown AND Caldwell

2012 2012 2012 2012 2012 2012 2012 2012	2 2012 3 3 1 2 2012 3 1	Plant Drain Pumps 2 2012 3 3 5 Solids settle 5 5 5	1 × 2012 3 3 3 4 3 5 5	2019 2019 2029 2020 2020 2020 2020 2020	Equipment Name Quantity Approximate Condition Ratings ^a Recommended Install Date Condition Performance Action ^b Concl	Table 43. Ratings, Conclusions, and Recommendations for OLWS
Gate not visible during inspection. Gate not visible during inspection.	Was able to see one gate that was lifted. Normal appearance for age.	Pumps not visible during inspection. Solids settle out in the wet well.	Gates are manual and always kept fully open. Gate not visible during inspection. Gate is manual and always kept fully open, so both sides of the wet well act as one large wet well. During periods of low flow, the wet well is oversized and solids collect in the corners.	Pumps not visible during inspection. They are Flygt pumps that effectively pass rags and don't have issues with plugging, but the rags must be dealt with downstream in the Headworks and ABs, however. There is currently no permanent lifting system and a mobile crane needs to be brought in to lift a pump. There is also no weather cover over Meltric plug stations. Gates not visible during inspection.	Conclusions and Recommendations	mmendations for OLWS WWTP Equipment
		 Consider replacing KSB pumps with Flygt pumps. Consider adding flushing valve to the pumps to help with stirring up and flushing out contents of wet well. (See comment concerning flushing valves under Influent Pumps above.) Consider modifying wet well to add concrete fill in bottom corners to prevent build-up of grit and solids there. 	<u>v</u>	 While the equipment is generally in good condition, there is a current CIP project scheduled to make some of the possible improvements listed below. Consider adding flushing valve to pumps to help with stirring up and flushing out contents of the wet well. (This needs to be fully evaluated because the flushing valves were originally designed for constant speed pumps and may be difficult for use with VFDs. They are also known to have issues with closing fully.) Consider adding a permanent lifting system for the pumps. May want to consider adding electric actuators to allow for 	Design Considerations °	ment

69

Brown AND Caldwell

Mixed Liquor 1 2012	Grit Classifier 1 2012	Grit Pumps 2 2012	Grit Basins 2 2012	Grit Basin Influent 2 2012	Screenings Diverter 2 2012 Gates	Screenings Washer/ 2 2012 Compactor	Bypass Channel 1 2012 Effluent Gate	Screen Channel 2 2012 Effluent Gates	Influent Screens 2 2012	Influent Sampler 1 2012	Equipment Name Quantury Install Date		
З	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	<u> </u>	Condit	_
з	4	ω	ω	ω	ω	ω	ω	ω	ω	4	Condition Performance	Condition Ratings ^a	able 43. Ratir
N/A	J	IJ	4	1	1	ப	1	1	сл	ω	Action ^b	Recommended	igs, Conclusions
Operates but no longer in use due to abandonment of Camibal system	The vortex separator was designed to return finer solids to stream to maximize BOD to ABs for Cannibal system. This allows grit to collect in the aeration basins.	No known issues.	 Unable to view grit basins. Basins are difficult to access and maintain due to cover. 	Gates not visible during inspection.	Minor rust and corrosion on gates and operators	 When the 3W system is taken offline, the screenings sluice system must also be taken offline. A large slug load of debris can go to compactors after an outage. 	Gate not visible during inspection.	Gates not visible during inspection.	 Some rags are able to pass through the bars or through gaps between the screen frame and the channel. Rubber seal between the channel and frame opening does not always provide an effective seal. 	 Strainer on the suction tubing occasionally plugs with debris due to rags and debris accumulating at end of the influent channel. Cannot move downstream of Influent Screens due to plant drainage being introduced and influent sample needs to be collected upstream of that, 			Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment
	Consider modification or replacement during future Headworks Upgrades to improve fine grit removal efficiency.		OLWS working with manufacturer on design modifications to improve accessibility.			WWTP staff installed a baffle to prevent slug load from opening compactor door.			 Consider improving the seal between channel and frame. Consider replacing screens with finer spaced bars or perforated plates. Add 3rd multi-rake bar screen to replace manually- cleaned screen during future Headworks Upgrades. 	Plant staff considering enclosing sample tube in an enclosure to protect it from debris.			īt

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

70

			-	able 43. Ratinį	şs, Conclusions	Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment	
		Approximate	Conditi	Condition Ratings ^a	Recommended	Conclusions and Becommendations	Decide Considerations s
	Qualitity	<u> </u>	Condition	Condition Performance	Action ^b		
Mixed Liquor Screenings Compactor	4	2012	ப	ப	N/A	 No longer in use due to abandonment of Cannibal system. Stress fractures on the polyurethane guides and cannot obtain new parts. 	May consider trying to obtain spare parts or equipment from another agency to be able to put this system back into use.
Aeration Blower 1	1	2012	5	IJ	ъ	Not functional and has been unused for several years.	Has been replaced with new Aeration Blower 5 in the AB&B Project but not yet commissioned as of this TM.
Aeration Blowers 2-4	ω	2012	ω	4	IJ	 Functional but cannot achieve desired turndown and blowers operate in unstable area on curve. AB 4 operates full speed, full time providing air to Aerobic Digesters 1 and 2. Blowers are located in a 3-side open shed, which has led to many operational issues. Operators limit starts and stops as much as possible. 	 New blower being added to replace AB1 will be smaller and provide greater operational control and efficiency. The AB&B Project will modify the air header to allow AB3 to serve as a backup to AB4. Replace turbo blowers with another type, such as a screw centrifugal blower.
AB Influent Gates	4	2012	ω	ω	ப	No known issues.	Incorporated into future secondary treatment upgrades.
AB Scum Gate	1	2012	ω	ω	ъ	No known issues.	Incorporated into future secondary treatment upgrades.
Anoxic Zone Mixers	12	2012	4	ω	IJ	 Stress fractures found on some of the mixers. Rags that pass through IPS and Headworks get caught up on mixer blades. 	Improvements to the influent screening would help reduce number of rags in the ABs.
Mixed Liquor Recycle Pumps	ω	2012	ω	ω	ហ	Pumps have been rebuilt multiple times each at \$40,000 apiece.	Incorporated into future secondary treatment upgrades. Consider different pump type when pumps are replaced.
Screened Mixed Liquor Pumps	2	2012	ω	ω	N/A	Pumps are functional but not in use due to the mixed liquor screen and compactor being offline.	
Secondary Clarifiers 1 and 2	2	1996	4	4	ப	 Mechanisms are near the end of their useful life. Clarifiers are not currently in operation. 	Mechanisms and rotating catwalks will be replaced in 2023/2024 or later.
Secondary Clarifiers 3 and 4	2	2012	ω	ω	IJ	No known issues.	
West RAS Pumps 1-3	ω	2017	N	N	ப	 Pumps serve clarifiers 1 and 2. Original pumps replaced with Flygt pumps. No known issues. 	No known issues with pumps, but the RAS MCC was not updated with the 2012 plant upgrade and is out of date and not up to code. Current CIP includes replacement of RAS MCC.
West RAS Pump 4	4	2019	2	2	ப	 Pump serves clarifiers 1 and 2. Original pump replaced with Flygt pump. No known issues. 	No known issues with pumps, but the RAS MCC was not updated with the 2012 plant upgrade and is out of date and not up to code. Current CIP includes replacement of RAS MCC.

71

Brown AND Caldwell

		-		able 43. Ratin	gs, Conclusions,	Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment	
		Approximate	Conditi	Condition Ratings ^a	Recommended	Davalusions and Docommondations	
	Quantuty	L	Condition	Performance	Action ^b		
East RAS Pumps	ω	2012	ω	ω	J	 Pumps serve clarifiers 3 and 4. No known issues. 	
West WAS Pumps 1 and 2	2	2012	ω	ω	ഗ	No known issues.	No known issues with pumps, but the RAS MCC was not updated with the 2012 plant upgrade and is out of date and not up to code. Current CIP includes replacement of RAS MCC.
							Pumps to be decommissioned once WAS Pump 3 comes on-line.
West WAS Pump 3	1	2021	1	1	ப	Once programming is complete, this pump will draw off header of all 4 clarifiers and be able to pump WAS to the GBT in the Solids Handling Building.	No known issues with pump, but the RAS MCC was not updated with the 2012 plant upgrade and is out of date and not up to code. Current CIP includes replacement of RAS MCC.
Aerobic Digester 1 and 2 (formerly IBR) Feed Pumps	2	2012	ω	ω	5	No known issues.	Incorporated into future solids handling upgrades.
Aerobic Digester 1 and 2 Mixers	4	2012	ω	ω	σ	No known issues.	Incorporated into future solids handling upgrades.
Process Blowers	N	2012	ω	ω	J	Since the condition assessment was performed, one of the process blowers has failed.	 OLWS plans to replace the failed blower with another type, such as a screw centrifugal blower, similar to new Aeration Blower 5. Eventually, plans to replace the operational process blower as well.
Aerobic Digester 3 and 4 Mixing Pumps	22	2012	ω	ω	1	No known issues.	
UV Channel Influent Flow Valves	22	2012	4	4	ப	 Gearboxes were not designed for submerged service and have failed. Valves are kept full open all the time. 	 Modification of valves budgeted in current CIP. Recommend replacing valves during Tertiary Filtration Project.
UV Hydraulic System	4	2012	ω	ω	ப	No known issues.	
UV Lamp Banks	2	2012	ω	ω	ப	Staff had used aftermarket supplier for replacement bulbs and have satisfactory service life. Staff has reverted back to using OEM bulbs starting FY2022.	

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

72	Brown AND Caldwell
72	Brown AND Caldwell

				able 43. Ratinį	gs, Conclusions,	Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment	
		Approximate	Conditi	Condition Ratings ^a	Recommended		
Equipment Name	Quantuty	Install Date	Condition	Performance	Action ^b		
UV Channel Effluent Gates	2	2012	ω	4	ப	 Gates modulate too little or too much and do not effectively control flow through the channels. Cannot access programming in Trojan PLC to adjust control. 	 Modification of gates budgeted for 2022/2023. Plan is to replace complicated level control program with passive level control system.
Plant 3W Pump 1	1	2012	4	з	2	Significant rust and corrosion visible.	
Plant 3W Pumps 2 and 3	2	2012	ω	З	2	Some rust and corrosion visible.	
3W Motorized Strainer	1	2012	ω	4	4	Strainer located too close to the wall; difficult to access for maintenance.	Replace/modify piping for easier and safe access for maintenance.
3W Sodium Hypochlorite Pumps	N	2012	ы	ы	1	No known issues.	
Effluent Sampler	1	2012	З	3	1	No known issues.	
Effluent Flow Meters	N	2012	ω	ы	4	No longer supported by manufacturer	Replace when UV system is upgraded.
Digested Sludge Pumps	2	2000	З	З	J	No known issues.	Incorporated into future solids handling upgrades.
Gravity Belt Thickener	1	2000	ω	ω	ப	 GBT reaching end of useful life; hasn't been operated since 2012. New solids piping Project will allow WAS to be pumped to the GBT for thickening prior to sending to the digesters. Need to evaluate performance upon restarting. 	Solids Handling Facility to be replaced in future CIP project.
TWAS Pumps	2	2000	4	ω	4	 Equipment reaching end of useful life; hasn't been operated since 2012. Need to evaluate performance upon restarting. 	May need to replace depending on how they operate once restarted.
Sludge Grinder	1	2000	4	ω	4	 Reaching end of useful life. No known issues. 	Incorporated into future solids handling upgrades.
Belt Filter Press 1	4	2000	ω	ω	4	 BFP was refurbished in 2021. New liquid polymer system increased cake solids by 2- 3% TS. 	Incorporated into future solids handling upgrades.
Solids Conveyor	1	2000	4	ω	4	 Reaching end of useful life. No known issues. 	Incorporated into future solids handling upgrades.
Belt Filter Press 2	1	1	ω	ω	2	Used BFP that can be temporarily installed to provide redundant dewatering.	Incorporated into future solids handling upgrades.

			_	able 43. Ratin _i	s, Conclusions	Table 43. Ratings, Conclusions, and Recommendations for OLWS WWTP Equipment	
	D. postit.	Approximate	Conditi	Condition Ratings ^a	Recommended	Conclusions and Decomposited	
	Quantuty		Condition	Condition Performance	Action ^b		
GBT Polymer System	1	2000	4	ω	4	Equipment reaching end of useful life; hasn't been operated since 2012.	Incorporated into future solids handling upgrades.
BFP Polymer System	1	2000	4	4	1	 Reaching end of useful life. Staff looking at options to replace. 	Shortly following the condition assessment, the OLWS replaced the dry polymer system with a liquid polymer system to improve dewaterability.
Solids Handling Building Foul Air Fan	1	2000	4	з	4	 Equipment reaching end of useful life. New motorized dampers were installed in ductwork in 2012 upgrade. 	Incorporated into future solids handling upgrades.
Odor Reduction Tower	1	2000	4	ω	4	 No known issues. Caustic metering pump was replaced in 2012 upgrades. Sodium hypochlorite metering pump was left in place. 	Incorporated into future solids handling upgrades.
ORT Recirculation Pump	1	2000	4	з	4	Equipment reaching end of useful life.	Incorporated into future solids handling upgrades.
Biofilters	2	2012	ω	ω	1	No known issues.	
Odor Control Fans	2	2012	ω	ω	ப	No known issues, but will require periodic replacement.	
Humidifiers	2	2012	ω	ω	1	No known issues.	

a. Descriptions of the condition and performance scores are provided in Tables 5 and 6, respectively.

b. Descriptions of the recommended action are provided in Table 7.

c. Any design considerations listed are preliminary suggestions and need to be fully evaluated prior to any implementation.

Section 6: References

- Brown and Caldwell, Oak Lodge Water Services, Contract Documents for the Solids Thickening, Dewatering and Reuse Project Contract Documents, January 2020.
- Brown and Caldwell, Oak Lodge Water Services, Existing Water Reclamation Facilities Operations Technical Memorandum, 2023.
- CH2MHill, Oak Lodge Water Services, Sanitary Sewer Master Plan, May 2007.
- CH2MHill, Oak Lodge Water Services, Sanitary Sewer Master Plan Technical Memoranda, June 2007
- CH2MHill, Oak Lodge Water Services, Wastewater Treatment Plant Predesign, Project Definition Report, October 2008.
- CH2MHill, Oak Lodge Water Services, Water Reclamation Facility Improvements Record Drawings, Phase 1A, March 2012.
- CH2MHill, Oak Lodge Water Services, Water Reclamation Facility Improvements Record Drawings, Phase 1B, March 2012.
- CH2M, Oak Lodge Water Services, Outfall Mixing Zone Study, Outfalls 001 & 001A, NPDES Permit No. 100986, April 2017.
- CH2M, Oak Lodge Water Services, Outfall Mixing Zone Study Report Addendum and Responses to Oregon DEQ Comments, July 5, 2017.
- Murraysmith. Oak Lodge Water Services, Aeration Basin Evaluation and Upgrades Project. 2019.
- Murraysmith, Oak Lodge Water Services, Contract Documents for Solids Piping Project, August 2020.
- Ballard Marine Construction, Oak Lodge Water Services, Oak Lodge Outfall Inspection Report, October 2020.
- Oak Lodge Water Services. Biosolids Management Plan, May 2021.
- Murraysmith, Oak Lodge Water Services, Aeration Blower and Baffle Project, July 2021.
- Oak Lodge Water Services. Draft Facility Description for NPDES Permit Renewal, 2021.

Attachment A: Plant Asset Registry

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Svetem or Location	Fauinment Number	To:: Doment Name	Install Date	Condition Score	Parformance Score	Recommended Action
Influent Pumping System	10GATE00203.gate	Influent Wet Well Gate	12/30/2012	ω	4	σ
Influent Pumping System	10PUMP00101.pump	Influent Pump 1	12/4/2019	2	2	5
Influent Pumping System	10PUMP00102.pump	Influent Pump 2	12/4/2019	2	2	ບາ
Influent Pumping System	10PUMP00103.pump	Influent Pump 3	12/4/2019	2	2	σ
Influent Pumping System	10PUMP00104.pump	Influent Pump 4	9/3/2019	2	2	σ
Influent Pumping System	10PUMP00106.pump	Influent Pump 6	9/3/2019	2	2	5
Influent Pumping System	10GATE00201.gate	Influent Splitter Box Gate 1	12/30/2012	ω	ω	J
Influent Pumping System	10GATE00202.gate	Influent Splitter Box Gate 2	12/30/2012	ω	ω	σ
Plant Drain Pumping System	10PUMP10001.pump	Plant Drain Pump 1	12/30/2012	ω	ω	IJ
Plant Drain Pumping System	10PUMP10002.pump	Plant Drain Pump 2	12/30/2012	ω	ω	J
Plant Drain Pumping System	10GATE10201 gate	Plant Drain Inlet Box Gate	12/30/2012	ω	ω	1
Plant Drain Pumping System	10GATE10202.gate	Plant Drain Bypass Gate	12/30/2012	ω	ω	1
Influent Screening System	15GATE00901.gate	Screen Channel 1 Influent Gate	12/30/2012	ω	з	1
Influent Screening System	15GATE00901.mtr	Screen Channel 1 Influent Gate Actuator	12/30/2012	ω	ω	1
Influent Screening System	15GATE00902.gate	Screen Channel 2 Influent Gate	12/30/2012	ω	ω	1
Influent Screening System	15GATE00902.mtr	Screen Channel 2 Influent Gate Actuator	12/30/2012	ω	З	1
Influent Screening System	15GATE00903.gate	Bypass Channel Influent Gate	12/30/2012	ω	ω	1
Influent Screening System	15GATE00903.mtr	Bypass Channel Influent Gate Actuator	12/30/2012	ω	З	1
Influent Screening System	15SCRN01101.scrn	Influent Screen 1	12/30/2012	ω	ω	ω
Influent Screening System	15SCRN01102.scrn	Influent Screen 2	12/30/2012	ω	ω	ω
Influent Screening System	15GATE01201 gate	Screen Channel 1 Effluent Gate	12/30/2012	ω	ω	1
Influent Screening System	15GATE01201.mtr	Screen Channel 1 Effluent Gate Actuator	12/30/2012	3	3	1
Influent Screening System	15GATE01202.gate	Screen Channel 2 Effluent Gate	12/30/2012	з	3	1
Influent Screening System	15GATE01202.mtr	Screen Channel 2 Effluent Gate Actuator	12/30/2012	3	3	1
Influent Screening System	15GATE01203.gate	Bypass Channel Effluent Gate	12/30/2012	3	3	1
Influent Screening System	15GATE01203.mtr	Bypass Channel Effluent Gate Actuator	12/30/2012	3	3	1
Influent Screening System	15COMP04401.comp	Screenings Compactor 1	12/30/2012	ω	З	1
Influent Screening System	15COMP04402.comp	Screenings Compactor 2	12/30/2012	З	3	1
Grit Removal & Handling System	15GATE05001.gate	Diverter Gate 1	12/30/2012	з	З	1
Grit Removal & Handling System	15GATE05002.gate	Diverter Gate 2	12/30/2012	ω	ω	1
Grit Removal & Handling System	15GATE01501_gate	Grit Basin 1 Influent Gate	12/30/2012	ω	ω	1
Grit Removal & Handling System	15GATE01502.gate	Grit Basin 2 Influent Gate	12/30/2012	ω	ω	1
Grit Removal & Handling System	15BASIN03001	Grit Basin 1	12/30/2012	3	3	3
Grit Removal & Handling System	15BASIN03002	Grit Basin 2	12/30/2012	3	3	3
Grit Removal & Handling System	15PUMP02101.pump	Grit Pump 1	12/30/2012	3	3	1
Grit Removal & Handling System	15PUMP02101.mtr	Grit Pump 1 Motor	12/30/2012	3	3	1
Grit Removal & Handling System	15PUMP02102.pump	Grit Pump 2	12/30/2012	З	3	1
Grit Removal & Handling System	15PUMP02102.mtr	Grit Pump 2 Motor	12/30/2012	3	3	1
Grit Removal & Handling System	15CLAS03201_clas	Grit Classifier	12/30/2012	3	3	1
Mixed Liquor Screening System	15DSCN03501.scrn	Mixed Liquor Screen	12/30/2012	3	3	N/A
Mixed Liquor Screening System	15SCRW03701.scrw	Screw Press	12/30/2012	л	5	N/A
Grit Removal & Handling System	15VSEP03101.vsep	Vortex Seperator	12/30/2012	3	3	1
Secondary Clarifier 1 System	24-SC-001-COLLECTOR	Secondary Clarifier 1 Collector/Sweep	6/30/1996	4	4	ហ
Secondary Clarifier 2 System	24-SC-002-COLLECTOR	Secondary Clarifier 2 Collector/Sweep	6/30/1996	4	4	ת ת

Influent Odor Control System	250FAN00401.hvac	Odor Control Fan 1	12/30/2012	3	3	1
Influent Odor Control System	250FAN00402.hvac	Odor Control Fan 2	12/30/2012	ω	ω	4
Influent Odor Control System	25HMDF00701.hmdf	Humidifier 1	12/30/2012	ω	ω	1
Influent Odor Control System	25HMDF00702.hmdf	Humidifier 2	12/30/2012	ω	ω	1
Influent Odor Control System	30BI0F00201	Biofilter Cell 1	12/30/2012	ω	ω	1
Influent Odor Control System	30BI0F00202	Biofilter Cell 2	12/30/2012	ω	ω	4
Aeration Basin 1 System	30MIXR00101.mixr	Aerarion Mixers Basin 1 Mixer 1	12/30/2012	4	ω	2
Aeration Basin 1 System	30MIXR00102.mixr	Aerarion Mixers Basin 1 Mixer 2	12/30/2012	4	3	2
Aeration Basin 1 System	30MIXR00103.mixr	Aerarion Mixers Basin 1 Mixer 3	12/30/2012	4	ω	2
Aeration Basin 1 System	30MIXR00104_mixr	Aerarion Mixers Basin 1 Mixer 4	12/30/2012	4	ω	2
Aeration Basin 1 System	30MIXR00105.mixr	Aerarion Mixers Basin 1 Mixer 5	12/30/2012	4	ω	2
Aeration Basin 1 System	30MIXR00106.mixr	Aerarion Mixers Basin 1 Mixer 6	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00201.mixr	Aerarion Mixers Basin 2 Mixer 1	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00202.mixr	Aerarion Mixers Basin 2 Mixer 2	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00203.mixr	Aerarion Mixers Basin 2 Mixer 3	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00204.mixr	Aerarion Mixers Basin 2 Mixer 4	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00205.mixr	Aerarion Mixers Basin 2 Mixer 5	12/30/2012	4	ω	2
Aeration Basin 2 System	30MIXR00206.mixr	Aerarion Mixers Basin 2 Mixer 6	12/30/2012	4	3	2
MLR Pumping System	35PUMP00201.pump	MLR Pump 1	12/30/2012	З	3	1
MLR Pumping System	35PUMP00202.pump	MLR Pump 2	12/30/2012	3	3	1
MLR Pumping System	35PUMP00203.pump	MLR Pump 3	12/30/2012	З	З	1
Aeration Air System	38BLWR00101.blwr	Aeration Blower 1	12/30/2012	5	5	N/A
Aeration Air System	38BLWR00102.blwr	Aeration Blower 2	12/30/2012	З	4	2
Aeration Air System	38BLWR00103.blwr	Aeration Blower 3	12/30/2012	З	4	2
Aeration Air System	38BLWR00104.blwr	Aeration Blower 4	12/30/2012	З	4	2
West RAS Pumping System	42PUMP10001.pump	West RAS Pump 1	12/1/2017	2	2	1
West RAS Pumping System	42PUMP10001.pump	West RAS Pump 1 VFD	12/30/2012	ω	ω	1
West RAS Pumping System	42PUMP10002.pump	West RAS Pump 2	12/1/2017	2	2	1
West RAS Pumping System	42PUMP10002.pump	West RAS Pump 2 VFD	4/15/2020	2	2	4
West RAS Pumping System	42PUMP10003.pump	West RAS Pump 3	4/15/2020	2	2	4
West RAS Pumping System	42PUMP10003.pump	West RAS Pump 3 VFD	4/15/2020	2	2	4
West RAS Pumping System	42PUMP10004.pump	West RAS Pump 4	9/27/2019	ω	ω	4
West RAS Pumping System	42PUMP10003.pump	West RAS Pump 4 VFD	4/15/2020	2	2	1
West RAS Pumping System	42PUMP40001.pmp	West WAS Pump 1	4/15/2020	ω	ω	1
West RAS Pumping System	42PUMP40002.pmp	West WAS Pump 2	4/15/2020	ω	ω	4
West RAS Pumping System	42PUMP40002.pmp	West WAS Pump 3	2022	4	1	1
Digester Aeration	42BLWR02001.blwr	Process Blower 1	12/30/2012	ω	ω	4
Digester Aeration	42BLWR02002.blwr	Process Blower 2	12/30/2012	ω	ω	4
IBR Pumping System	42PUMP01001.pmp	Interchange Feed Pump 1	12/30/2012	ы	З	1
IBR Pumping System	42PUMP01002.pmp	Interchange Feed Pump 2	12/30/2012	3	3	1
Secondary Clarifier 3 System	45CLAR00103.clar	Secondary Clarifier 3 Drive Mechanism	12/30/2012	ω	3	1
Secondary Clarifier 3 System	45CLAR00103.mtr	Secondary Clarifier 3 Drive Motor	12/30/2012	ы	3	1
Secondary Clarifier 4 System	45CLAR00104.clar	Secondary Clarifier 4 Drive Mechanism	12/30/2012	ω	ω	4
Secondary Clarifier 4 System	45CLAR00104.mtr	Secondary Clarifier 4 Drive Motor	12/30/2012	ω	ω	4

System or Location East RAS Pumping System	Equipment Number 45PUMP00701.pmp	Equipment Name	Install Date 5/19/2020	Condition Score	Performance Score	Recommended Action
East RAS Pumping System	45PUMP00702.pmp	East RAS Pump 2	12/30/2012	ω	ы	1
East RAS Pumping System	45PUMP00703.pmp	East RAS Pump 3	12/11/2019	ω	ω	1
Disinfection System	55_FV00501.vlv	UV Channel 1 Influent Flow Valve, Motorized	12/30/2012	4	4	σ
Disinfection System		UV Channel 2 Influent Flow Valve, Motorized	12/30/2012	4	4	ы
Disinfection System	55_HSC001.pmp	UV Hydraulic System	12/30/2012	ω	ω	1
Disinfection System	55_BANK1A	UV Lamp Bank 1A	12/30/2012	ω	ω	1
Disinfection System	55_BANK1B	UV Lamp Bank 1B	12/30/2012	ω	ω	1
Disinfection System	55_BANK2A	UV Lamp Bank 2A	12/30/2012	ω	ω	1
Disinfection System	55_BANK2B	UV Lamp Bank 2B	12/30/2012	ω	ω	1
Disinfection System	55GATE00601_gate	UV Channel 1 Motorized Outlet Gate	12/30/2012	ω	4	σ
Disinfection System	55GATE00602_gate	UV Channel 2 Motorized Outlet Gate	12/30/2012	ω	4	σ
3W Pumping System	55PUMP00101.pump	3W Pump 1	12/30/2012	4	ω	2
3W Pumping System	55PUMP00101.mtr	3W Pump 1 Motor	12/30/2012	ы	ω	2
3W Pumping System	55PUMP00102.pump	3W Pump 2	12/30/2012	ω	ω	2
3W Pumping System	55PUMP01003.pmp	3W Pump 3	12/30/2012	ω	ω	2
3W Pumping System	55PUMP01003.mtr	3W Pump 3 Motor	12/30/2012	З	3	2
3W Pumping System	55STRN01701.strn	Motorized Strainer	12/30/2012	3	4	1
3W Pumping System	55_LCP01701.Inst	3W Automatic Strainer	12/30/2012	З	4	1
Interchange Reactor System	60MIXR00101.mxr	Interchange Bioreactor 1 Mixer 1	12/30/2012	3	3	1
Interchange Reactor System	60MIXR00102.mxr	Interchange Bioreactor 1 Mixer 2	12/30/2012	3	3	1
Interchange Reactor System	60MIXR00201.mxr	Interchange Bioreactor 2 Mixer 1	12/30/2012	з	з	1
Interchange Reactor System	60MIXR00202.mxr	Interchange Bioreactor 2 Mixer 2	12/30/2012	3	3	1
Gravity Belt Thickening	60-GBT-001-GBT	Gravity Belt Thickener	12/30/2012	ы	ω	4
Gravity Belt Thickening	60-GBT-001-BPM	GRAVITY BELT THICKENER BOOSTER PUMP	12/30/2012	З	ы	4
Thickened WAS Pumping	60-TWAS-001-PMP	Thickened Waste Activated Sludge Pump 1 (east)	11/1/2000	4	ы	4
Thickened WAS Pumping	60-TWAS-002-PMP	Thickened Waste Activated Sludge Pump 2 (west)	11/1/2000	4	ω	4
Gravity Thickener Pumping	60-BFP-001-GDR	MUFFIN MONSTER	11/1/2000	4	3	4
Solids Odor Control	60-0RT-001-TWR	Solids Handling Bldg Odor Reduction Tower	12/30/2012	4	3	4
Belt Filter Press System	60-BFP-001-BFP	Belt Filter Press	11/1/2000	3	3	4
Belt Filter Press System	60-BFP-001-CON	Shaftless Screw Conveyor	11/1/2000	4	з	4
Polymer System	60-GBT-001-PU	GBT POLYMER UNIT	12/30/2012	4	3	3
Solids Odor Control	60-0RT-001-FAN	Odor Reduction Foul Air Fan	12/30/2012	4	3	4
Polymer System	60-BFP-001-PU	BFP POLYMER UNIT	11/1/2000	4	4	1
Solids Odor Control	60-0RT-003-PMP	Solids Handling Bldg Odor Control Recirc Pump	12/30/2012	4	3	4
Digester Sludge Pumping	65-DSP-001-PMP	Digester Sludge Pump 1	12/30/2012	3	3	4
Digester Sludge Pumping	65-DSP-002-PMP	Digester Sludge Pump 2	12/30/2012	З	З	4
Digester Pumping	65PUMP00101.pmp	Digester Mix Pump 1	12/30/2012	ω	ω	4
Digester Pumping	65PUMP00102.pmp	Digester Mix Pump 1	12/30/2012	ω	ω	4

MWSC

Appendix B WWTP Historical Performance

B

Wastewater Master Plan Oak Lodge Water Services

Technical Memorandum

6500 S Macadam Ave., Suite 200 Portland, OR 97239

T: 503.244.7005

- Prepared for: Oak Lodge Water Services
- Project Title: Wastewater Master Plan
- Project No.: 156789.061/2

Technical Memorandum

Subject: Wastewater Treatment Plant (WWTP) Historical Performance

Date: January 13, 2023

- To: Brad Albert, P.E., District Engineer, Oak Lodge Water Services (OLWS) Sarah Jo Chaplen, General Manager, OLWS
- From: Art Molseed, P.E., WWTP Lead, Brown and Caldwell
- Copy to: David Hawkins, Plant Superintendent, OLWS Scott Duren, P.E., Project Manager, Water Systems Consulting

Prepared by:

Patricia Tam, P.E.*

Reviewed by:

Heather Lough, P.E.

OR License #60332PE, Exp. 12/31/24

Reviewed by:

Art Molseed, P.E. OR License #15224PE, Exp. 12/31/24

* Professionally licensed in the State of Washington.

Limitations:

This document was prepared solely for the Oak Lodge Water Services (OLWS) and Water Systems Consulting, Inc (WSC) in accordance with professional standards at the time the services were performed and in accordance with the contract between OLWS and WSC dated April 27, 2021. This document is governed by the specific scope of work authorized by OLWS; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by OLWS and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

Section 1: Introduction	1
Section 2: WWTP Description	1
2.1 Plant Design Criteria	2
2.2 Permit Requirements	5
2.3 Historical Data Analysis	6
2.4 Plant Influent	6
2.5 Activated Sludge	10
2.6 Plant Effluent	12
Section 3: Observations and Conclusions	15

List of Figures

Figure 1. OLWS WWTP aerial photo	1
Figure 2. WWTP wastewater treatment process schematic	3
Figure 3. Monthly average and monthly max day influent flows, 2016–21	7
Figure 4. Monthly average and monthly peak day influent BOD loadings, 2016–21	8
Figure 5. Monthly average and monthly peak day influent TSS loadings, 2016–21	9
Figure 6. Historical trend in MLSS concentration, 2016-21	10
Figure 7. Historical trend in SRT, 2016-21	11
Figure 8. Historical trend in SVI, 2016-21	12
Figure 9. Monthly average effluent CBOD and BOD concentrations, 2016-21	13
Figure 10. Monthly average effluent TSS concentrations, 2016-21	13
Figure 11. Monthly average effluent ammonia concentrations, 2016-21	14

List of Tables

Table 1. Summary of Oak Lodge WWTP Upgrades and Improvements	. 2
Table 2. Major Equipment Design Data	. 4
Table 3. NPDES Permit Requirements	. 6
Table 4. Raw Wastewater Flows and Loadings, 2016–21	. 7
Table 5. Raw Wastewater Concentrations, 2016–21	10

Brown AND Caldwell

ii

List of Abbreviations

AAF	annual average flow
ADWF	average dry weather flow
AWWF	average wet weather flow
BOD	biochemical oxygen demand
BC	Brown and Caldwell
BFP	belt filter press
CBOD	carbonaceous biochemical oxygen demand
DEQ	Oregon Department of Environmental Quality
GBT	gravity belt thickener
hp	horsepower
MMDWF	maximum month dry weather flow
MMWWF	maximum month wet weather flow
MMF	maximum month flow
mgd	million gallons per day
mg/L	milligrams per Liter
m/L	milliliters
mL/g	milliliters per gram
MLSS	mixed liquor suspended solids
NPDES	National Pollutant Discharge Elimination System
OLWS	Oak Lodge Water Services
ppd	pounds per day
psi	pounds per square inch
psig	pounds per square inch gage
SCADA	Supervisory Control and Data Acquisition
scfm	standard cubic feet per minute
SRT	solids retention time
SVI	sludge volume index
TSS	total suspended solids
WWTP	water reclamation facility

. Use of contents on this sheet is subject to the limitations specified at the beginning of this document. WWTP Historical Performance TM FINAL

iii

Section 1: Introduction

This Technical Memorandum (TM) provides an overview of the Oak Lodge Water Services (OLWS) Wastewater Treatment Plant (WWTP) including current permit limits, design data for existing facilities, descriptions of major unit processes, current flow, loadings, and wastewater characteristics. The document also summarizes a review of plant performance data. This analysis was prepared as part of the OLWS Wastewater Master Plan work to satisfy the Oregon Department of Environmental Quality's (DEQ) requirements for an evaluation of WWTP performance.

Section 2: WWTP Description

OLWS owns and operates an activated sludge WWTP that serves approximately 30,000 customers within the service area. The influent is primarily domestic wastewater and treated effluent is discharged into the Willamette River. All flow enters the WWTP through the Influent Pump Station. Figure 1 provides an aerial photo of the OLWS WWTP and the surrounding area.

Figure 1. OLWS WWTP aerial photo

The WWTP was originally constructed in 1960 with a capacity of 1.5 million gallons per day (mgd) on an annual average flow (AAF) basis. At that time, treatment processes at the WWTP included primary clarification, activated sludge secondary treatment, and anaerobic digestion. Since then, the plant has undergone a comprehensive range of upgrades and improvements, which are summarized in Table 1.

Table 1. Summary of Oak Lodge WWTP Upgrades and Improvements				
Year	Type of Upgrade/Improvement			
1960	Original construction-AAF capacity of 1.5 mgd			
1970 and 1973	Treatment capacity expanded to 2.0 and 4.0 mgd, respectively			
1986	Influent screening and fine bubble aeration processes added			
1995 - 1996	 Original secondary clarifiers replaced Return activated sludge pumping added Waste activated sludge pumping added 			
1999	New outfall and diffuser brought online			
2002 a	 Dissolved air flotation thickener replaced with a gravity belt thickener (GBT) Belt filter press (BFP) for dewatering installed 			
2005	New blowers and air piping installed			
2008	Influent screens replaced			
2012 ^b	AAF capacity increased to 4.3 mgd (peak wet weather capacity of 18 mgd)			

a. Solids handling facility improvements.

b. Phase 1A and 1B improvements projects.

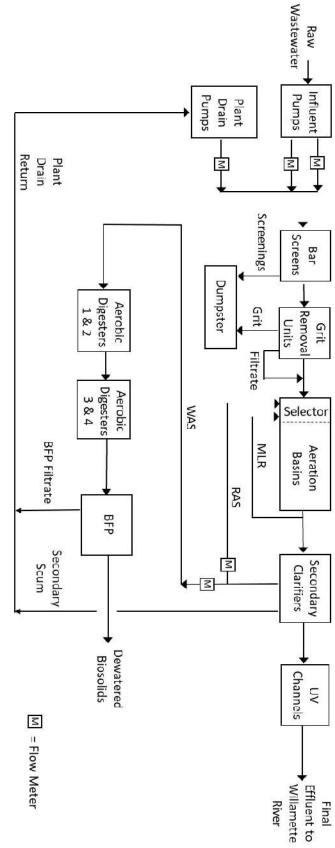
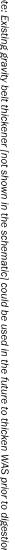

A separate report, the *WWTP Description and Condition Assessment TM*, prepared by Brown and Caldwell (BC), provides a more detailed description of the existing facilities.

Figure 2 illustrates the overall process flow schematic of the facility for liquid and solid stream treatment.


2.1 Plant Design Criteria

Design flows and loadings, as well as design data for the major unit processes, are listed in Table 2.

(Note: Existing gravity belt thickener [not shown in the schematic] could be used in the future to thicken WAS prior to digestion)

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

ω

Process Element	Number of Units	Design Value
Plant flow, mgd		
AAF		4.3
Average dry weather flow		3.5
Average wet weather flow		5.2
Max month, wet weather	-	10.5
Max day, wet weather		17.3
Max day, dry weather		8,6
Peak hour ^a		18
liochemical oxygen demand (BOD) loading, pounds per day (ppd)		
Annual average		6,680
Max month, wet weather		7,440
Max week, wet weather		8,910
Max day, wet weather	-	11,090
Max month, dry weather		7,250
Max week, dry weather		8,790
Max day, dry weather		10,900
		10,300
fotal suspended solids (TSS) loading, ppd		7 450
Annual average		7,450
Max month, wet weather		8,390
Max week, wet weather	_	10,010
Max day, wet weather		13,290
Max month, dry weather		8.960
Max week, dry weather		10,070
Max day, dry weather		12,970
otal Kjeldahl nitrogen loading, ppd		
Annual average	_	994
Max month, wet weather		1,244
Max month, dry weather		1,354
nfluent pumps	5	
Capacity, each, mgd		4@5.5,1@3.5
Motor horsepower (hp), each		4 @ 100, 1 @ 60
Туре		Adjustable spee
Plant drain pumps	2	
Capacity, each, mgd		1.75
Motor hp, each		25
Туре		Adjustable spee
nfluent mechanical screens	2	
Туре		Multi-rake
Screen opening, in.		0.25
Hydraulic capacity, mgd, each		11.75
Ianual bar screen	1	11.10
	1	0 F
Bar spacing, in.		0.5
Hydraulic capacity, mgd		11.75
Grit removal tanks	2	
Туре		Eutek Head-Cel
Hydraulic capacity, mgd, each		11.75
Aeration basins	4	

Table 2. Major Ed	quipment Design Data	
Process Element	Number of Units	Design Value
Total length, ft		109
Total width, ft		35
Sidewater depth, ft		20
Liquid volume each, gallons		571,000
Aeration blowers		
Units	4 (3 duty, 1 stand-by)	
Туре		High speed turbo (3), Hybrid Screw (1
Max capacity (total), standard cubic feet per minute @ pounds per square inch gage (scfm @ psig)		5,473@9.6
Min capacity (total), scfm @ psig		1,824@9.1
Discharge pressure, pounds per square inch		9.7
Secondary clarifiers	4	
Diameter, ft		70
Sidewater depth, ft		18
Peak-hour surface overflow rate, gallons per day, ft ²		1,186
Max month, solids loading rate, ppd, ft ²		38
Ultraviolet disinfection		
Number of channels	2	
Lamp type		Low pressure, high intensity
Design peak flow capacity, mgd		22
Aerobic digesters, rectangular ^b	2	
Dimensions, length x width, ft, each		40 x 80
Sidewater, ft		18
Volume, each, gallons		431,000
Aerobic digesters, circular	2	
Diameter, ft		35
Sidewater, ft		1@25,1@25
Volume, each, gallons		1 @ 185,400, 1 @ 189,000
BFP	1	
Hydraulic capacity, gallons per minute		120
Solids loading capacity, pounds per hour		500

a. Hydraulic carrying capacity of all process areas is designed to pass a peak instantaneous flow of 20 mgd to avoid overtopping wall, flooding of weirs, etc.

b. Formerly the Interchange Bioreactors.

2.2 Permit Requirements

The OLWS WWTP is currently rated by its National Pollutant Discharge Elimination System (NPDES) permit for a maximum month dry weather flow of 5.9 mgd and maximum month wet weather flow of 10.5 mgd. Table 3 summarizes the current NPDES limits regarding effluent concentrations and loadings for dry and wet weather periods. Compared with the previous permit, the monthly and weekly concentration and loading limits during the dry weather period (May 1 to October 31) have decreased. The monthly and weekly CBOD concentration limits have decreased from 15 and 25 mg/L in the old permit to 10 and 15 mg/L in the new permit, respectively. The monthly and weekly TSS concentration limits have decreased from 20 and 30 mg/L in the old permit to 10 and 15 mg/L in the new permit, respectively.

	Table 3. NPDES Permit Requirements								
Parameter	Average Effluent	Concentrations	Monthly Average,	Weekly Average,	Daily Maximum, pounds				
Parameter	Monthly	Weekly	ppd ^{a, b}	ppd ^{a, b}					
		May 1–Octobe	r 31						
CBOD (5-day)	10 mg/L	15 mg/L	490	740	980				
TSS	10 mg/L	15 mg/L	490	740	980				
		November 1–A	pril						
BOD (5-day)	30 mg/L	45 mg/L	2,600	3,900	5,200				
TSS	30 mg/L	45 mg/L	2,600	3,900	5,200				
		Year-round							
<i>E. coli</i> ^b	126/100 mL	406/100 mL (single sample)	-	-	-				
рН	Instantaneous limit between a a daily maxin	-	-	-					

Source: Adapted from NPDES permit effective May 1, 2022

a. Summer average monthly and average weekly mass emission rates based on maximum month dry weather design flow of 5.9 mgd.

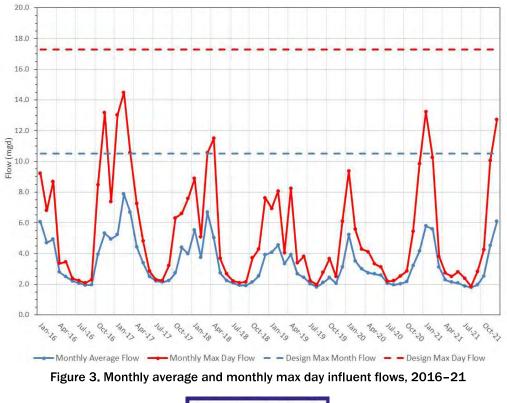
b. Winter average monthly and average weekly mass emission rates based on maximum month wet weather design flow of 10.5 mgd. c. Limits for E. coli are monthly geometric mean and single sample maximum.

Abbreviations:

CBOD = carbonaceous biochemical oxygen demand mg/L = milligrams per Liter mL = milliliters

2.3 Historical Data Analysis

Plant data from 2016 to 2021 were reviewed to assess historical trends of flows and loadings received by the plant and to compare them with design values. Operating data for the activated sludge system and effluent data were also reviewed to assess performance. The following sections provide a discussion of these data.


2.4 Plant Influent

The plant influent data for the 6-year period from 2016 to 2021 are summarized in Table 4. Figure 3 shows the monthly average and peak day plant influent flows, and Figures 4 and 5 show the monthly average and maximum day loadings for BOD and TSS, respectively. The current design influent flows and loadings are also shown on these figures.

In both Table 4 and Figure 3, the influent flow data from 2019 to 2021 are based on measurements recorded by the influent flow meter. There are large gaps in the earlier influent flow records. Therefore, for data prior to 2019 (and for periods after 2019 when the influent flow data are not available), influent flows were estimated from measured effluent flows using an effluent flow to influent flow ratio calculated from the 2019 to 2021 data.

Table 4. Raw Wastewater Flows and Loadings, 2016-21								
Parameter	2016	2017	2018	2019	2020	2021	Average	
AAF, mgd	3.6	4.0	3.4	2.9	2.9	3.3	3.4	
Average dry weather flow (ADWF), mgd	2.4	2.5	2.2	2.3	2.2	2.1	2.3	
Average wet weather flow (AWWF), mgd	4.8	5.4	4.6	3.5	3.6	3.9	4.3	
Max month dry weather flow (MMDWF), mgd	4.0	3.4	2.7	2.7	2.7	2.5	3.0	
Max month wet weather flow (MMWWF), mgd	6.1	7.9	6.7	4.5	5.2	6.1	6.1	
Max day flow, mgd	13.2	14.5	11.5	8.2	9.8	13.2	11.7	
Minimum day flow, mgd	1.8	2.0	1.7	1.7	1.8	1.7	1.8	
Peaking factors								
Average dry weather flow/AAF	0.67	0.64	0.64	0.78	0.76	0.62	0.69	
MMWWF/AAF	1.68	1.98	1.98	1.58	1.78	1.84	1.80	
Minimum day/AAF	0.49	0.49	0.51	0.60	0.62	0.51	0.54	
Max day/MMWWF	2.17	1.84	1.72	1.81	1.88	2.17	1.93	
Annual average BOD loading, ppd	4,240	4,010	4,890	4,920	4,760	5,200	4,670	
Max month BOD loading, ppd	4,870	4,820	7,990	5,880	5,440	6,820	5,970	
Peak day BOD loading, ppd	10,160	5,540	11,720	15,690	11,130	15,870	11,690	
Peaking factors								
Max month/annual average	1.15	1.20	1.63	1.20	1.14	1.31	1.27	
Peak day/max month	2.09	1.15	1.47	2.67	2.04	2.33	1.96	
Annual average TSS loading, ppd	4,080	3,960	4,860	4,700	4,590	4,960	4,530	
Max month TSS loading, ppd	4,890	5,110	7,970	6,030	5,830	6,840	6,110	
Peak day TSS loading, ppd	11,680	10,250	12,420	16,530	8,940	13,910	12,290	
Peaking factors								
Max month/annual average	1.20	1.29	1.64	1.28	1.27	1.38	1.34	
Peak day/max month	2.39	2.01	1.56	2.74	1.53	2.04	2.04	

Brown AND Caldwell

7

On Figures 4 and 5, the fluctuating lines for the design loadings represent the different design loadings for dry (May to October) and wet (November to April) weather periods. Influent flow data from 2019 to 2021 were obtained from Supervisory Control and Data Acquisition (SCADA) downloads, while effluent flow data for the 6-year period are available in monthly discharge monitoring reports. Therefore, influent flows and loads for 2019 and 2021 listed in Table 4 and shown on Figures 3 to 5 are based on the measured influent flows. Flows and loads prior to 2019 (and for a short period around December 2019/January 2020 when influent flow data are not available in the SCADA downloads) were based on measured effluent flows, adjusted using a ratio of 0.98 calculated from the measured effluent and influent flows from 2019 to 2021.

Inspection of the flow data from 2016 to 2021 indicates that the average plant flows have generally remained relatively steady over the 6-year period. The monthly average flow fluctuates widely between dry and wet weather periods, with peak day flows often significantly higher than the monthly average flows during wet weather periods. The highest peak day flow occurred in February 2017. Both monthly average and peak day flows remain below the corresponding design flows. The average MMF to AAF ratio (1.80) is lower than that calculated from the design flows (2.44), while the average peak day flow to MMF ratio (1.93) is higher than that calculated from the design flows (1.65).

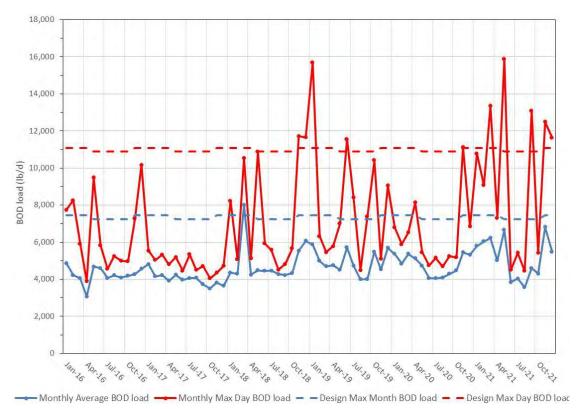


Figure 4. Monthly average and monthly peak day influent BOD loadings, 2016–21

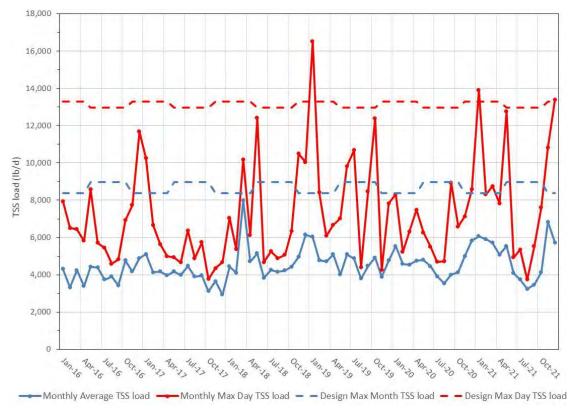


Figure 5. Monthly average and monthly peak day influent TSS loadings, 2016-21

Average BOD loadings show a slight upward trend over the 6-year period. The loadings are generally higher during the wet weather period, with maximum monthly average loads typically occurring in the winter or spring. The data show significant spikes in BOD loadings during a number of months. The monthly average BOD load exceeded the design value in March 2018 and approached it in May and November 2021. Maximum day BOD loads exceeded or approached the corresponding design values several times, particularly between November 2020 and December 2021. Both the average maximum month to annual average (1.27) and maximum day to maximum month (1.96) BOD loading ratios are higher than the corresponding ratios calculated from the design loadings (1.11 and 1.49, respectively).

Average TSS loadings similarly show a slight upward trend over the 6-year period. The loadings are typically higher during the wet weather periods, with maximum monthly average loads occurring in the winter or spring. The data also show significant spikes in TSS loadings during a number of months. While the monthly average TSS loadings remain below the design value, with the average loading in March 2018 close to it, the maximum day TSS loads exceeded the design value in January 2019, January 2021, and December 2021.

Similar to BOD, both the average maximum month to annual average (1.34) and maximum day to maximum month (2.04) TSS loading ratios are higher than the corresponding ratios calculated from the design loadings (1.20 and 1.48, respectively).

Influent wastewater characteristics during the 2016 to 2021 period are summarized in Table 5. The annual average concentrations for both BOD and TSS are observed to have increased over the 6-year period, with a notable increase from 2017 to 2018.

Table 5. Raw Wastewater Concentrations, 2016–21								
Parameter 2016 2017 2018 2019 2020 2021 Average								
BOD concentrations, mg/L								
Annual average	171	150	203	227	213	226	198	
During MMF	99	78	147	133	134	114	118	
During maximum month load	99	130	147	189	229	381	196	
TSS concentrations, mg/L								
Annual average	163	149	201	211	202	206	189	
During MMF	85	80	149	123	132	116	114	
During maximum month load	116	140	149	191	187	123	151	

2.5 Activated Sludge

Historical data available for the activated sludge system at the Oak Lodge WWTP include the solids retention time (SRT), mixed liquor suspended solids (MLSS) concentrations, and sludge volume index (SVI). These data are shown on Figures 6 through 8. As shown on Figure 6, the MLSS concentration fluctuated widely between approximately 1,500 and 6,000 mg/L. The extent of the fluctuations was reduced in 2021, with an average MLSS of 3,800 mg/L in 2021.

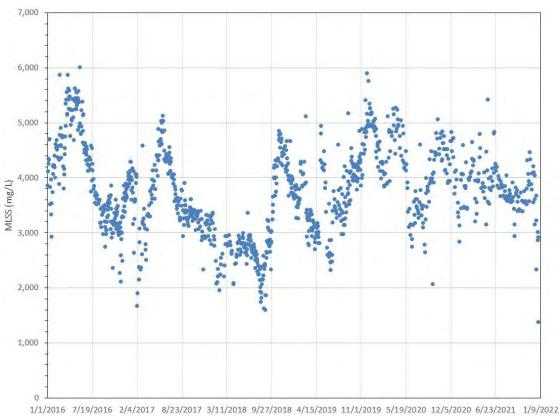
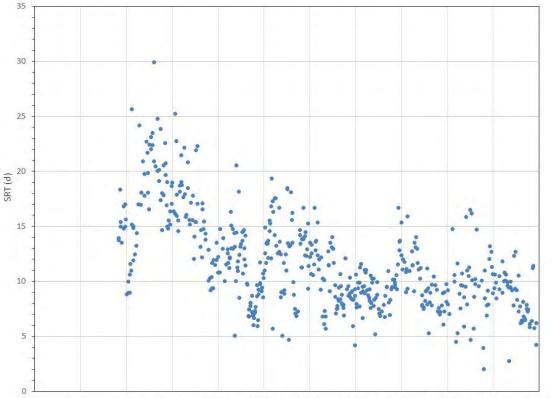


Figure 6. Historical trend in MLSS concentration, 2016-21


The calculated SRT data show a decreasing trend from over 20 days in 2017 to about 5 to 15 days in 2021. The decreasing SRT has not been observed in conjunction with decreasing MLSS concentration. MLSS concentration has not decreased noticeably during the same period. However,

MLSS concentration is also affected by other factors, including influent loadings and number of basins in service.

The SVI measurement can be used as an indicator of sludge settleability and a surrogate for determining the secondary clarifier capacity. The historical SVI data for the OLWS WWTP show large variations in SVI during the period from 2016 to 2021. There was a noticeable decrease in the summer of 2019 and the SVI remained below 150 milliliters per gram (mL/g) until around October 2020. Since then, the SVI has increased up to around 250 mL/g and decreased again to below 150 mL/g toward the end of 2021.

No seasonal trends can be observed from the SVI data. The plant has often experienced excessive foaming at the aeration basins, but it is usually less severe in the winter when higher flows help move foam downstream. *Nocardia*, a foam causing microorganism which may cause high SVIs, has been identified previously in a microbiological assessment. The low effluent CBOD, BOD, and TSS concentrations (shown in Figures 9 and 10) even during periods of high SVI suggests that there is adequate secondary clarifier capacity to accommodate any deterioration in sludge settling characteristics.

1/1/2016 7/19/2016 2/4/2017 8/23/2017 3/11/2018 9/27/2018 4/15/2019 11/1/2019 5/19/2020 12/5/2020 6/23/2021 1/9/2022 Figure 7. Historical trend in SRT, 2016-21

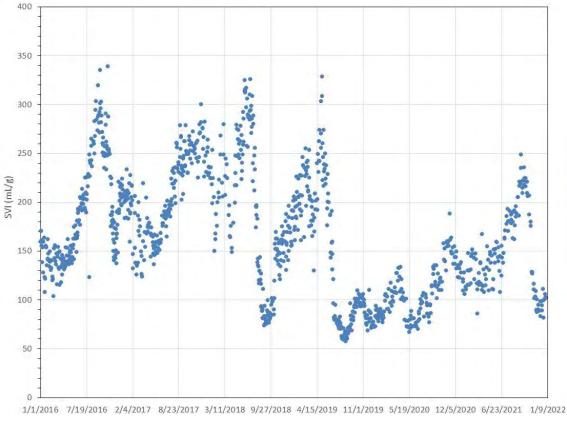


Figure 8. Historical trend in SVI, 2016-21

2.6 Plant Effluent

Plant effluent monthly average CBOD and BOD concentrations from 2016 to 2021 and the permit limits are plotted on Figure 9. The permit includes CBOD limits during dry weather periods and BOD limits during wet weather periods. Figure 10 shows the effluent monthly average TSS concentrations, along with the dry and wet weather limits. The permit limits shown on Figures 9 and 10 correspond to the limits in the old permit as the current permit became effective in 2022. The plant has consistently produced very good effluent quality during the 6-year period, with monthly average concentrations for CBOD, BOD, and TSS typically below 15 mg/L.

However, the plant effluent monthly average TSS concentration in January 2021 exceeded the permit limit, at 43 mg/L. The corresponding BOD concentration was also high at 22 mg/L. The plant experienced very high flows of above 10 mgd (daily average) for 2 days of the month, which might have led to the deterioration in plant performance and the high effluent concentrations.

As mentioned in Section 2.2, the dry weather monthly and weekly average CBOD and TSS limits have decreased since DEQ renewed the NPDES permit for the WWTP in 2022. Comparing the current limits with the data shown on Figures 9 and 10 indicates that the plant could meet the current CBOD limit but may not reliably meet the current TSS limit based on the current plant operation.

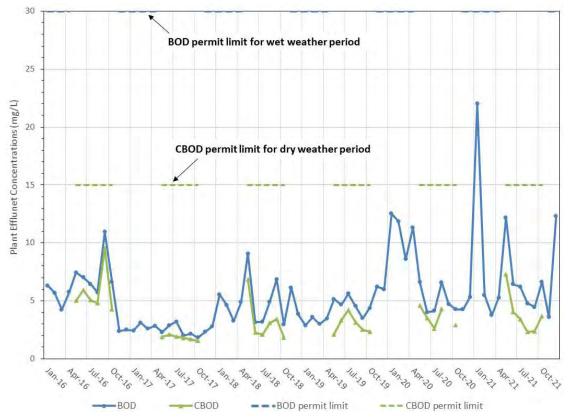
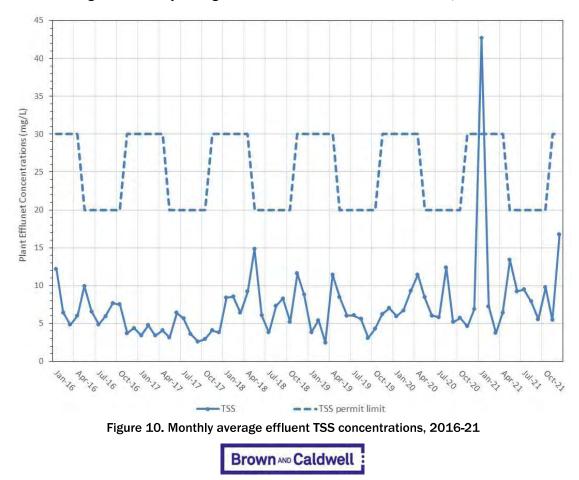



Figure 9. Monthly average effluent CBOD and BOD concentrations, 2016-21

13

While the current NPDES permit does not include any ammonia limits, the plant monitors effluent ammonia concentration about three times a week. Figure 11 shows the monthly average ammonia concentration from 2016 to 2021. The data show monthly average effluent ammonia concentrations mostly below 8 mg/L, except in June 2021, when the monthly average concentration increased to 16 mg/L. These data indicate that the plant has been partially or fully nitrifying. With a portion of the aeration basins operated as an anoxic zone, the system also provides denitrification. However, because effluent nitrite and nitrate have not been regularly monitored, the extent of denitrification cannot be examined. The current NPDES permit requires that effluent oxidized nitrogen (nitrite- plus nitrate-nitrogen) be measured in quarterly grab samples. That will provide some data to access denitrification capability, but more frequent monitoring is recommended.

Figure 11. Monthly average effluent ammonia concentrations, 2016-21

Section 3: Observations and Conclusions

Analysis of the historical plant data from 2016 to 2021 for the Oak Lodge WWTP yields the following observations and conclusions:

- While average influent flows have remained relatively steady from 2016 to 2021, average BOD and TSS loadings have increased slightly.
- The data show occasional spikes in loadings and both BOD and TSS loadings have exceeded the design maximum day loadings a few times during the 6-year period examined.
- The annual average concentrations for both BOD and TSS are observed to have increased over the 6-year period, with a notable increase from 2017 to 2018.
- The plant effluent quality has almost consistently met permit requirements in the 2016 to 2021 period, with monthly average effluent BOD, CBOD, and TSS concentrations typically below 15 mg/L. The only exception occurred in January 2021, when the monthly average TSS concentration exceeded the permit limit.
- With the current permit containing a lower limit of 10 mg/L for both CBOD and TSS, the plant may not reliably meet the new limits, especially for TSS.
- Nitrification is occurring in the system, as measured effluent ammonia concentrations are typically below 8 mg/L. The extent of denitrification cannot be determined from the data, as nitrate is not measured.
- Periodic episodes of elevated SVI occur but SVI has decreased since 2019 and remained below 250 mL/g. The high SVIs may be correlated with excessive foaming at the aeration basins. The good effluent quality, even during periods of high SVI, suggests that there is adequate secondary clarifier capacity to accommodate any deterioration in sludge settling characteristics.

MWSC

Appendix C WWTP Operations

Wastewater Master Plan Oak Lodge Water Services

Technical Memorandum

6500 S Macadam Avenue, Suite 200 Portland, OR 97239-3552

T: 503.244,7005

- Prepared for: Oak Lodge Water Services
- Project Title: Wastewater Master Plan

Project No.: 156789.061.001

Technical Memorandum

Subject: Existing Wastewater Treatment Plant (WWTP) Operations

Date: January 13, 2023

- To: Brad Albert, P.E., District Engineer, Oak Lodge Water Services (OLWS) Sarah Jo Chaplen, General Manager, OLWS
- From: Art Molseed, P.E., WWTP Lead, Brown and Caldwell
- Copy to: David Hawkins, Plant Superintendent, OLWS Scott Duren, P.E., Project Manager, Water Systems Consulting

Prepared by:

Patricia Tam, P.E.*

Prepared by:

Heather Lough, P.E.

OR License #60332PE, Exp. 12/31/24

Reviewed by:

Art Molseed, P.E. OR License #15224PE, Exp. 12/31/24

EXPIRES: DECEMBER 31, 2024

* Registered in State of Washington

Limitations:

This document was prepared solely for Oak Lodge Water Services (OLWS) and Water Systems **Consulting, Inc (WSC) in accordance with professional** standards at the time the services were performed and in accordance with the contract between WSC and Brown and Caldwell dated May 18, 2021. This document is governed by the specific scope of work authorized by OLWS and WSC; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by OLWS and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

Section 1: I	ntroduction	1
Section 2: /	Approach	3
2.1 Review	of Previous Reports and Documents	3
2.2 WWTP	Operator Workshop	3
Section 3: /	Assessment of WWTP Operations	3
3.1 Liquid S	Stream	3
3.1.1	Influent Pump Station	4
3.1.2	Plant Drain Pump Station	5
3.1.3	Influent Channel and Sampler	6
3.1.4	Influent Mechanical Screens and Influent Bypass Bar Screen	8
3.1.5	Screenings Conveyance	9
3.1.6	Screenings Washer/Compactor	10
3.1.7	Mixed Liquor Screen and Screenings Compactor	10
3.1.8	Grit Removal	11
3.1.9	Grit Pumps	11
3.1.10	Grit Washing/Dewatering	11
3.1.11	Aeration Basins	12
3.1.12	Anoxic Zone Mixers	13
3.1.13	Aeration Diffusers	14
3.1.14	Weir Gates and Hydraulics	15
3.1.15	Aeration Blowers	16
3.1.16	Mixed Liquor Recycle Pumps	16
3.1.17	Screened Mixed Liquor Pumps	16
3.1.18	WAS/Scum Pumps	17
3.1.19	Secondary Clarifiers	18
	RAS Pumps	
3.1.21	UV Disinfection	20
3.1.22	Effluent Flow Measurement and Sampling	21
3.2 Solids S	Stream	21
3.2.1	Aerobic Digesters, Mixing Systems, and Blowers	22
3.2.2	Digested Sludge Pumps	23
3.2.3	Dewatering	24
3.3 Suppor	t Systems	
3.3.1	3W Disinfection and Pumps	26
	Headworks Foul Air Treatment	
Section 4: I	References	27
Attachment	t A: Operator Workshop Meeting Minutes	4-1

List of Figures

Figure 1. WWTP process schematic	1
Figure 2. Aerial view of WWTP with major facilities labeled	2
Figure 3. Influent Pump Station and Plant Drain Pump Station at grade	
Figure 4. Plant Drain Pump Station wet well	5
Figure 5. Headworks Building	6
Figure 6. Influent pump and plant drain pump force mains	6
Figure 7. Raw sewage discharge into end of influent channel	
Figure 8. Influent composite sampler	7
Figure 9. Debris accumulation on influent sampler suction strainer	
Figure 10. Multi-rake influent screens	9
Figure 11. Screenings sluice system	9
Figure 12. Screenings washer/compactors	
Figure 13. Mixed liquor rotary drum screen	
Figure 14. Grit washing and dewatering equipment	
Figure 15. Aeration basin structure	
Figure 16. Aeration Basin 1 with mixers visible	
Figure 17. Aeration basin showing use of hoses for spray water	14
Figure 18. Hydraulic restriction at aeration basin weir gate	
Figure 19. Internal MLR pumps	
Figure 20. Older WAS pump	
Figure 21. IBR feed pump in RAS/WAS Pump Station	
Figure 22. Original secondary clarifier	
Figure 23. Newer secondary clarifier	
Figure 24. RAS pumps in RAS/WAS Pump Station	
Figure 25. RAS pumps at Secondary Clarifiers 3 and 4	
Figure 26. UV channels and equipment photo	
Figure 27. Effluent flow meter panels and composite sampler	
Figure 28. Top of Aerobic Digesters 1 and 2	
Figure 29. Circular aerobic digester	
Figure 30. Digester mixing pump	23
Figure 31. Digested sludge pump	24
Figure 32. Belt filter press	25
Figure 33. Truck loadout at Solids Handling Building	
Figure 34. 3W pumps located at the disinfection facility	

List of Abbreviations

BC	Brown and Caldwell
CFR	Code of Federal Regulations
CIP	capital improvement program
DEQ	Oregon Department of Environmental Quality
DO	dissolved oxygen
GBT	gravity belt thickener
IBR	interchange bioreactor
IR	interchange return
mg/L	milligrams per Liter
MLE	modified Ludzack-Ettinger
MLR	mixed liquor recycle
NPDES	National Pollutant Discharge Elimination System
OLWS	Oak Lodge Water Services
RAS	return activated sludge
WWMP	Wastewater Master Plan
SRT	solids retention time
SVI	sludge volume index
ТМ	technical memorandum
UV	ultraviolet
WAS	waste activated sludge
WWTP	wastewater treatment plant

iv

Section 1: Introduction

In accordance with Oregon Department of Environmental Quality (DEQ) guidelines, the Oak Lodge Water Services (OLWS) Wastewater Master Plan (WWMP) includes a performance evaluation of the existing wastewater treatment plant (WWTP). This technical memorandum (TM) summarizes an evaluation of the treatment system based on a review of background documents and completion of a workshop with OLWS operations staff. The site visit and workshop are documented in minutes included as Attachment A to this TM.

Separate TMs are being prepared to describe and provide additional performance evaluations of the WWTP as listed below:

- 1. Historical Performance
- 2. Capacity Assessment
- 3. WWTP Description and Condition Assessment

Figure 1 provides a process flow schematic of the existing liquid and solid stream treatment systems.

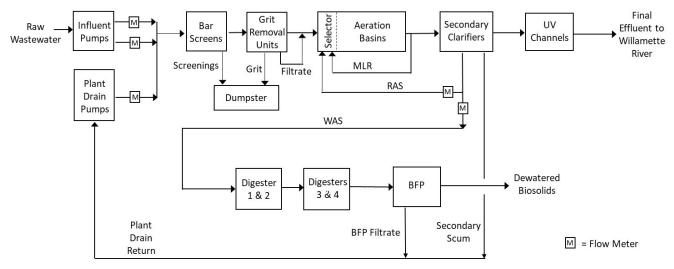
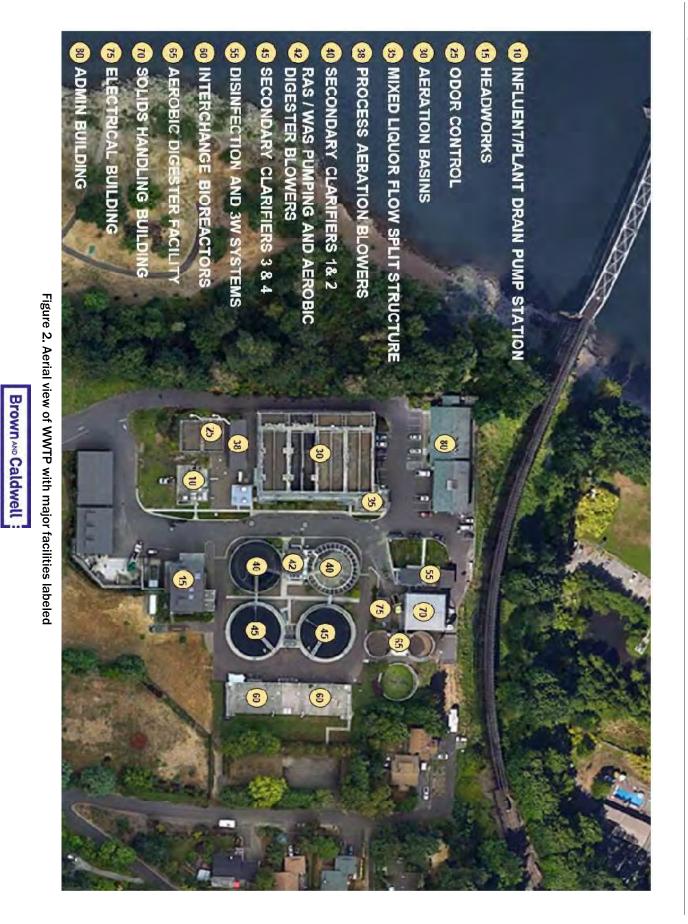



Figure 1. WWTP process schematic

Figure 2 provides an aerial view of the OLWS WWTP site and identifies major facilities.

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Ν

Section 2: Approach

This section describes the approach used to perform an operations evaluation of the OLWS WWTP that included review of background documents and a site visit and workshop with OLWS operations staff.

2.1 Review of Previous Reports and Documents

A variety of historical data and previous reports and documents were reviewed to prepare for the WWTP operations evaluation. One of these reports included the Aeration Basin Evaluation prepared by Murraysmith in 2019 to evaluate various aeration system components (basins, blowers, and aerobic digesters). The evaluation identified alternatives and made recommendations for improving operation of these systems for current and future flows and loads. Design of the recommended improvements has been completed and construction and startup performed in 2022. Some of the findings from this evaluation are incorporated into the discussion of existing WWTP operations in this TM.

The following documents, prepared as part of OLWS's ongoing coordination with DEQ in renewal of the WWTP NPDES permit, were also reviewed:

- Updated Fact Sheet Facility Description
 - In 2021, DEQ and OLWS staff worked together to prepare an updated Fact Sheet Facility Description that was incorporated into a new NPDES permit for the WWTP. Information from this updated Fact Sheet Facility Description is reflected in this evaluation of existing WWTP operations.
- Biosolids Management Plan
 - Also in 2021, OLWS staff coordinated with DEQ to prepare an updated Biosolids Management Plan that was included in the public notice for the NPDES permit renewal. Information from this updated Biosolids Management Plan is incorporated into this evaluation of existing WWTP operations.

2.2 WWTP Operator Workshop

The consultant team met virtually with OLWS staff on September 1, 2021, to conduct a workshop to discuss WWTP operations. Attachment A includes the minutes and PowerPoint slide deck from this workshop.

Section 3: Assessment of WWTP Operations

On September 1, 2021, the consultant team and OLWS staff met in a virtual Operator Workshop to collect additional information needed to perform an operations evaluation of existing facilities for future incorporation into the WWMP. The WWMP will include alternatives and project recommendations to address operational needs of the WWTP. As such, the evaluation will address DEQ requirements to consider operations as part of the master planning process.

This section summarizes information collected during the review of previous reports, historical data, and workshop discussions. This section is organized by process treatment units at the WWTP including liquid stream, solids stream, and support facilities. For process treatment unit design criteria, refer to the WWTP Description, NPDES Permit Requirements and Historical Performance TM.

3.1 Liquid Stream

The OLWS WWTP is a secondary treatment system that uses conventional activated sludge without primary treatment. The Headworks Building receives pumped flow from the Influent Pump Station and Plant Drain Pump Station. At the Headworks Building, wastewater passes through multi-rake bar screens and then flows

through a Eutek Headcell degritting system. Screenings are washed and compacted, and grit is classified before both are transported off-site for disposal.

The screened and degritted wastewater then continues to flow by gravity to the activated sludge secondary treatment system. The aeration basin train includes an anoxic zone that is used to promote denitrification, with nitrification occurring in the aerobic zones. The activated sludge system is configured with the ability to operate in different modes based on operational and effluent permit goals. The secondary process was previously operated as a Cannibal process resulting from the Phase 1A expansion completed in 2012 but the Cannibal process has since been abandoned.

Aeration basin effluent flows by gravity to secondary clarifiers where settled solids can be returned to the aeration basins as return activated sludge (RAS) or pumped as waste activated sludge (WAS) to the solids treatment system. The effluent passes through an ultraviolet (UV) disinfection system before being discharged into the Willamette River. Treated effluent is also reused as 3-water (3W) as described under Section 3.3.

The following provides an operational assessment of individual process and pump systems associated with the OLWS WWTP liquid stream.

3.1.1 Influent Pump Station

All flow into the OLWS WWTP is conveyed to the Influent Pump Station that was constructed as part of Phase 1A expansion. The Influent Pump Station is a below grade structure that houses five submersible solids handling pumps. The wet well is partitioned into two sections with a manually operated gate separating the two sumps. Three pumps are placed in one wet well and the other two pumps are in the second wet well. The original KSB submersible pumps were replaced with Flygt submersible pumps. Discharge check valves and isolation valves for the influent pumps are in a valve vault. As described below, the Plant Drain Pump Station was built adjacent to the Influent Pump Station with a common wall separating the two facilities. Figure 3 shows the Influent Pump Station and Plant Drain Pump Station at grade.

Figure 3. Influent Pump Station and Plant Drain Pump Station at grade

The original submersible pumps experienced frequent plugging with rags and other debris. The replacement Flygt submersible pumps are more effective at passing rags to the screening channel at the Headworks Building. To maintain the minimum pumping capacity required by DEQ, the manually operated gate is typically kept open so that the wet well functions as a single sump. At lower dry weather flows, the wet well is oversized, and debris can collect in the corners of the rectangular wet well. As discussed at the September workshop, rounding the corners of the wet well, retrofitting the Flygt pumps with the Flygt Flush Valve, and adding an automatic actuator to the wet well separation gate may improve operability of the influent pumping system. These will be considered as projects for future upgrades as they are developed.

The lack of a built-in lifting system at the Influent Pump Station makes maintenance of the pumps more difficult. Currently, staff must bring in a mobile crane to lift the submersible pumps out of the wet well. Structural support for a lifting device such as a bridge crane and extending electric power to new equipment at the Influent Pump Station have been identified as challenges to implementing these improvements. These upgrades will be evaluated as part of alternatives development.

The Meltric plugs at the Influent Pump Station are uncovered and can become wet; the addition of covers would provide protection from moisture. OLWS has included budget in its capital improvement program (CIP) for reconstruction of the Influent Pump Station in 2025.

3.1.2 Plant Drain Pump Station

The two plant drain pumps are the submersible solids handling type located in a shallower wet well located to the east of the Influent Pump Station wet well. The original KSB pumps installed in 2012 are still used and are operated in a constant speed, fill-and-draw mode. Solids tend to settle out in the wet well when pumps are not operating. A system to stir the contents of the wet well such as the Flygt Flush Valve may help to minimize collection of solids and other debris in the plant drain pump wet well.

The plant drain wet well is connected to the plant drain inlet box. The plant drain inlet box receives flow from the plant drain manhole and drainage from the aeration basins. Discharge check valves and isolation valves for the plant drain pumps are in a valve vault. Figure 4 shows the Plant Drain Pump Station wet well taken from an open hatch at grade.

Figure 4. Plant Drain Pump Station wet well

3.1.3 Influent Channel and Sampler

Equipment associated with preliminary treatment at the OLWS WWTP is located at the Headworks Building. Figure 5 shows the Headworks Building.

Figure 5. Headworks Building

Raw sewage and plant drainage are pumped to the Headworks Building through force mains routed through the lower level of the Headworks Building as shown in Figure 6. Each force main is equipped with a magnetic flow meter to measure the raw wastewater and plant drainage. The raw sewage flow meters measure influent flow for NPDES permit reporting. The two raw sewage force mains combine into a single pipe before discharge at the Headworks Building. The influent pump force main discharges at one end of the raw sewage influent channel, and the plant drain pump force main discharges near the mid-point of that channel.

Figure 6. Influent pump and plant drain pump force mains

The upper level of the Headworks Building is not enclosed as shown in Figure 5. The raw sewage influent channel, the screens, and grit basins are covered and air is withdrawn for foul air treatment. Figure 7 shows a view of the raw sewage influent channel where the combined influent pump force main discharges into the end of the influent channel.

Figure 7. Raw sewage discharge into end of influent channel

The influent sampler collects a composite sample from this channel upstream of the discharge of the plant drain pump force main and is located as shown in Figure 8.

Figure 8. Influent composite sampler

Because debris tends to accumulate at the end of the influent channel, the strainer on the suction tubing for the influent sampler also occasionally plugs with debris, as shown by the rags in Figure 9. This photo was taken on August 11, 2021, which was the first day of the wastewater characterization sampling program implemented to help develop influent flow and loadings for the WWMP. Moving the influent sampler downstream of the screens is not an option as the screened sewage includes the plant drainage and the samples would then not be representative of plant influent.

Figure 9. Debris accumulation on influent sampler suction strainer

3.1.4 Influent Mechanical Screens and Influent Bypass Bar Screen

Raw sewage and plant drainage pass through multi-rake bar screens with $\frac{1}{4}$ -inch spacing. Typically, one screen is in service and the other serves a standby. There is also a third channel fitted with a manual bar screen having $\frac{1}{2}$ -inch bar spacing.

As noted in the influent pump section above, installation of the Flygt submersible pumps has resulted in greater passage of rags and other debris to the influent screenings channel. This has reduced maintenance requirements of the influent pumps, but there is now a greater tendency for the rags to accumulate in the channel, and to even pass downstream of the screens and into the aeration basins where they can accumulate on the anoxic zone mixer blades and other locations. Rags reach downstream of the screeens by passing through the bars and/or through gaps between the screen frame and channel. There is a rubber seal at the channel and frame opening, but it does not always provide an effective seal. OLWS has considered replacing the screens with equipment having finer spaced bars or perforated plates to minimize passage of rags. Figure 10 shows the Huber multi-rake screens.

Figure 10. Multi-rake influent screens

3.1.5 Screenings Conveyance

A sluice trough that uses 3W conveys screenings to the washer compactor. There is approximately a 30-foot drop from the screens to the washer/compactors as shown in Figure 11. The sluice system works well.

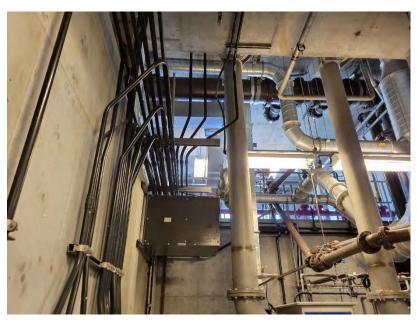


Figure 11. Screenings sluice system

When the 3W system is taken out of service for pump or other equipment maintenance, the sluice system must also be taken off-line. After an outage, there can be a slug load of debris to the compactors. Previously the compactor door would occasionally open when there was a slug load of screenings. However, WWTP staff have made modifications to address this issue as discussed in the next section.

3.1.6 Screenings Washer/Compactor

The screenings sluice discharges into the washer/compactors in the lower level of the Headworks Building shown in Figure 12. These are grinder/auger type that work well and rarely plug. WWTP staff added a baffle to prevent the door from opening when a slug load of screenings is received after an outage.

Figure 12. Screenings washer/compactors

3.1.7 Mixed Liquor Screen and Screenings Compactor

The mixed liquor screen and screenings compactor were installed as part of the Cannibal process. The mixed liquor screen is a rotary drum located on the upper level of the Headworks Building, and the mixed liquor screenings compactor is a screw press located on the lower level. A chute from the screen conveys the screenings to the press.

Although the Cannibal process was abandoned a few years ago, the mixed liquor screen and screenings compactor were used into 2020. WWTP staff found that the equipment is effective at removing depleted cellulose from mixed liquor. However, there have been stress fractures due to wear on the polyurethane guides at the compactor. Due to the difficulty of obtaining spare parts for the equipment, this system is no longer being used.

The City of Albany, Oregon, previously used a mixed liquor screening and compaction system for its Cannibal system which is also no longer in use. The compactor at Albany has a gear reducer while the unit at OLWS does not. The OLWS unit tends to trip out on high amperage draw, as well. There were some attempts to obtain the unit from Albany to replace the one at OLWS, but that never worked out. Figure 13 shows the mixed liquor screen at the upper level.

Figure 13. Mixed liquor rotary drum screen

3.1.8 Grit Removal

Screened influent flows by gravity to the Eutek Headcell grit removal system that uses stacked trays. The equipment is in the lower level of the Headworks Building and is difficult to access and maintain because of its cover. WWTP staff have been working with the manufacturer to design modifications that will improve accessibility.

3.1.9 Grit Pumps

Wemco recessed impeller pumps, also located on the lower level of the Headworks Building, are used to transfer grit to a grit washing and dewatering system. No issues with the grit pumping system were identified.

3.1.10 Grit Washing/Dewatering

A Eutek Slurry Cup and Snail located on the upper level of the Headworks Building provide grit washing and dewatering. The Cannibal system was based on maximizing transfer of biochemical oxygen demand to the aeration basins, so this system was designed to return finer solids to the liquid stream. Therefore, some grit passes through this equipment and is returned to the secondary treatment system where it collects in the aeration basins. Figure 14 shows the grit washing and dewatering equipment.

Figure 14. Grit washing and dewatering equipment

3.1.11 Aeration Basins

There are four aeration basins designed for use with the Cannibal system at a mixed liquor concentration of 15,000 to 20,000 milligrams per Liter (mg/L). Currently, the aeration system is operated as a modified Ludzack-Ettinger (MLE) process that assumes 25 percent of the basin is in an anoxic mode and the remaining 75 percent is aerobic. Two aeration basins are used during the dry weather and two or three are used during the wet weather, depending on flows and loads. Tanks 1, 2, and 3 or 2, 3, and 4 can be used in combination. Figure 15 provides a panoramic view of the aeration basin structure.

Figure 15. Aeration basin structure

3.1.12 Anoxic Zone Mixers

There are six vertical turbine-type anoxic zone mixers manufactured by Lightnin in each of the first two aeration basins. Mixers are taken off-line once per year to collect oil samples. There have been stress fractures on some of the mixers. Figure 16 shows the Aeration Basin 1 that was out of service. Rags that have passed through preliminary treatment are visible on the mixer blades.

Figure 16. Aeration Basin 1 with mixers visible

3.1.13 Aeration Diffusers

The fine bubble diffusers in the aeration basins are also visible in Figure 16. These are Sanitaire 9-inch disc type diffusers. The diffusers are from the original installation in 2012. OLWS has purchased enough new diffuser membranes for one basin and will be scheduling replacement for some of this equipment. The OLWS may only do second half of Basins 1 and 2 (as the first half would typically operate as the anoxic zone), so there would be enough diffusers for both basins.

When two aeration basins are in use, the first basin is operated with the first half without air (but with the mixers on) and the second half with constant air flow, and the second basin operated with dissolved oxygen (DO) control based on measurements by a DO probe at the U bend. When three aeration basins are in use, the first basin is half without air (and with mixing) and half constant air flow, the second basin has constant air flow, and the third basin uses DO control based on measurements by the probe at the U-bend. The DO probes in the first half of each basin are not reliable. Air cannot be balanced within each basin because there are no air flow meters and control valves on the drop legs.

As noted above, the system was designed for Cannibal process, which is no longer being used. Currently, both mixers and diffusers are used in the second half of basin 2 because the diffuser air (at a constant flow rate) alone does not provide sufficient mixing. There is risk of solids settling without adequate air.

OLWS had Michael Richards examine foam and crust that occurs on the aeration basins about 3 to 4 years ago. Three or four microorganisms including *Nocardia* were identified. Figure 17 shows an aeration basin with some foam evident at the surface. The aeration basins do not have a built-in spray system. However, as shown in Figure 17, spray hoses are used to help promote movement of the foam. Foaming is less severe in the winter when higher flows help move foam downstream.

Figure 17. Aeration basin showing use of hoses for spray water

3.1.14 Weir Gates and Hydraulics

Murraysmith prepared an aeration basin evaluation report in 2019 (Murraysmith 2019) to evaluate alternatives and make recommendations for process improvements. The report noted that there are no internal baffles or weirs within the basins that limits operational flexibility. The report adds that because of foaming and hydraulic challenges, WWTP staff have created a hydraulic drop across each train by adjusting level of the effluent weir gates. Figure 18 shows a hydraulic restriction at the weir gate. The Murraysmith report also notes restrictions at the horseshoe bends.

Figure 18. Hydraulic restriction at aeration basin weir gate

OLWS staff have added temporary baffles made of 2 x 4s to Aeration Basin 1. The temporary baffles have worked well. The OLWS is currently implementing an aeration basin improvements project that is partially funded by the Energy Trust and was constructed in 2022. The project originally included a smaller blower and baffle walls in Basins 1 and 2. However, the baffle walls were removed from the project and not installed.

A classifying selector might also help with removal of foam and could be considered as part of a future project. Consideration will need to be made where foam would be routed to (e.g., impact on aerobic digesters). Sludge volume index (SVI), which is a measure of sludge settleability, is usually less than 200 milliliters per gram. They operate at about an 8-day SRT in the winter and 11-12 days in the summer.

3.1.15 Aeration Blowers

There are three K-Turbo centrifugal blowers that serve the aeration basins. Each turbo blower with air-foil bearings has a 100 horsepower (hp) motor. A fourth blower manufactured by Aerzen was installed during the 2022 aeration upgrades project that will allow the OLWS to achieve greater energy efficiency. This blower replaced one of the K-Turbo blowers.

Blower control is currently cascade control with a DO set point of 2.0 mg/L in one basin, with the control valve for that basin adjusted and then the blower speed adjusted to maintain air header pressure. The DO set point is applied in the last aeration basin whether there are two or three aeration basins in service.

3.1.16 Mixed Liquor Recycle Pumps

Three vertical turbine, axial flow pumps recycle mixed liquor to the mixed liquor recycle (MLR)/RAS/interchange return (IR) conduit and then to the first aeration basin in service. These pumps are shown in Figure 19.

Figure 19. Internal MLR pumps

3.1.17 Screened Mixed Liquor Pumps

The two screened mixed liquor submersible pumps are not currently used because the mixed liquor screen and compactor are off-line.

3.1.18 WAS/Scum Pumps

The RAS/WAS Pump Station houses WAS and scum pumps, as well as interchange bioreactor (IBR) feed pumps. Figure 20 shows one of the two WAS pumps in the RAS/WAS Pump Station. The IBR feed pumps, shown in Figure 21, are used to pump WAS from the RAS header of Secondary Clarifiers 1 and 2 to these tanks that are now used as aerobic digesters. A WAS pump was also added to convey WAS to the gravity belt thickener (GBT). Once the programming for this new pump is completed, it will be operational, and OLWS will be able to thicken WAS prior to sending to the aerobic digesters. The new WAS pump will pull off the header from all four clarifiers rather than the RAS header that services only Secondary Clarifiers 1 and 2.

Figure 20. Older WAS pump

Figure 21. IBR feed pump in RAS/WAS Pump Station

3.1.19 Secondary Clarifiers

There are four secondary clarifiers. Secondary Clarifiers 1 and 2 were constructed in 1995, and Secondary Clarifiers 3 and 4 were built as part of the major upgrade in 2012. The OLWS is implementing a project to rebuild Secondary Clarifiers 1 and 2 in 2022 and 2023. The mechanisms and rotating catwalks will be replaced. Figure 22 shows one of the secondary clarifiers built in 1995, and Figure 23 shows one of the newer clarifiers.

Figure 22. Original secondary clarifier

Figure 23. Newer secondary clarifier

3.1.20 RAS Pumps

There are four RAS pumps for Secondary Clarifiers 1 and 2 in the RAS/WAS Pump Station. Two of the RAS pumps are shown in Figure 24.

Figure 24. RAS pumps in RAS/WAS Pump Station

There are also three RAS pumps located at Secondary Clarifiers 3 and 4. One pump is dedicated to each clarifier and the third pump serves as a swing standby for both clarifiers. Figure 25 shows these RAS pumps.

Figure 25. RAS pumps at Secondary Clarifiers 3 and 4

3.1.21 UV Disinfection

Secondary effluent flows to a Trojan UV3000 low pressure, high-intensity UV disinfection system. There are four banks with a total of 224 bulbs placed in two channels. The system was designed for a UV transmittance of 65 percent.

WWTP staff note that there are issues with both the upstream and downstream gates associated with the UV channels. The upstream gate gearboxes are located at the bottom of the channel but were apparently not designed for submerged service because they have Zerk fittings. This equipment has failed, so the gates are kept open all the time. The downstream gates do not effectively control flow through the UV system, and OLWS has been unable to modify the proprietary programming for the UV equipment. OLWS has budgeted gate modifications in its CIP for 2022 and 2023. OLWS uses an aftermarket supplier for replacement bulbs, and they have a satisfactory service life. Figures 26 shows the UV channels and equipment.

Figure 26. UV channels and equipment photo

3.1.22 Effluent Flow Measurement and Sampling

Two Doppler type Accusonic flow meters measure effluent flow in the UV channels. A composite sampler at this facility also collects effluent for NPDES reporting. Figure 27 shows the flow meter panels and the composite sampler.

Figure 27. Effluent flow meter panels and composite sampler

3.2 Solids Stream

The OLWS solids treatment train includes a GBT that has not been operated since the WWTP implemented the Cannibal system as part of the 2012 improvements project. WAS is pumped directly to the IBRs that currently function as rectangular aerobic digesters (1 and 2) in series with two circular aerobic digesters (3 and 4) constructed in 1995. Together, the aerobic digestion system produces a Class B biosolids that meets time and temperature criteria and volatile solids reduction requirements of the United States 40 CFR Part 503.

Digested sludge is pumped to a belt filter press that produces a cake having a concentration of 14 to 17 percent solids. Solids are conveyed by an auger into a dump truck and OLWS staff then move the dewatered solids to a storage shed near the plant entrance for temporary storage. A contract hauler then comes to load the solids for transport to land application sites.

OLWS is implementing a new solids project that will provide the ability to pump WAS to the GBT for thickening prior to sending to the IBRs for aerobic digestion. Currently solids into Digester 4 are around 1.7 percent solids, but with the piping modifications, feed to Digester 4 is expected to be around 2.3 to 2.4 percent solids.

3.2.1 Aerobic Digesters, Mixing Systems, and Blowers

The rectangular Aerobic Digesters 1 and 2 (converted from IBRs) have a combined volume of about 862,000 gallons. Figure 28 shows the top of these two aerobic digesters. Typically, one is in service while the second serves as a backup. These digesters are fed by the IBR feed pumps and have two vertical turbine mixers per tank as well as aeration diffusers. Sludge from these two digesters is transferred to Digester 3 by manually operating a pump. One K-Turbo blower with a 100 hp motor provides air to the diffusers. The addition of a pump at the GBT, along with piping improvements, will provide ability to use the thickening equipment and then transfer thickened sludge to the aerobic digesters.

Figure 28. Top of Aerobic Digesters 1 and 2

Digesters 3 and 4 are 35 feet in diameter and have an operating depth of about 25 feet. The combined volume of these two digesters is about 370,000 gallons. These were converted from anaerobic digesters in 2012. Figure 29 shows one of the circular aerobic digesters.

Figure 29. Circular aerobic digester

Aerobic Digesters 3 and 4 have radial jet pod, non-clog centrifugal mixing systems. Figure 30 shows the pump at Aerobic Digester 4.

Figure 30. Digester mixing pump

Aerobic Digesters 3 and 4 are served by two Neuros turbo blowers with 50 hp motors. The aeration basin evaluation project completed by Murraysmith in 2019 also considered solids treatment modifications including the impact of resuming operation of the GBT on the aerobic digester. The report notes that aerobic digester mixing, and aeration requirements may be impacted by this process change.

OLWS plans to replace the Neuros blowers with Aerzen blowers that are reportedly better suited for the environment within the partially enclosed equipment shelter. Blower cores have apparently required repair based on exposure to moisture.

3.2.2 Digested Sludge Pumps

Two rotary lobe pumps with 10 hp motors and adjustable speed drives serve as digested sludge pumps to convey the material to the belt filter press. Figure 31 shows one of the digested sludge pumps.

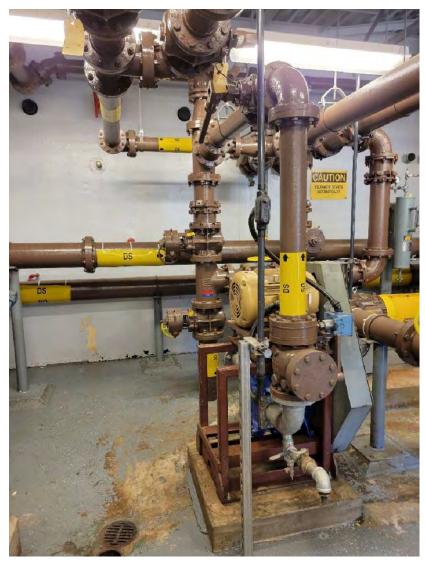


Figure 31. Digested sludge pump

3.2.3 Dewatering

Digested sludge is pumped to the belt filter press and dewatered to a concentration of 11 to 14 percent total solids and loaded into a dump truck using an auger/conveyor system. Figure 32 shows the belt filter press. Figure 3-3 shows the truck loadout facility at the Solids Handing Building. Biosolids are temporarily stored in a shed building located near the plant entrance before being picked up by a contract hauler and transported to Madison Farms in Echo, Oregon.

Figure 32. Belt filter press

Figure 33. Truck loadout at Solids Handling Building

3.3 Support Systems

Support systems at the OLWS WWTP include 3W disinfection system, 3W pumps, and odor control for the Headworks Building and Aerobic Digesters 1 and 2.

3.3.1 3W Disinfection and Pumps

Utility (3W) is disinfected with sodium hypochlorite before plant distribution and use. Two positive displacement metering pumps are used to dose the sodium hypochlorite. No issues with the 3W disinfection system were reported.

There are three vertical turbine pumps that supply 3W for plant use. Two of the pumps have 100 hp motors and the third has a 50 hp motor. Figure 34 shows the 3W pumps.

Figure 34. 3W pumps located at the disinfection facility

There are two strainers associated with the 3W system. The second unit is installed next to a wall making access difficult. The equipment could be shifted away from the wall but there is a road that limits its movement.

3.3.2 Headworks Foul Air Treatment

Foul air withdrawn at the Headworks Building is treated with a two-bed biofilter containing a 5-foot depth organic media. Two fiberglass reinforced plastic centrifugal fans with 7.5 hp motors are used to exhaust air and supply the biofilter.

Section 4: References

Murraysmith. Oak Lodge Water Services District, Aeration Basin Evaluation and Upgrades Project. 2019.

Oak Lodge Water Services District. Biosolids Management Plan. May 2021.

Oak Lodge Water Services District. Draft Facility Description for NPDES Permit Renewal. 2021.

Attachment A: Operator Workshop Meeting Minutes

ptember 1, 2021 VRF Operator Workshop

Soals Of Workshop, Part 1 of 2

Task 6.1 Existing WRF Operations*

- Address DEQ requirements to incorporate operations considerations into Sanitary Sewer Master Plan
- Develop comprehensive list of operator concerns for liquids stream, solids stream, and support systems
- * Under future tasks, information will be:
- Incorporated into WRF capacity assessment
- Used to identify upgrades to address concerns as part of alternatives for future projects

Soals Of Workshop, Part 2 of 2

Task 6.2 Influent Flow and Load Characterization

- > Discuss review of historical data
- Discuss wastewater characterization sampling program

AFLUENT/PLANT DRAIN PUMP STATION

Operator Concerns/Issues

- Minimal slope on wet well floor resulting debris being trapped in corners
- Influent pumps recently replaced with F

HEADWORKS

Operator Concerns/Issues

- V
- V Influent sampler plugging Screens do not capture all rags
- V Headcell works well but grit snail does fully separate grit and some spills over aeration basins

NERATION BASINS

Operator Concerns/Issues

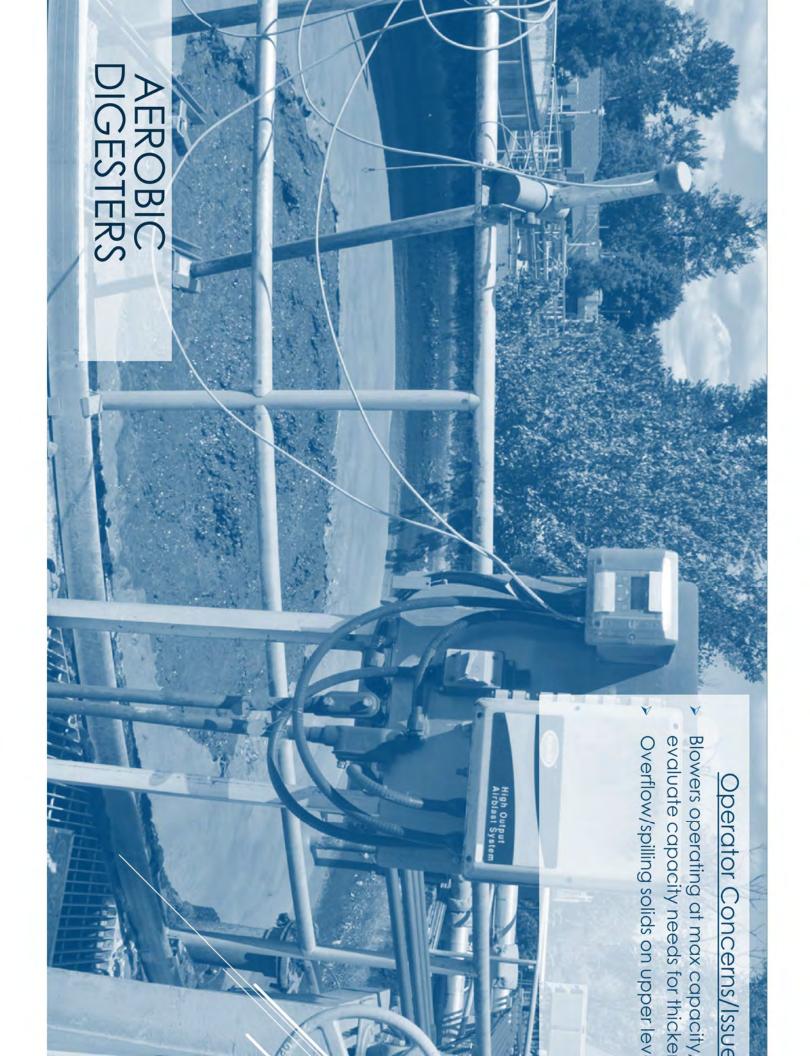
- Foaming and crusting Lack of baffles limiting operating flexib
- Need to install classifying selector and optimize anoxic selector operation to improve sludge settleability in clarifiers Some issues may be addressed by curr AB blower/baffle project

SECONDARY

Operator Concerns/Issues

Poor settling sludge (high SVI) Planning project to replace mechan Secondary Clarifiers 1 and 2 along w some piping improvements

JV DISINFECTION


Operator Concerns/Issue

Uneven flow split/level between chc Continuous movement of gates for le control produces wear on gates. Gear box at the bottom of the tank Difficulty lifting bulbs out of the chan

W PUMPS AND OTHER SUPPORT SYSTEMS

A a

Operator Concerns/Issue

BIOREACTORS

Strength of the second second

0.0

Operator Concerns/Issue

 No longer used as designed, curren as aerobic digesters

OLIDS PUMPING

3

Operator Concerns/Issues Age of facility, will need to be replace 15 years

Operator Concerns/Issues

- Age of facility, will need to be replace 15 years Gravity belt thickener has not been op for a long time
- Some parts of belt filter press recently refurbished but not entirely
- Some issues with the belt installation

H

Die I

AND DEWATERING

OLIDS HANDLING

ŋ

Building 75

Operator Concerns/Issues

Truck fills up quickly and require opera transfer biosolids to storage facility on Using storage space previously used for vehicles and equipment to store bioso Biosolids storage is open and can be s odors, especially in summer

haracterization ask 6.2 Influent Flow and Load

MWSC

Appendix D WWTP Regulatory Framework

D

Wastewater Master Plan Oak Lodge Water Services

2020 Research Park Drive Suite 100 Davis CA 95618 530.756.5905 phone 530.756.5991 fax westyost.com

TECHNICAL MEMORANDUM

DATE:	February 6, 2023	Project No.: 1001-50-21-03 SENT VIA: EMAIL
TO:	Sarah Jo Chaplen, General Manager, Oak Lodge Water Service	es
CC:	Scott Duren, PE, Water Systems Consulting Art Molseed, PE, Brown & Caldwell	
FROM:	Raj Kapur, Engineering Manager	
REVIEWED BY:	Walter Meyer, PE, RCE 22399	
SUBJECT:	Regulatory Framework	

This Technical Memorandum (TM) presents regulatory framework for the Sanitary Sewer Master Plan for the Oak Lodge Water Services (OLWS) Water Reclamation Facility (WRF). The regulatory framework along with current requirements and potential longer-term requirements that may be implemented during the planning period are presented in the TM.

1.0 FRAMEWORK

Oregon Department of Environmental Quality (DEQ) establishes and enforces water quality standards that ensure the protection of the beneficial uses of the Willamette River. Discharges from wastewater treatment plants are regulated by the National Pollutant Discharge Elimination System (NPDES) requirements in the federal Clean Water Act. All discharges of treated wastewater to a receiving stream must obtain and comply with the conditions of an NPDES permit. In Oregon, the Environmental Protection Agency (EPA) has delegated the implementation of the NPDES permit program to DEQ; EPA provides an oversight role in the implementation of the NPDES permit program.

1.1 Beneficial Uses

To assist in the development of water quality standards, a list of beneficial uses is established for each water body in the state. Oregon Administrative Rule (OAR) 340-041-0340 lists the beneficial uses for the Willamette River in the vicinity of the OLWS WRF (Table 1).

Table 1. Designated Beneficial Uses for the Willamette River from the Mouth to the Willamette Falls				
Beneficial Uses				
Public Domestic Water Supply ^(a)				
Private Domestic Water Supply ^(a)				
Industrial Water Supply				
Irrigation				
Livestock Watering				
Fish & Aquatic Life				
Wildlife & Hunting				
Fishing				
Boating				
Water Contact Recreation				
Aesthetic Quality				
Hydro Power				
Commercial Navigation & Transportation				
^(a) With adequate pretreatment (filtration & disinfection) and natural quality to meet drinking water standards. Source: OAR 340-041-0340.				

1.2 Oregon Administrative Rules for Wastewater Treatment

The state surface water quality and waste treatment standards for the Willamette Basin are detailed in the following sections of the Oregon Administrative Rules (OARs):

- OAR 340-041-0004 lists policies and guidelines applicable to all basins. DEQ's policy of antidegradation of surface waters is set forth in this section.
- OAR 340-041-0007 through 340-041-0036 describes the standards that are applicable to all basins.
- OAR 340-041-0340 through 340-041-0345 contain requirements specific to the Willamette Basin including beneficial uses, approved Total Maximum Daily Loads (TMDLs) in the basin, and water quality standards and policies.

The surface water quality and waste treatment standards in the OARs are viewed as minimum requirements. Additional, more stringent limits developed either through the TMDL process or a water quality analysis for the renewal of the NPDES permit would supersede the basin standards.

1.3 Integrated Report and 303(d) Listing

Section 305(b) of the federal Clean Water Act requires states to develop a status report on the quality of its surface waters. Section 303(d) of the federal Clean Water Act requires states to develop a list of impaired streams (i.e., streams that do not meet water quality standards). DEQ recently completed the 2022 Integrated Report that meets both objectives of the federal Clean Water Act. The 2022 Integrated Report was approved by EPA on September 2, 2022.

The Integrated Report categorizes all assessed waterbodies. Waterbodies in Category 4A represent the pollutants for which TMDLs have been completed. For the segment of the Willamette River where the

TM – Oak Lodge Water Services February 6, 2023 Page 3

OLWS WRF discharges, TMDLs have been completed for 2,3,7,8-TCDD (dioxin), methylmercury, and bacteria. A discussion of the TMDLs is presented in the next section.

Waterbodies in Category 5 constitute the 303(d) list and require the development of a TMDL to address impairments of water quality standards. The 303(d) listings provide an insight to new TMDLs that may be developed in the Willamette River Basin. The assessment unit where the OLWS WRF discharges is the segment of the Willamette River from the confluence of the Clackamas River to Johnson Creek. Johnson Creek to the confluence with the Columbia River is the segment of the Willamette River immediately downstream of the OLWS WRF discharge. Category 5 listings in the 2022 Integrated Report for these segments of the Willamette River are listed below:

Table 2. 2022 Integrated Report for the Willamette River:						
Category 5 Listings						
Segment Pollutant						
	Biocriteria					
	Temperature					
	Cyanide					
Clackamas River to Johnson Creek	Ethylbenzene					
(Assessment Unit ID: OR_SR_1709001201_88_104019)	Hexachlorobenzene					
	Polycyclic Aromatic Hydrocarbons (PAHs)					
	Legacy Pollutants: aldrin, DDE 4,4', DDT 4,4', dieldrin, Polychlorinated Biphenyls (PCBs)					
	Biocriteria					
	Harmful algal blooms					
	Temperature					
Johnson Creek to the Columbia River	Dissolved oxygen					
(Assessment Unit ID: OR_SR_1709001202_88_104175)	Cyanide					
	Polycyclic Aromatic Hydrocarbons (PAHs)					
	Legacy Pollutants: aldrin, DDE 4,4', dieldrin, Polychlorinated Biphenyls (PCBs)					

The segment of the Willamette River where the OLWS discharges is listed for biocriteria; the segment of the Willamette River immediately downstream is listed for both biocriteria and harmful algal blooms. In its 2022 Integrated Report frequently asked questions, DEQ noted the following regarding these listings:

In most cases, DEQ does not have information regarding the specific pollutant(s) of concern that is responsible for the algal blooms, biocriteria impacts, etc. Often the stressor is not known until a TMDL is developed, which will identify the cause of the impairment, including linking a pollutant to the water quality condition. The TMDL will identify the pollutant of concern for the impairments and derive the wasteload allocations for the relevant pollutants from discharging facilities. When a permit is developed prior to having the pollutant(s) of concern identified, no reasonable potential analysis can be conducted. However, when DEQ undertakes a revision of a permit and has information related to the

pollutant of concern that is relevant to the facility, DEQ may include monitoring or other appropriate requirements in the permit.

DEQ does not plan to conduct a reasonable potential analysis and establish effluent limits based on the listings for biocriteria and harmful algal blooms. DEQ plans to develop a TMDL to identify the stressor(s) that are the cause of the water quality impairments. DEQ has not established a time frame for developing a TMDL to address these impairments.

DEQ developed a temperature TMDL for the mainstem Willamette River in 2006 based on the natural conditions criteria. Since the development of the TMDLs, the natural conditions criteria have been set aside by court action. Additionally, DEQ has been ordered to update the TMDLs that were based on the natural conditions criteria. The Willamette Temperature TMDL is being updated in phases. The schedule for updating the TMDL for the mainstem Willamette River is slated to be submitted to EPA for approval by February 2025.

This segment of the Willamette River is listed for cyanide, ethylbenzene, and hexachlorobenzene. Cyanide and hexachlorobenzene were listed in 2010; and ethylbenzene was listed in 2012. These listing were based on limited data (one sample) and predate the more rigorous approach that DEQ adopted in its methodology document as part of its 2018/20 Integrated Report. However, absent additional data, the older listings continue to remain on the 303(d) list.

Currently, DEQ does not have plans to develop TMDLs for the legacy pollutants (i.e., aldrin, DDE 4,4', DDT 4,4', dieldrin, and PCBs) and PAHs. Permit limits are not anticipated for these pollutants, but DEQ has included monitoring requirements to characterize effluent concentrations of these pollutants in municipal wastewater discharges.

1.4 Total Daily Maximum Loads

The Clean Water Act requires DEQ to establish TMDLs and corresponding waste load allocations for all water bodies on the 303 (d) list. The TMDLs include waste load allocations and other requirements that apply to the OLWS WRF. Table 3 presents the TMDLs that have been developed for the Willamette River basin.

Table 3. Willamette River Basin TMDLs					
Parameters (1991) Parameters (2006) Parameters (2021)					
	Bacteria				
2,3,7,8-TCDD (dioxin)	Temperature	Mercury (reissued)			
	Mercury				

The following is a brief discussion of the TMDLs that apply to the Willamette River and the implications of the TMDL on the OLWS WRF discharge:

- **2,3,7,8-TCDD (dioxin)** EPA developed a TMDL for dioxin in 1991. The TMDL defined waste load allocations for pulp and paper mills in the Columbia River Basin. Municipal wastewater treatment facilities are not impacted by the TMDL.
- E. coli Bacteria To address elevated bacteria levels in surface waters, DEQ developed a TMDL for E. coli bacteria. The TMDL includes allocations for municipal stormwater, wastewater, and non-point sources (e.g., agriculture). The TMDL wasteload allocations for

wastewater treatment facilities are the same as the water quality criteria for E. coli bacteria that are typically included in municipal wastewater permits as effluent limits. Thus, the TMDL does not establish any additional requirements for the OLWS WRF discharge.

- Mercury In February 2021, U.S. EPA issued the final Willamette Basin Mercury TMDL. The TMDL notes that the predominant source of mercury in the basin is from atmospheric deposition. The mercury in air originates from national and global sources. Once mercury is deposited on the landscape, the major pathways to streams are surface runoff and erosion of sediment-bound mercury in soils. The TMDL estimated that municipal wastewater treatment facilities contribute about 1% of the mercury load to the Willamette River basin. As a result of their minimal contribution, the TMDL utilizes a management practice-based approach to reduce mercury levels from municipal treatment facilities.
- **Temperature** As noted above, DEQ was ordered to update the temperature TMDLs that were based on the natural conditions criteria. Until the temperature TMDLs are updated, DEQ's procedure is to include the more stringent of the wasteload allocations from the 2006 TMDL or thermal load limits based on the application of the biologically based numeric criteria "after mixing with either twenty-five (25) percent of the stream flow, or the temperature mixing zone, whichever is more restrictive". [OAR 340-041-0028(12)(b)(A)]. For the OLWS WRF, the TMDL waste load allocations are more stringent than thermal load limits based on the application of the application of the stream flow.

2.0 2022 NPDES Permit

The OLWS WRF discharges to the Willamette River at River Mile 20.1 just upstream of the BNSF Railroad Bridge. The following is a discussion of the NPDES Permit that applies to the OLWS WRF discharge.

2.1 Permit Limits

The NPDES permit for the OLWS WRF was recently issued by DEQ with an effective date of May 1, 2022, and an expiration date of March 31, 2027. The permit renewal application is due at least 180 days before the expiration date of the permit (i.e., October 3, 2026).

Table 4 presents the permit limits that apply during the dry season, wet season and year-round basis.

	Monthly Average,	Weekly Average,	Monthly Average,	Weekly Average,	Daily Maximum,		
Parameter	mg/L	mg/L	lb/day	lb/day	lbs		
May 1 – October	31 (Dry Season)						
CBOD ₅	10	15	490 ^(a)	740	980		
TSS	10	15	490 ^(a)	740	980		
November 1 – Ap	oril 30 (Wet Season)						
BOD ₅	30	45	2600 ^(b)	3900	5200		
TSS	30	45	2600 ^(b)	3900	5200		
Other Parameter	ſS	Limitations					
<i>E. coli</i> Bacteria (year-round)		Shall not exceed 126 organisms per 100 ml monthly geometric mean. No single sample shall exceed 406 organisms per 100 ml.					
pH (year-round)		Shall be within the range of 6.0-9.0					
CBOD ₅ /BOD ₅ Percent Removal (year-round)		Shall not be less than 85 percent monthly average					
TSS Percent Ren (year-round)	noval	Shall not be less than 85 percent monthly average					
Evenes Thormal	Lood Limit (FTLL)	Option A: 47 million kcal/day (7-day rolling average)					
Excess Thermal Load Limit (ETLL) (June 1 – September 30)		Option B: (0.001686 x Qr) + 32.3 million kcal/day (7-day rolling average)					

(b) Wet season mass load limits for BOD₅ and TSS based on an average wet weather design flow of 10.5 MGD and rounded to two significant figures.

The <u>previous</u> NPDES permit for the OLWS WRF was issued in 2004. The 2004 NPDES permit specified dry season limits for CBOD₅ of 15 mg/L as a monthly average and 25 mg//L as a weekly average; TSS limits were 20 mg/L as a monthly average and 30 mg/L as a weekly average. These limits were updated in the 2022 NPDES permit in accordance with OAR 340-041-0061(3)(c), which states the following:

Wherever minimum design criteria for waste treatment and control facilities set forth in this plan are more stringent than applicable federal standards and treatment levels currently being provided, upgrading to the more stringent requirements will be deferred until it is necessary to expand or otherwise modify or replace the existing treatment facilities. Such deferral will be acknowledged in the permit for the source.

With the recent upgrades to the WRF, the 2022 NPDES permit includes more stringent $CBOD_5$ and TSS concentration limits of 10 mg/L as a monthly average and 15 mg/L as a weekly average during the dry season. The updated $CBOD_5$ and TSS concentration limits in the 2022 NPDES permit are based on the "Minimum Design Criteria for Treatment and Control of Sewage Wastes" for the Willamette River basin (OAR 340-041-0345). Dry season mass load limits for $CBOD_5$ and TSS reflect the average dry weather design flow of the upgraded OLWS WRF (i.e., 5.9 MGD).

TM – Oak Lodge Water Services February 6, 2023 Page 7

There is no change in the wet season concentrations limits for BOD_5 and TSS. Wet season mass load limits for BOD_5 and TSS are higher than in the 2004 NPDES permit and reflect the higher average wet weather design flow of the upgraded WRF (i.e., 10.5 MGD).

The 2004 NPDES permit also included a waiver of the daily mass load limit when flows to the facility exceeded twice the average dry weather design flow. For facilities that have expanded average dry weather treatment capacity after 1992, the daily mass load limit waiver is no longer available. Accordingly, the 2022 NPDES permit does not include the waiver of the daily mass load limit. Since OLWS was able to secure a mass load increase for the wet season based on the expanded capacity of the WRF, the removal of the daily mass load limit waiver will likely be limited.

The 2022 NPDES permit includes effluent limits for *E. coli* bacteria, pH, and percent removal for CBOD₅/BOD₅ and TSS. These limits are either based on federal secondary treatment standards (pH and percent removal) or water quality criteria (*E. coli* bacteria). No changes are expected to these requirements in the near-term.

2.2 Temperature

As noted above, DEQ's procedure is to include the more stringent of the wasteload allocations from the 2006 Willamette Temperature TMDL or thermal load limits based on the application of the biologically based numeric criteria until the TMDL is updated. For the OLWS WRF, the 2006 TMDL waste load allocations are more stringent than thermal load limits based on the application of the biologically based numeric criteria. Thus, the 2022 NPDES permit also includes effluent limits for temperature in the form of an excess thermal load limit from the 2006 Willamette Temperature TMDL. The excess thermal load limits apply from June 1 – September 30 of each year.

OLWS can use two options to demonstrate compliance with the excess thermal load limits - Option A, which includes a static excess thermal load limit or Option B, which enables the calculation of excess thermal load limits based on Willamette River flow. With the static Option A limit, OLWS was granted a portion of the TMDL reserve capacity which equated to 1.127 times the TMDL waste load allocation in addition to the allocation in the TMDL. With the inclusion of the reserve capacity, the static thermal load (Option A) is higher for most dry season flow conditions (Figure 1). Only when Willamette River flows as measured at Portland are greater than 8720 cfs is it more advantageous to use Option B for defining excess thermal load limits.

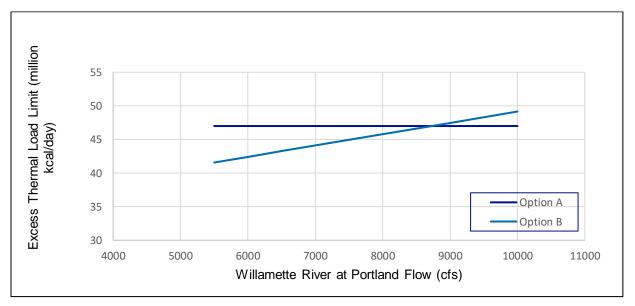


Figure 1. Excess Thermal Load Limits vs. Willamette River Flow

Temperature and excess thermal loads over six summers (June 2016 to September 2021) were reviewed. Figure 2 presents effluent temperature data, excess thermal loads, and the excess thermal load limit from June to September of each year from 2016 - 2021. It should be noted that the excess thermal load limits were not incorporated into the NPDES permit until 2022 but were reviewed as an indication of future performance and the ability of the WRF to comply with these requirements.

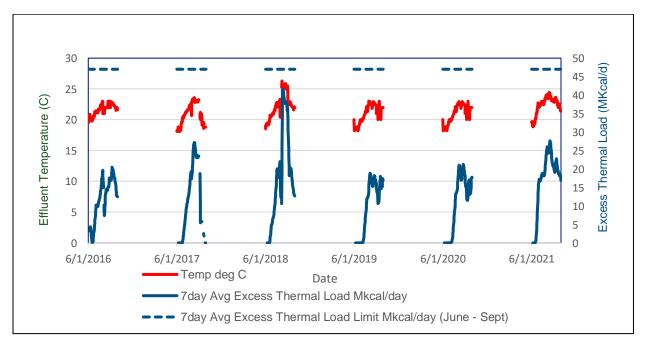


Figure 2. Effluent Temperature and Excess Thermal Load (2016 – 2021)

Over this period, the WRF would have consistently met the excess thermal load limits. Note that effluent temperature from August 6 - 31, 2018 were near or above 25 °C; this resulted in excess thermal loads in the range of 34 million kcal/day to 41.6 million kcal/day during this period. Temperatures immediately

TM – Oak Lodge Water Services February 6, 2023 Page 9

before and after this period were several degrees C cooler. Temperature data that led to the higher excess thermal load in August 2018 may not be representative of discharge characteristics. More recent data including data from 2021 during the heat dome conditions suggest that the discharge should be able to meet thermal load limits during the 5-year NPDES permit cycle.

There is uncertainty regarding the excess thermal load limits in the longer-term. As noted above, DEQ is updating the temperature TMDL for the Willamette River to reflect the removal of the natural conditions provision in the water quality standard for temperature. This may result in changes to the excess thermal load limit particularly the reserve capacity that was allocated to the OLWS WRF.

2.3 Mixing Zones

The OLWS WRF has two outfalls. Outfall 001 is the primary outfall with an 18-port diffuser and Outfall 001A is a wet weather outfall with a 4-port diffuser that is expected to be used only during extreme flow events. A mixing zone study was conducted in 2017 that documented environmental conditions, mixing characteristics and resulting dilutions at the two outfalls. The mixing zone dimensions of the primary outfall were revised based on the study. The applicable water quality standard, the stream flow statistic, and the resulting dilutions at the Zone of Immediate Dilution (ZID) and the Regulatory Mixing Zone (RMZ) are presented in Table 5.

Table 5. Mixing Zone Dilution						
Outfall	Water Quality Standard	Stream Flow Statistic	Zone of Immediate (ZID) Dilution	Regulatory Mixing Zone (RMZ) Dilution		
	Aquatic Life (acute)	1Q10 (6,108 cfs)	108	N/A		
Outfall 001	Aquatic Life (chronic)	7Q10 (6,146 cfs)	N/A	457		
Outfall 001	Human Health (non-carcinogen)	30Q5 (7,431 cfs)	N/A	380		
	Human Health (carcinogen)	Harmonic mean (16,966 cfs)	N/A	778		
Outfall 001 and 001A	Aquatic Life (acute)	100-year flood (375,000 cfs)	Outfall 001: 32 Outfall 001A: 9	N/A		
	Aquatic Life (chronic)	100-year flood (375,000 cfs)	N/A	Outfall 001: 158 Outfall 001A: 44		

The mixing zone provisions in the Oregon Administrative Rules include requirements regarding thermal plumes [OAR 340-041-0053(2)(d)]. These include provisions for protection of salmonid spawning areas, acute impairment, thermal shock, and migration blockage. In the NPDES Permit Renewal Fact Sheet (Section 3.3.6.2), DEQ concluded that there are no salmonid spawning areas near the discharge from the OLWS WRF; the discharge temperatures are well below 32 °C and will not result in acute impairment; the discharge does not cause thermal shock; and does not result in a migration blockage. No additional requirements were included in the 2022 NPDES permit based on the thermal plume criteria.

2.4 Toxicity (Reasonable Potential Analysis)

The results of the mixing zone study were used by DEQ for conducting a reasonable potential analysis (RPA) for the 2022 NPDES permit renewal. The RPA is the process that DEQ uses to determine whether the discharge meets water quality criteria. If the results of the RPA show that the discharge has potential to exceed water quality criteria at the dilutions that occur at the ZID and RMZ, effluent limits are established to ensure compliance with water quality criteria.

DEQ conducted an RPA to determine compliance with water quality criteria for ammonia, metals, cyanide, and priority pollutant organics. The following is a discussion of the results of the RPA.

Ammonia: The water quality criteria for ammonia are dependent on pH, temperature and alkalinity. The 2022 NPDES permit used a maximum effluent ammonia concentration of 15.6 mg/L recorded between 2016 – 2021 in the analysis. The analysis concluded that the discharge does not have reasonable potential to exceed water quality criteria for ammonia at the defined ZID and RMZ. Using the DEQ input values, an additional analysis was conducted using a higher effluent ammonia concentration of 30 mg/L (Figure 3).

RPA Run Information			Please complete the following General Facility Information											
Facility Name:	Oak Loo	odge Water Services 1. Enter Facility De			esign Flow (MGD)	*			ed "Yes" to <i>Qu</i> rs from mixing					
DEQ File Number:	DEC	2 File Num	ber:		2. Do I have dilutio zone study? (Yes/N	on values from a mixing No)	Yes		Dilution @ ZI	D (from study))		108	
Permit Writer Name:	Perm	it Writer N	ame:		3. If answered "No in the following tab	" to <i>Question 2</i> , then fill ble				Z 7Q10 (from : Z 30Q5 (from :			457 380	-
Outfall Number:		1			Stream Flow: 7Q10	CFS	na		(Fresh/Salt)	iving waterboo d " <i>Salt</i> " to <i>Ou</i>	~		Fresh	
					Stream Flow: 30Q5 Stream Flow: 1Q10		na na		salinity (ppt) Ambient Salin		ppt	nen enter	na	
Date of RPA Run:		9/14/2022			% dilution at ZID	%	10%		Effluent Salini	ity	ppt		na	
RPA Run Notes: Effluent ammonia co	oncentration	of 30 mg/L			% dilution at MZ Calculated Dilution Dilution @ ZID	% Factors	25% na		presumed pre	,			Yes	
KEY:		Intermediate	e calc.s		Dilution @ MZ (7Q	10)	na			er statistical <i>Co</i> lues (note: def				
* Enter data here		Calculated re	esults		Dilution @ MZ (300		na		Confidence Le			%'ile	99%	
									Probability Ba	isis		%'ile	95%]
					Dilut	tion Calculatior	าร							
Inputs						Outputs								
Dilution Factors	ZID 108.0	MZ (7Q10) 457.0	MZ (30Q5) 380.0]		Upstream		ZID	MZ (7Q10)	MZ (30Q5)	_			
						рКа		6.4	6.4	6.4				
Upstream Characterization Temperature	deg. C	Acute 23.8	Chronic 23.8	1		Ionization Fraction Total Inorganic Carbo	ma/L CaCO ₂	1.0 28.6	1.0 28.6	1.0 28.6	-			
pH		8	8								1			
Alkalinity n	ng/L CaCO ₃	28	28			Effluent	-				,			
Effluent Characterization						pKa Ionization Fraction		6.4 0.8	6.4 0.8	6.4 0.8	-			
Temperature	deg. C	23.4	23.4]		Total Inorganic Carbo	mg/L CaCO ₃	78.6	78.6	78.6				
рН		7	7								-			
Alkalinity n	ng/L CaCO ₃	64	64			Mixing Zone Temperature	deg. C	23.8	23.8	23.8	1			
*Calculation of pH of a mixture of	of two flows	s based on	the procedu	re in FPA's		Alkalinity	ma/L CaCO ₃	28.3	23.0	23.0	1			
DESCON program (EPA, 1988. Te						Total Inorganic Carbo	mg/L CaCO ₃	29.1	28.8	28.8				
Design Conditions for Steady Sta	ate Modelin	g. USEPA	Office of Wa	ter,		рКа		6.4	6.4	6.4				
** Selection of acute alkalinity			f offluort vo	ombiont		pH Salinity	ppt	7.9	8.0	8.0	J			
For the chronic criteria, average				ampient.		Saminy	ppi			J				
					Reasonal	ble Potential Ar	nalysis							
			Ider	ntify Pollu	tants of Cond	cern	Dete	rmine I r	n-Stream (Conc.		WQ CRI	TERIA	
Pollutant Parameter		# of Samples	Highest Effluent Conc.	Coefficent of Variation	Est. Maximum Effluent Conc.	RP at end of pipe?	Ambient Conc.	Max Total Conc. at ZID	Max Total Conc. at RMZ (7Q10)	Max Total Conc. at RMZ (30Q5)	Acute CMC	Chronic Calc. (4-day avg.)	Chronic Calc. (7Q10)	Chronic Calc. (30 day avg.)
			mg/l	Default=0.6	mg/l	(Yes/No)	mg/l	mg/l	mg/l	mg/l	mg/l	mg/L	mg/l	mg/l
Ammonia (Freshwater Salmonids		217	30	0.6	30.0	Yes	0.0499	0.33	0.12	0.13	3.28	1.57		0.6
Ammonia (Freshwater, Salmonid	ds absent)													
Ammonia (Salt Water)														
Det. Reaso Is there Reasonable F														
Pollutant Parameter		Is there Acute	Chronic (4 day avg.)	Otential to Ex Chronic (7Q10)	ceed? (Yes/No) Chronic (30 day avg.)									
Ammonia (Freshwater Salmonids	s)	NO	NO	(1010)	avg.) NO									
Ammonia (Freshwater Salmonid														
Ammonia (Salt Water)														

Figure 3. Reasonable Potential Analysis with Effluent Ammonia Concentration of 30 mg/L

TM – Oak Lodge Water Services February 6, 2023 Page 11

The results of this analysis also do not show reasonable potential to exceed water quality criteria for ammonia. Thus, it is unlikely that toxicity-based effluent limits for ammonia would be established during the planning period based on the current water quality criteria, and the dilution at the ZID and RMZ.

Metals (except copper and aluminum) and Cyanide: Data collected in 2015 and 2016 were used in the RPA for the 2022 NPDES permit renewal. The analysis concluded that the discharge does not have reasonable potential to exceed water quality criteria for metals and cyanide at the defined ZID and RMZ. Based on the current water quality criteria for metals and cyanide, and the dilution at the ZID and RMZ, it is unlikely that the toxicity-based effluent limits for metals and cyanide would be established during the planning period.

Copper: In 2017, Oregon adopted water quality criteria for copper based on the application of the biotic ligand model (BLM), a bioavailability model. The BLM calculates applicable acute and chronic water quality criteria based on 10 water quality parameters including dissolved organic carbon, pH, temperature, alkalinity and several anions and cations in the effluent and receiving stream. Concurrent, site-specific effluent and receiving stream data were not available. DEQ used available effluent and receiving stream data for the analysis and concluded that the results "do not indicate any immediate concerns for the discharge from the WRF." Thus, effluent limits for copper were not deemed to be necessary.

The analysis also notes that "the lack of data did not allow DEQ to fully assess reasonable potential." The 2022 NPDES permit includes monitoring requirements to obtain sufficient data during the next permit cycle to conduct a more thorough reasonable potential analysis. The 2022 NPDES permit requires the collection of data for a 24-month period from January 2025 onwards. It is unlikely that additional copper BLM data will lead to a different conclusion. For planning purposes, it can be assumed that additional treatment for copper will not be necessary.

Aluminum: In December 2020, EPA issued a rule establishing aquatic life criteria for aluminum applicable to Oregon. The water quality criteria for aluminum are dependent on dissolved organic carbon, pH, and hardness data in the effluent and receiving stream. Due to lack of data, DEQ did not make a conclusive finding regarding aluminum. As such, the 2022 NPDES permit requires the collection of aluminum data along with copper for a 24-month period from January 2025 onwards. Conventional secondary treatment facilities such as the OLWS WRF that do not use alum for nutrient removal will likely not have reasonable potential to exceed the water quality criteria for aluminum. For planning purposes, it can be assumed that additional treatment for aluminum will not be necessary.

Priority Pollutant Organics: Priority pollutant organic compounds include volatile organic compounds, acid-extractable compounds, base-neutral compounds, and pesticides. DEQ used data collected in 2015 and 2016 for conducting the RPA. The RPA concluded that the discharge from the OLWS WRF "did not result in any priority pollutant organics exceeding water quality standards either at the end-of-pipe or regulatory mixing zones". For planning purposes, it can be assumed that additional treatment for priority pollutant organic compounds will not be necessary.

2.5 Mercury Minimization Plan

As noted above, the Willamette Basin Mercury TMDL utilizes a management practice-based approach to reduce mercury levels from municipal treatment facilities. The 2022 NPDES permit includes a requirement to submit a Mercury Minimization Plan by May 15, 2024. Oregon Association of Clean Water Agencies (ACWA) has developed a template for preparing an MMP. This template has undergone review by DEQ so there is greater assurance that utilization and adherence to the template will result in an approvable plan.

2.6 Solids Management

OLWS land applies biosolids for beneficial use. The 2022 NPDES Permit specifies the land application requirements for biosolids. The biosolids management plan was recently updated and approved by DEQ as part of the NPDES permit renewal. Solids are aerobically digested to meet 40 CFR Part 503 Class B biosolids requirements. The biosolids are then dewatered by a belt filter press and then transported to land application sites at Madison Farms in Umatilla County.

3.0 Developing Regulatory Issues

The following is a discussion of regulatory issues that OLWS should continue to monitor. These issues are still in the development stage and additional requirements may be incorporated into NPDES permit upon renewal.

- **PFAS (Per and Poly fluoroalkyl Substances)** EPA has issued a roadmap that identifies several actions that it plans to take over three years (2021 2024) to address the risk posed by these chemicals. NPDES permit-related actions include establishing monitoring requirements, restricting PFAS discharges from industrial sources, publishing recommended ambient water quality criteria for PFAS, and finalizing risk assessments for two of the PFAS compounds of concern (PFOA and PFOS) in biosolids. Future restrictions could affect the land application of biosolids. Refer to the EPA PFAS Road Map for additional details regarding the planned actions and timeframes.
- Coliphage criteria In 2015, EPA published a review of coliphages as a possible indicator of fecal contamination for surface waters. While EPA has not published draft coliphage criteria and to date, has not defined a schedule for publishing draft coliphage criteria, this topic is often listed as an EPA priority (<u>Recreational Water Quality Criteria and Methods | US EPA</u>).

While the development and incorporation of effluent limits based on coliphage criteria is still several years away, OLWS should consider the effect of the application of the coliphage criteria on disinfection technology used at the WRF as part of its planning process.

• **Nutrients**: Nutrients are a key issue at the state and national level. As noted above, the segment of the Willamette River that the WRF discharges is listed on the 303(d) list for biocriteria; the segment of the Willamette River immediately downstream is listed for both biocriteria and harmful algal blooms.

The listings for biocriteria in the segment where the OLWS WRF discharges and the listings for biocriteria, harmful algal blooms and dissolved oxygen in the segment of the Willamette River immediately downstream of the OLWS discharge is likely related to nutrient loading to the Willamette River basin. DEQ has not evaluated the conditions in the river to determine if the river is either nitrogen or phosphorous limited. However, upstream tributaries have been found to be phosphorous limited. Because of the multitude of point and non-point sources that contribute nutrients to the Willamette River basin, a TMDL process will be necessary to define waste load allocations and establish future treatment requirements.

Additionally, the United States Environmental Protection Agency (EPA) has recently issued a memo emphasizing the need to evaluate for nutrients as part of NPDES permit renewals (2022 EPA Nutrient Reduction Memorandum | US EPA).

While there is still uncertainty regarding the scope and timing of nutrient controls that would be required, consideration should be given to incorporate nutrient removal technology (both phosphorus and nitrogen) during the planning period.

TM – Oak Lodge Water Services February 6, 2023 Page 13

• Wet season operations: Bypass, which is defined as an intentional diversion from any portion of the treatment facility is allowed for essential maintenance provided effluent limits are not exceeded. Most treatment facilities in U.S. are designed to bypass a portion of the treatment facility to accommodate peak flows. NPDES permits continue to include a requirement prohibiting bypass of any portion of the treatment facility except when it is unavoidable to prevent loss of life, personal injury or severe property damage. To address this discrepancy between design and operation, and regulatory requirements, EPA put together a workgroup in 2019 to help define a comprehensive wet weather strategy. However, EPA has not defined a wet weather strategy and has no defined timeframe for doing so. This is not a significant issue for OLWS as the WRF has the hydraulic capacity to treat wet weather flows and does not bypass secondary treatment facilities.

MUSC

Appendix E Model Development TM

Wastewater Master Plan Oak Lodge Water Services

Technical Memo

Date:	1/31/2023
То:	Brad Albert, PE
Prepared By:	Adam Donald, PE
Reviewed By:	Scott Duren, PE
Project:	1100-10060 Wastewater Master Plan
Subject:	Modeling Approach Technical Memo

Oak Lodge Water Services (OLWS) has contracted Water Systems Consulting (WSC) to prepare their Wastewater Master Plan. The Wastewater Master Plan will evaluate the adequacy of the wastewater collection and treatment systems to provide safe and reliable service to customers and recommend capital improvements necessary to maintain that level of service into the future. The analysis will be based on estimated wastewater loading projections and a set of evaluation criteria designed to meet regulatory requirements, accepted engineering practices, and OLWS preferences.

This Technical Memorandum (TM) describes the development of the hydraulic model while the capacity analysis and modeling results will be included in the updated Master Plan prepared by WSC. The purpose of this TM is to outline the model development process which includes the importation of infrastructure attribute data, assessment of model connectivity, development and allocation of existing and future flows, and model calibration.

This TM is organized in the following sections:

Section 1.	Model Development	2
Section 2.	Wastewater Flow Development and Allocation	3
Section 3.	Model Loading	14
Section 4.	Calibration	14
Section 5.	References	23
Appendix A	Modifications to GIS Shapefiles	24
Appendix B	Existing and Future Flows	25
Appendix C	Buildable Lands Inventory	26
Appendix D	Flow Meter Locations	27

Section 1. Model Development

WSC has constructed an updated model of the OLWS wastewater collections system using SewerGEMS, a fully dynamic wastewater modeling platform developed by Bentley Systems, Inc. SewerGEMS is a Geographic Information System (GIS) friendly software capable of running within ArcGIS or as a stand-alone application.

The model was built using OLWS' wastewater system shapefiles, which have been maintained and routinely updated by OLWS and are reflective of the current wastewater collection system layout. Upon review of the OLWS' shapefiles, the collection system infrastructure including manholes, cleanouts, lift stations, gravity pipes, and force mains were imported into SewerGEMS. Unique identifiers were used to maintain the connection between the GIS and SewerGEMs features. Throughout the process, alterations were made to address connectivity or import errors and obtain a working SewerGEMS model. Alterations to the shapefiles and general configuration assumptions made during the model build are summarized below and detailed within the hydraulic model. Appendix A includes additional information pertaining to the notes within the model.

- Features identified in the geodatabase as abandoned, removed, proposed, or private were not included in the model build. Proposed features will be included in model scenarios representative of future conditions.
- > Manholes were added upstream of gravity pipes if missing from GIS shapefiles
- Pipelines and manholes missing invert and rim elevation data were populated using the OLWS' record drawings when available. Minimum slopes were assumed when record drawings were unavailable.

In addition to the geospatial location of the collection system features, infrastructure attributes, such as pipe material and diameter, were carried over from the OLWS' shapefiles to SewerGEMS in the import process.

1.1. Elevation Data

Invert elevation data for the model was pulled from OLWS' manhole and pipeline shapefiles. A majority of OLWS' manholes were missing rim and/or invert elevations within the shapefile (Table 1-1). Similarly, about 16% of the pipelines within OLWS' pipeline shapefile were missing at least one invert elevation (Table 1-2). To mitigate these data gaps, WSC used record drawings to update invert and rim elevations. When the pipeline invert data was unavailable in the record drawings, WSC conservatively used the minimum slope from OLWS' design standards to estimate the slope of the main.

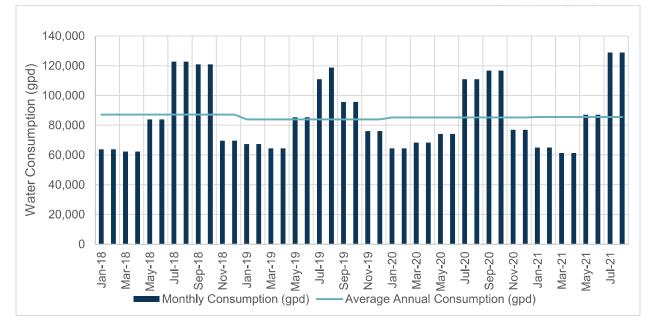
orandum

Table 1-1: Missing Data in Manhole Shapefile

Manholes Missing Rim	Elevation Mar	nholes Missing Invert Eleva	tion Total Manholes
358		2,345	2,739

Table 1-2: Missing Data in Pipeline Shapefile

Pipelines Missing Start Invert	Pipelines Missing Stop Invert	Total Pipelines
398	400	2,578


Section 2. Wastewater Flow Development and Allocation

2.1. Wastewater Flows and Water Consumption

The OLWS wastewater collection system receives flow from approximately 8,239 parcels consisting of water users within OLWS' water service area and the City of Gladstone. Although wastewater flow is not typically metered, wastewater flow can be estimated using water meter data and applying a water to wastewater factor. A significant portion of water consumption eventually becomes wastewater flow and water meters have a geographic location. Therefore, water meter consumption and location data can be used to geographically allocate wastewater flows contributing to the collection system. Allocated flows are then assigned to pipes in the hydraulic model.

OLWS provided billed metered water consumption data for the purposes of analyzing historical consumption trends and estimating wastewater flows. The OLWS water consumption data included monthly consumption for 7,218 customer connections (6,743 parcels) from January 2018 through August 2021 as shown in Figure 2-1. Billing data associated with fire service meters was excluded from the analysis. Additionally, billing data associated with open space parcels was excluded as this water is assumed to be irrigation water that will not enter the wastewater collection system. Water consumption records were not available for customers served by the City of Gladstone. Wastewater flow for these parcels was estimated using a wastewater generation factor based on land use and spatially allocating flow to the centroid of its corresponding parcel. The wastewater generation factor development is discussed further in Section 2.3.

Wastewater Master Plan Modeling Approach Technical Memorandum

ທພຣc

Wastewater flow is typically more closely related to winter water use than summer water use, given that there is generally less outdoor water use for landscape irrigation in the winter when rainfall amounts are high and evapotranspiration (ETo) is low. WSC reviewed the monthly water consumption data and selected the winter months of December, January, February, and March as the most representative months with the least amount of outdoor water use. The daily water consumption for each account was averaged from December through March to provide an estimate of water usage for each account. Water to wastewater factors were developed for each land use type and applied to each account's corresponding water usage to estimate the average wastewater flow within the collection system. For parcels without billing data, a wastewater generation factor was applied to the parcel area based on its land use. These water to wastewater factors were iterated to align with the influent flow into the wastewater treatment plant (WWTP) under dry weather conditions. This flow is representative of the average dry weather flow (ADWF) within the collection system and was estimated to be 1.85 million gallons per day (mgd).

The ADWF within the collection system was estimated using readings from the Influent Lift Station at OLWS' WWTP, which is representative of the flow within the collection system. To determine the ADWF, the available Influent Lift Station flow data and rain gauge data was analyzed to identify periods with no active rain and no rain for a 14-day period prior to the start date of the selected time window. Upon reviewing rainfall data, the window of July 8, 2021 through July 28, 2021 was selected as the most representative dry weather period and the average flow over this time was calculated. Using the hourly breakdown of the flow data, diurnal multipliers were determined for each hour by dividing the average hourly flow by the ADWF. The dry weather flow multipliers are shown in Table 2-1. To understand if the COVID-19 pandemic had influenced the ADWF, a secondary dry weather period from July 18, 2019 through July 26, 2019 was evaluated as a check. This period revealed an ADWF of 1.88 mgd with similar

peaking factors. Since the data was within 2% of each other, it was determined that COVID-19 did not significantly skew the wastewater flow in the collection system.

Hour ¹	Average Hourly Flow (mgd)	Diurnal Multiplier		
0	1.663	0.90		
1	1.376	0.74		
2	1.146	0.62		
3	1.024	0.55		
4	0.955	0.52		
5	0.982	0.53		
6	1.148	0.62		
7	1.491	0.81		
8	1.924	1.04		
9	2.234	1.21		
10	2.411	1.30		
11	2.420	1.31		
12	2.374	1.28		
13	2.294	1.24		
14	2.201	1.19		
15	2.100	1.13		
16	2.055	1.11		
17	2.049	1.11		
18	2.083	1.12		
19	2.127	1.15		
20	2.147	1.16		
21	2.157	1.16		
22	2.123	1.15		
23	1.961	1.06		
ADWF	1.852	1.00		
¹ Hour 0 represents the period from 12 am – 1 am.				

2.2. Spatial Allocation

OLWS' ADWF data was associated with GIS data to spatially allocate existing wastewater flows and develop wastewater generation factors used for projecting future wastewater flows. The process to establish wastewater generation factors for flow projection is shown in Figure 2-2.

Figure 2-2. Spatially Allocated Wastewater Flow Projection Process

The original water consumption account data discussed in Section 2.1 was used to spatially allocate the ADWF data to geographic locations. Each consumption record consisted of a unique address that could be tied to an Assessor's Parcel Number (APN) for allocating the load in space.

As discussed in Section 2.1, water billing records were only available for parcels who receive water from OLWS but OLWS' collection system service area consists of customers served water by the City of Gladstone in addition to those by OLWS. As a result, 1,496 parcels were identified as having an existing load but not having water billing data. These parcels were assigned a flow using a wastewater generation factor based on their land use and area.

A map showing the spatially allocated existing loading by land use zone is attached as Appendix B.

2.3. Wastewater Generation Factors

As discussed in Section 2.2, ADWF data was associated with parcels' land use and development data to aid in developing wastewater generation factors to project flow when billing data was unavailable. The unassociated accounts discussed in Section 2.2 were excluded from wastewater generation factor development due to the lack of water billing data. However, these parcels were included as loads in the model by applying the calculated wastewater generation factors to approximate a load.

The parcel underlying each associated spatially allocated ADWF record was matched to the corresponding APN from GIS parcel data provided by Clackamas County. The acreage associated with each parcel and therefore each ADWF record, was used to calculate wastewater generation factors by land use category. A summary of the wastewater generation factors is shown in Table 2-2.

lors								
	A	Β	C	D	m	т	G	т
			C=A*B				G=E*F	H=C+G
cation	Winter Water Consumption from Billing Records (gpd) ¹	Water to Wastewater Conversion (%)	Estimated BWF Based on Water Meter Data (gpd)	Area with Water Meter Data (Acres)	Wastewater Generation Factor ² (gpad)	Area without Water Meter Data (acres)	Estimated BWF Based on Land Use (gpd)	Total BWF
			Residential	ntial				
acre tax lot	5,726	06	5,153	22.9	225	0.6	129	ហ
0,000 sq ft lot	511,491	06	460,342	1,163.1	396	82.1	32,523	49;
000 sq ft lot	93,808	06	84,427	203.8	414	12.5	5,158	98
000 sq ft lot	284,254	06	255,829	440.6	581	31.8	18,455	27.
000 sq ft lot	12,643	06	11,379	15 <u>.</u> 4	738	168.1	124,037	13
low Density	196,715	96	188,847	143.1	1,306	19 <u>.</u> 8	25,879	21,
erate Density	157,202	96	150,914	<u> 39.</u> 0	3,500	31.3	109,447	26
<u>a</u>	1,261,839		1,156,891	2,027.9		346.1	315,628	1,47
			Non-Residential	dential				
sial	310,799	96	298,367	302.7	975	44.5	43,372	34
mmercial	1,372	100	1,372	2.3	710	0	0	<u></u>
	16,092	100	16,092	<u>33.</u> 3	600	5 <u>.</u> 2	3,145	19
Density	125	95	119	0 <u>.</u> 9	129	0	0	
um Density	13,939	95	13,242	5.4	2,439	0	0	13
space (Includes	5,149	95	4,892	56.1	80	9.8	781	5
ubtotal	347,476		334,084	400.7		59.5	47,297	38
	1,609,315		1,490,975	2,428.6		405.6	362,926	1,85
n was calculated fi s were iteratively a udes all parcels wi	n was calculated from the average water meter records from December-March between 2018-2020 within the OLWS water service area. s were iteratively adjusted from values calculated within the water service area to obtain a total BWF for the collection system within 0.1% of the 1.85 MGD observed at the WWTP i udes all parcels within OLWS' wastewater service area. The number of EDUs for non-residential customers is calculated specifically for this master plan and uses a different metho	records from Decemt ed within the water ser ice area. The number	per-March between 20 vice area to obtain a tc of EDUs for non-reside	18-2020 within the tal BWF for the co ential customers is	within the OLWS water service area. for the collection system within 0.1% of the 1.85 MGD observed at the WWTP stomers is calculated specifically for this master plan and uses a different metho	area. n 0.1% of the 1.85 ly for this master p	MGD observed at th lan and uses a diffe	าе WWTP i rent metho
zoning code assoc all assumed to be	zoning code associated with schools. The water use and subsequent wastewater load in the table is all assumed to be outdoor water use that will not contribute to the wastewater collection system.	er use and subsequent not contribute to the wa	t wastewater load in the astewater collection sy:		representative solely of schools served by the OLWS. Parks and other open sp	ils served by the O	LWS. Parks and oth	ıer open sp
- base wastewater flow	flow gpad = gallons per acre per day		EDU = equivalent dwelling unit	OLWS	= Oak Lodge Water Services		MGD = million gallons per day V	WWTP = w;

on Factors

WSC evaluated the sensitivity of each wastewater generation factor by excluding the largest and smallest parcels for each land use to understand if this skewed the factor such that it was not representative of the land use type. Four land use zones saw noticeable impacts when excluding the largest parcel –MFR3, CN, IL, and POS. The IL zone also saw significant changes when the smallest parcel was removed. Changes were made to these zones to adjust for the larger parcels skewing the flow factor. A summary of the sensitivity analysis is provided in .

Zone	Calculated Wastewater Generation Factor (gpd/acre)	Wastewater Generation Factor with Largest Parcel Excluded (gpd/acre)	Wastewater Generation Factor with Smallest Parcel Excluded (gpd/acre)	Final Wastewater Generation Factor (gpd/acre)
SFR2	225	236	221	225
SFR3	396	394	396	396
SFR4	414	420	414	414
SFR5	581	583	581	581
SFR6	738	745	739	738
MFR1	1,320	1,328	1,314	1,306
MFR3	3,867	2,945	3,885	3,500
CG	986	976	985	975
CN	601	708	574	710
IL	483	598	219	600
MUR3	129	Only 1 Parcel	Only 1 Parcel	129
MUR7	2,439	Only 1 Parcel	Only 1 Parcel	2,439
POS	87	80	87	80

Table 2-3: Wastewater Generation Factor Sensitivity Analysis

The single family residential (SFR) properties were evaluated to determine an estimated flow per equivalent dwelling unit (EDU). OLWS provided the EDU counts for all SFR properties served by their water system. The ADWF that was calculated from the water billing data for each SFR zone was then divided by the number of EDUs to predict a flow per EDU. This was iterated with different water to wastewater factors until the flow per EDU was approximately the same for each SFR land use zone. The resulting flow per EDU established for future development is shown in Table 2-4.

Table 2-4: Residential Flow Factor

Land Use Type	Flow Factor
Residential	131 gpd/EDU

2.4. Future Loading Projection

2.4.1. Buildout Development

Future loading projections were estimated using a buildable lands inventory (BLI) prepared by Angelo Planning Group (APG) that evaluated OLWS' collection system service area to estimate the amount of anticipated buildout at the parcel level. The BLI evaluated parcels to determine if they were developed, partially vacant, or vacant. Buildout development was assumed as follows:

- > Vacant land is fully developable.
- Partially vacant land can be developed if the lot has greater than ½ acre of constrained land. For the purposes of development, it is assumed ¼ acre is retained for the existing home and the remaining acreage can be developed.
- Developed land consists of lots less than ½ acre that are currently occupied or meet the zoning's requirement for fully developed. These lots are considered unsuitable for future development.
- > Land with slopes of 25% or greater is considered fully constrained and not developable.
- > Riparian Habitat Class I and II are considered fully constrained and not developable.
- > Upland Habitat Class A is considered fully constrained and not developable.
- ▶ Riparian Class III and Upland Class B and C land is considered to be 50% constrained.

Using these assumptions, APG estimated the number of additional units anticipated for each type of land use. The total number of new dwelling units is summarized in Table 2-5. APG determined that no additional non-residential development is anticipated. Additional information can be found in the BLI, which is attached as Appendix C.

2.4.2. Middle Housing

For the purposes of planning, some of the development on the vacant land and partially vacant land (Table 2-5) will likely be middle housing (duplexes, triplexes, quadplexes, townhomes, and cottage clusters). In the BLI, APG assumed that middle housing could be present in 25% of these developments, thus increasing the capacity by an additional 35 to 350 units.

In addition to some of the new development being middle housing, APG assumed 5% of developed tax lots in the study area would redevelop to include middle housing. For planning purposes, these lots would add an average of 1.5 additional units, which accounts for most of the development being duplexes but some being triplexes, quadplexes, or cluster

developments. This is anticipated to add an additional 541 units of infill to OLWS' wastewater service area.

	Zone	Zone Classification	Unit Capacity
	HDR	MFR3	0
	MR1	MFR1	118
	R10	SFR3	531
Partially Vacant	R20	SFR2	8
	R7	SFR5	183
	R7.2	SFR6	44
	R8.5	SFR4	134
Vacant	HDR	MFR3	30
	MR1	MFR1	38
	R10	SFR3	92
	R20	SFR2	0
	R7	SFR5	72
	R7.2	SFR6	15
	R8.5	SFR4	61
Total			1,326

Table 2-5: Additional Dwelling Units at Buildout

2.4.3. Commercial Redevelopment

In conversations with Clackamas County, APG identified the possibility of redevelopment of under-utilized lots near the SE Park Avenue Transit Station. Additionally, long-term retail trends could result in redevelopment of some commercial properties into multi-family properties. APG estimated there could be an additional 400 units in the SE Park Avenue Corridor and an additional 400 to 800 units elsewhere along that corridor. For the purposes of future loading, WSC is only evaluating the 400 additional units near the SE Park Avenue Transit Station, as this scenario is considered more likely to occur than the other redevelopment.

2.4.4. Buildout Loading

Buildout loading was estimated using the wastewater generation factors developed in Section 2.3 and the number of new units estimated as part of the BLI. Parcels without new development or redevelopment were assumed to have the same loading as their existing load. Parcels with additional units were assigned a new load that was the sum of the existing load and the load associated with the additional units. For the purposes of estimating buildout loads, all new residential units were assigned a load of 131 gpd/EDU. A summary of the additional

Modeling Approach Technical Memorandum

buildout flows is provided in Table 2-6 and a summary of all flows is provided in Table 2-7. A map of the buildout loading is included in Appendix B.

Table 2-6: Additional Loading at Buildout

Additional Unit Source	Additional Residential Units	Additional Residential Flow (gpd)	Additional Non-Residential Flow (gpd)1	Additional Load at Buildout (gpd)²
Buildout Development	1,326	173,706	5,159	178,865
Middle Housing	809	105,948	0	105,948
Commercial Redevelopment	400	52,400	0	52,400
Total	2,535	332,054	5,159	337,213
¹ Non-residential future flows were estimated using appropriate wastewater generation factors in Table 2-2.				

² All residential units were assigned a load of 131 gpd/EDU

gpd = gallons per day

e Flows	S								
	Existing BWF (gpd)	Existing EDUs	Additional Buildout BWF (gpd)	Future Middle Housing BWF (gpd)	Commercial Redevelopment BWF (gpd)	Total Additional Future BWF (gpd)	Total Existing and Future Buildout BWF (gpd)	Total Existing, Future Buildout, and Middle Housing BWF (gpd)	Total Exit Buildout, Housing, Commerc Redevelc (gpd)
- 1/2	5,282	40	2,620	950	0	3,570	7,902	8,852	8,852
+	492,865	3,762	88,425	51,054	0	139,479	581,290	632,344	632,344
	89,585	684	20,305	11,004	0	31,309	109,890	120,894	120,894
	274,283	2,094	29,344	27,271	0	56,615	303,627	330,898	330,898
	135,416	1,034	7,336	9,380	0	16,716	142,752	152,132	152,132
/ery	214,725	1,639	21,091	5,175	0	26,266	235,816	240,991	240,991
ısity	260,361	1,987	4,585	1,114	0	5,699	264,946	266,060	266,060
	1,472,517	11,240	173,706	105,948	0	279,654	1,646,223	1,752,171	1,752,17
	341,739	2,609	3,560	0	52,400	55,960	345,299	345,299	397,699
	1,372	10	0	0	0	0	1,372	1,372	1,372
	19,237	147	1,599	0	0	1,599	20,836	20,836	20,836
.OW	119		0	0	0	0	119	119	119
ity	13,242	101	0	0	0	0	13,242	13,242	13,242
en es	5,673	43	0	0	0	0	5,673	5,673	5,673
ia	381,382	2,911	5,159	0	52,400	57,559	386,541	386,541	438,941
od = na	1,853,899	14,151	178,865	105,948	52,400	337,213	2,032,764	2,138,712	2,191,11;
בח ב חח	Inns ner nev FULLE	equivalent qwelling	Tinit						

2.5. Peak Wet Weather Flow

2.5.1. Establishing Wet Weather Performance

The desired level of wet weather performance must be selected to evaluate the collection system's ability to handle wet weather flows under both existing and future conditions. This is done by selecting a storm to design around, which is specified based on the quantity of rain over a set time period. Selecting the size of this storm is the responsibility of the owner of the collection system but the Oregon Department of Environmental Quality (DEQ) provides guidance as to what is acceptable. According to OAR 340-041-0009 (7) and (8), all sanitary sewer overflows (SSOs) are prohibited. However, DEQ may withhold enforcement action for an SSO that occurs during larger storm events, defined as a 10-year storm, 24-hour duration for summer months and a 5-year storm, 24-hour duration for winter months. Based on this guidance, OLWS selected a 5-year storm, 24-hour duration for the design storm as this aligns with DEQ guidance for winter conditions. A 5-year storm, 24-hour duration has a total of 3.0 inches of rain over 24 hours and follows the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) (formerly Soil and Conservation Service (SCS)) 24-hour, Type IA distribution. (1) Figure 2-3 shows a comparison of the storm hyetographs for reference.

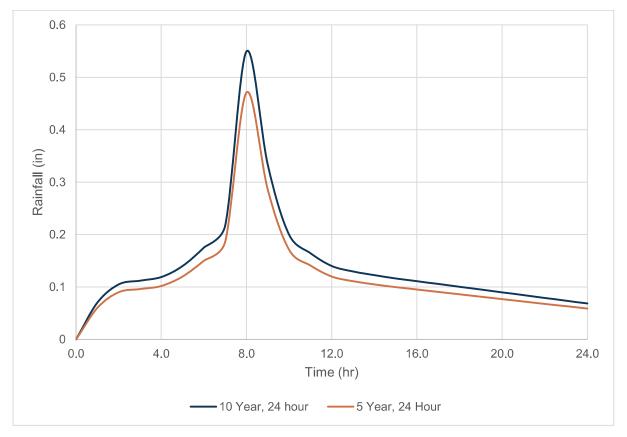


Figure 2-3: Comparison of Storm Hyetographs

Wastewater Master Plan Update Modeling Approach Technical Memorandum

2.5.2. Peak Wet Weather Flow

Peak hour wet weather flow (PHWWF) was estimated by running the calibrated model (see Section 4) with a 5-year, 24-hour design storm and extracting the flow at the Influent Lift Station. This was done under existing and buildout conditions. Buildout conditions included buildout, middle housing, and commercial redevelopment as described in Section 2.4. The results are shown below in Table 2-8.

Table 2-8: Flow Summary

Year	Equivalent Dwelling Units (EDU)	Base Wastewater Flow (gpd)	Peak Wet Weather Flow (gpd)
2022 – Existing	14,151	1,853,899	17,504,994
2052 - Buildout	16,726	2,191,112	17,956,410

Section 3. Model Loading

As discussed in Sections 2.2 and 2.3, estimated wastewater flows were spatially allocated based on the centroids of the parcels with water billing data or the parcels identified for development. Appendix B displays the loading nodes with respect to estimated flows.

The loading nodes were imported into the hydraulic model and flows were distributed to manholes based on the nearest manhole method. This method locates the manhole nearest to a loading node and allocates the total flow of that node to the nearest manhole. The nearest manhole method was also used for allocating the buildout flow.

Section 4. Calibration

The hydraulic model was calibrated to dry weather and wet weather conditions using a combination of Influent Lift Station data and flow monitoring data collected in the system. Flow meters were deployed from December 22, 2021 through February 28, 2022. Since they were deployed during the winter with wet weather conditions, the flow monitoring data is representative of conditions with an elevated groundwater table. To estimate dry weather flow, Influent Lift Station data from the summer months was used when the groundwater table was significantly lower.

4.1. Dry Weather Calibration

As discussed in Section 2.1, the dry weather flow was estimated at the WTTP using Influent Lift Station data from July 8, 2021 through July 28, 2021. This flow was then spatially allocated to parcels within the collection system as outlined ins Section 2.2. Dry weather flow calibration was achieved by comparing modeled flows to the observed flows at the Influent Lift Station to verify flow criteria such as the shape of the hydrograph, timing of peak flows and troughs, magnitude of peak flows, and total flow volume. A summary of the dry weather calibration criteria is provided in Table 4-1.

Parameter	Criteria
Shape	The shape of the modeled hydrograph should visually align with the shape of the observed hydrograph.
Timing	Modeled peaks and troughs should be within 1 hour of the observed peaks and troughs.
Peak Flow	± 10% of observed peak flow
Flow Volume	± 10% of observed peak volume

Table 4-1: Summary of Dry Weather Flow Calibration Criteria

A calibration hydrograph was developed for the collection system. Modeled dry weather flows were then compared to the average dry weather flows during the calibration period. The resulting hydrograph comparisons are shown in Figure 4-1. The spatial allocation of the loading satisfied all dry weather calibration criteria as shown by the results summary in Table 4-2.

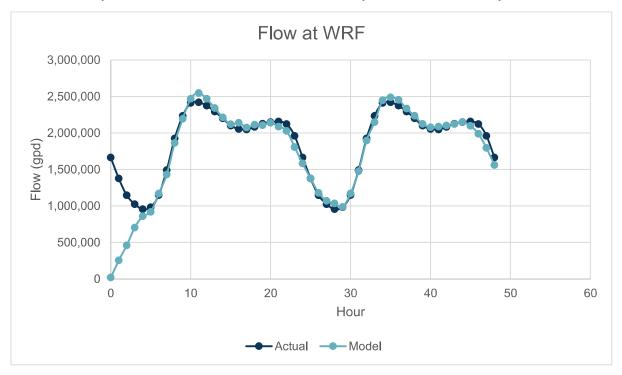


Figure 4-1: Dry Weather Flow Calibration Hydrograph at the Influent Lift Station

Table 4-2: Dry Weather Flow Calibration Results

Criteria	Influent Lift Station
Visually Aligned	Yes
Timing of Peaks and Troughs Aligned	Yes
Peak Flow (% of Observed)	+5.3%
Flow Volume (% of Observed)	+3.6%

4.2. Wet Weather Calibration

4.2.1. RTK Unit Hydrographs

Wet weather flow monitoring was used to capture rainstorm data and understand how OLWS' collection system responds to a storm. The goal of this monitoring was to capture a system stressing rain event to understand RDII within OLWS' collection system. According to ADS Environmental, "system stressing events are typically more than one inch of rainfall in a 24-hour period." (2) Table 4-3 shows the results of the top storms captured during the monitoring period.

Table 4-3: Top Five Rain Events (24 Hour) by Total Rain During Wet Weather Flow Monitoring

Period	Total Rain (inches)	Peak Rain Intensity (inches per hour)
January 2, 2022 6:00 pm – January 3, 2022 6:00 pm	1.65	0.33
February 27, 2022 11:55 pm – February 28, 2022 11:55 pm	1.31	0.34
January 5, 2022 8:35 am – January 6, 2022 8:35 am	0.96	0.12
December 23, 2021 10:00 pm – December 24, 10:00 pm	0.88	0.31
January 19, 2022 1:35 am – January 10, 2022 1:35 am	0.55	0.06

The RTK (note this is not an acronym) unit hydrograph method (RTK method) was used to estimate the impacts of RDII on the collection system flows. The RTK method uses a series of three triangular unit hydrographs to model an observed RDII hydrograph based on flow monitoring data (Figure 4-2). The first unit hydrograph models the rapid response to the rain event and includes primarily inflow into the collection system. The second unit hydrograph models the medium response that includes both inflow and infiltration components. The third unit hydrograph models the slow response to the rain event and includes infiltration, which can persist long after the storm has ended. The combination of the three unit hydrographs creates the modeled total RDII hydrograph. (3)

MWSC

Modeling Approach Technical Memorandum

Each unit hydrograph is defined by three parameters:

- R Fraction of rainfall falling that enters the collection system as RDII.
- T Time to peak RDII flow (measured in hours)
- K Ratio of the time of recession to the time of peak flow

These parameters were iterated using typical values until the modeled hydrograph aligned with the hydrograph from the storm beginning on January 2, 2022 at 6:00 pm and the modeled wet weather hydrograph achieved the calibration criteria outlined in Table 4-4 when compared with observed flow monitoring results. This storm was selected as it had the largest volume of rain over a 24-hour period while having the second highest peak rain intensity. These two factors made it the storm with the largest RDII response.

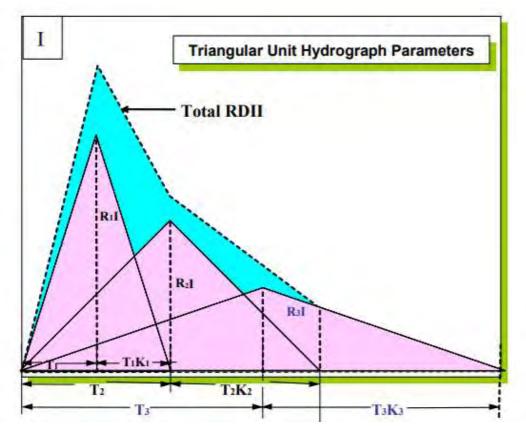


Figure 4-2: RTK Unit Hydrograph Parameters (3)

Modeling Approach Technical Memorandum

Parameter	Criteria
Shape	The shape of the modeled hydrograph should visually align with the shape of the observed hydrograph.
Timing	Modeled peaks and troughs should be similar to the observed peaks and troughs.
Flooding	Predicted flooding locations align with field observations or historical records
Peak Flow	-15% to +25% of observed peak flow
Flow Volume	-10% to +20% of observed peak volume

MUSC

4.2.2. Wet Weather Modeling

Catchments were established in the model using the Thiessen Polygon tool within SewerGEMS, which creates a catchment around each manhole within OLWS' collection system such that any point within the catchment is closer to the catchment's manhole than any other manhole within the system. RTK parameters were assigned to each catchment such that the R, T, and K values were the same for all catchments within a basin. These parameters were finalized by iterating through typical values for R, T, and K and observing the impact on the modeled hydrograph relative to the observed hydrograph. The resulting RTK parameters are presented in Table 4-5 and Figure 4-3.

Basin	R ₁	T ₁	K 1	R ₂	T ₂	K ₂	R ₃	T 3	K ₃
E-949	0.021	3.0	1.0	0.045	7.0	3.0	0.045	12.0	5.0
B-299	0.020	2.0	2.0	0.045	8.0	3.0	0.045	12.0	5.0
2E-566	0.010	3.0	1.0	0.035	8.0	4.0	0.035	11.0	6.0
2B-3820	0.008	1.0	1.0	0.005	3.0	2.0	0.005	10.0	3.0
System RTK 1	0.008	2.0	2.0	0.027	8.0	3.0	0.027	12.0	5.0
System RTK2	0.008	1.0	1.0	0.05	3.0	2.0	0.005	10.0	3.0
System RTK 3	0.010	3.0	1.0	0.015	7.0	3.0	0.015	12.0	5.0

Table 4-5: Model RTK Parameters

The final wet weather calibration results are presented in Table 4-6 for the flow meters with high quality data. Flow meters with poor data quality were excluded from the calibration process. Calibration hydrographs are shown below.

Wastewater Master Plan Update

Modeling Approach Technical Memorandum

Table 4-6: Wet Weather Flow Calibration Results

	2B-3820	2E-566	B-299	E-949
Visually Aligned	Yes	Yes	Yes	Yes
Timing of Peaks and Troughs Aligned	Yes	Yes	Yes	Yes
Flooding Align with Observations	Yes	Yes	Yes	Yes
Peak Flow (% of Observed)	+1.7%	+1.7%	+2.8%	+4.3%
Flow Volume (% of Observed)	+6.0%	-4.1%	-1.1%	+2.5%

WSC

Wastewater Master Plan Update Modeling Approach Technical Memorandum

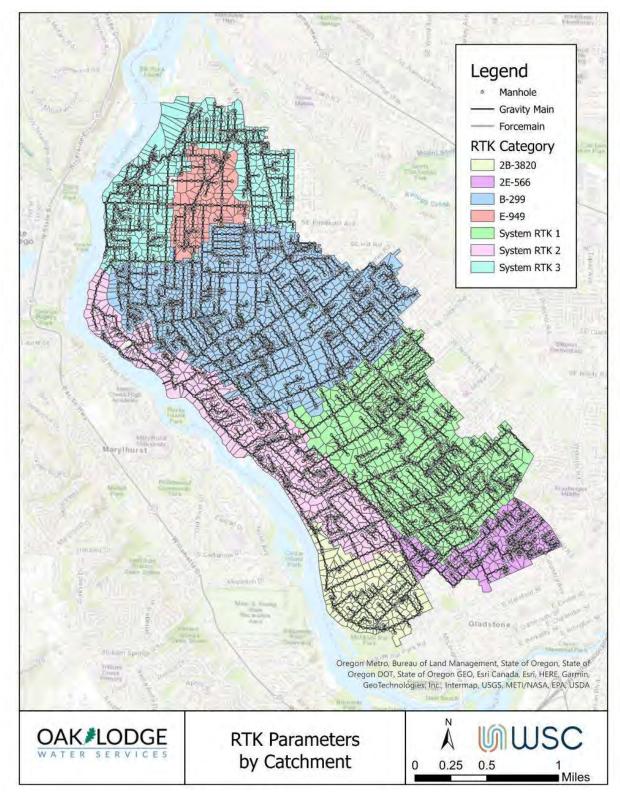


Figure 4-3: RTK Parameters by Catchment

Wastewater Master Plan Update

Modeling Approach Technical Memorandum

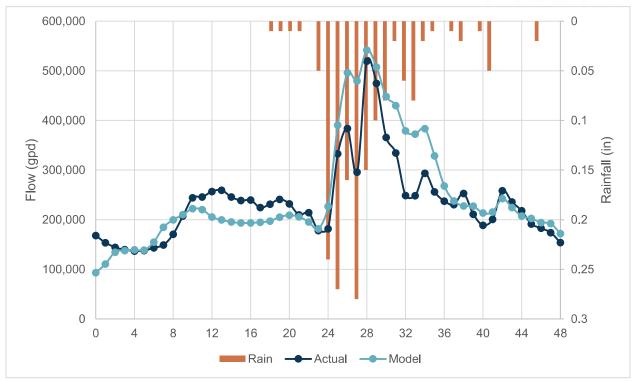


Figure 4-4: Calibrated Wet Weather Hydrograph at Manhole 2B-3820

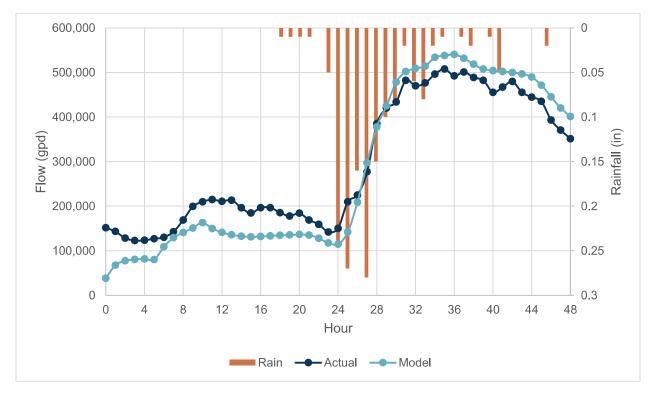


Figure 4-5: Calibrated Wet Weather Hydrograph at Manhole 2E-566

MWSC

Wastewater Master Plan Update

Modeling Approach Technical Memorandum

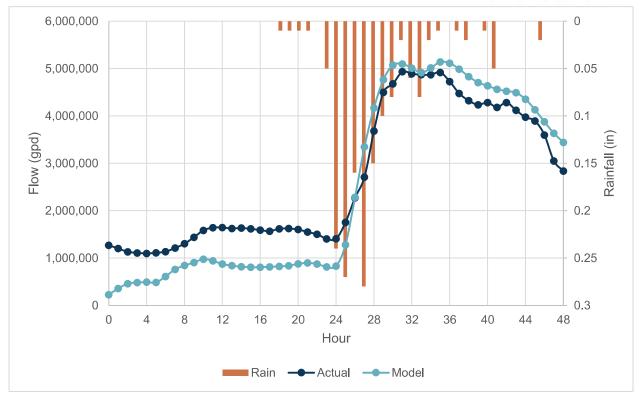


Figure 4-6: Calibrated Wet Weather Hydrograph at Manhole B-299

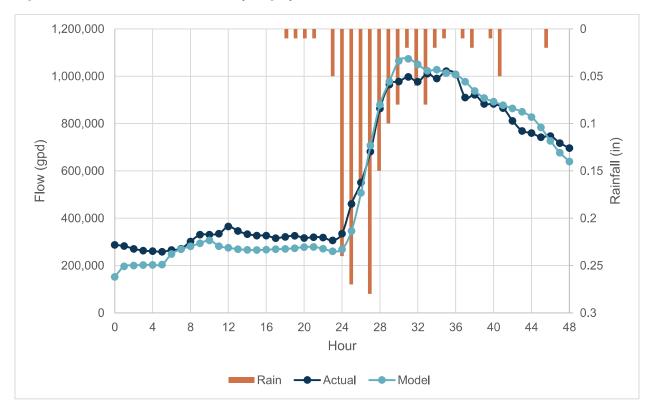


Figure 4-7: Calibrated Wet Weather Hydrograph at Manhole E-949

Section 5. References

1. J.F. Miller, R.H. Frederick, and R.J. Tracey. *Atlas 2: Precipitation-Frequency Atlas of the Western United States.* s.l. : NOAA, 1973.

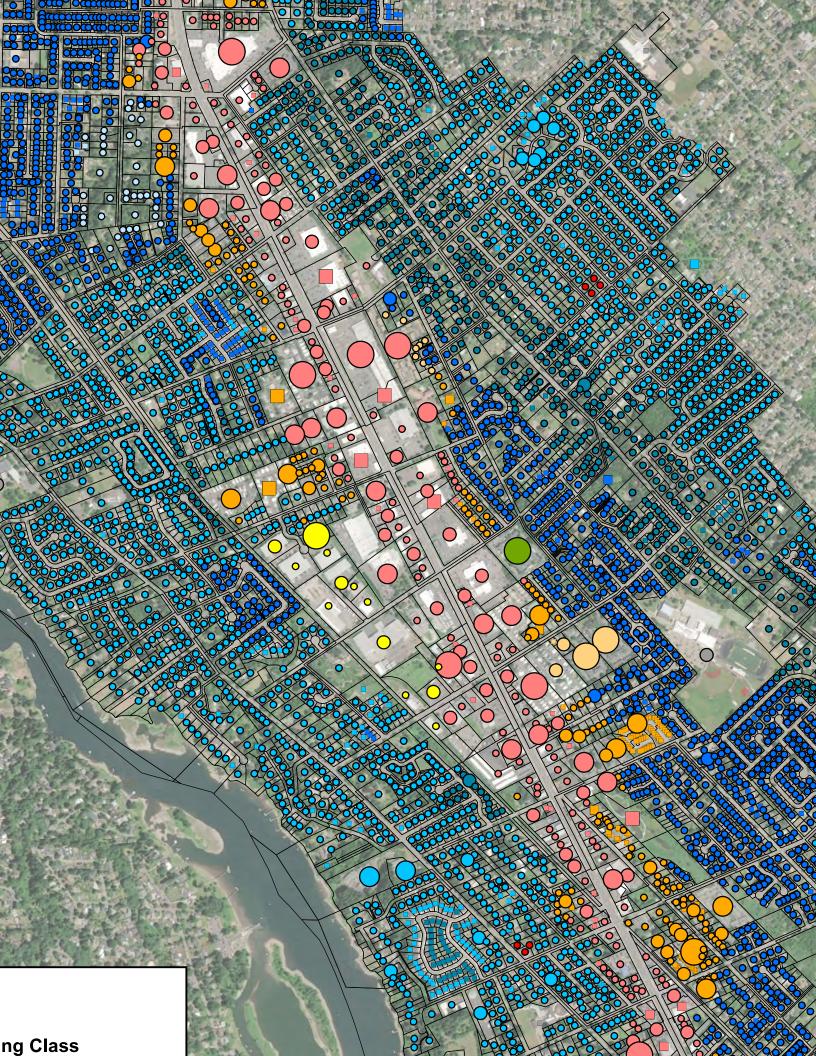
2. *Gettring More From Flow Monitoring - Interpreting Sewer Flow Data to Yield the Maximum Benefit.* **Paul S. Mitchell, P.E. and Patrick L. Stevens, P.E.** Huntington Beach, CA : Water Environment Federation, 2005, Vols. Collection Systems 2005 - Sustaining Aging Infrastructure: System, Workforce, and Funding.

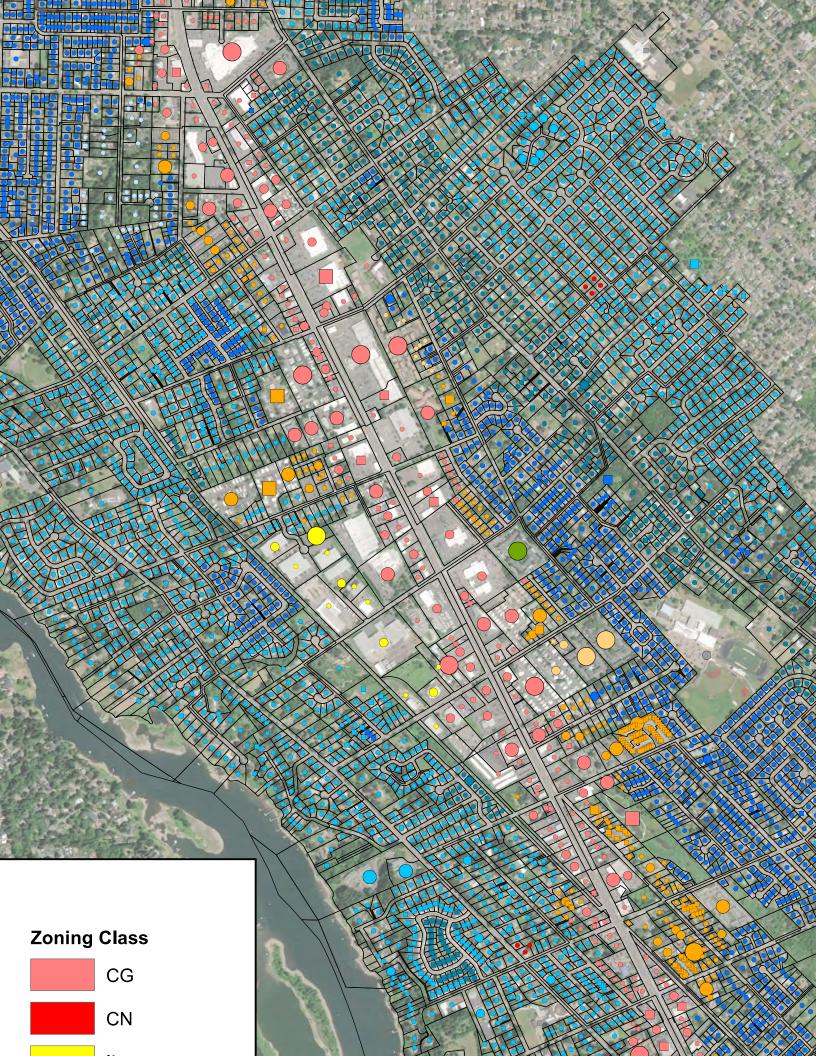
3. A Toolbox for Sanitary Sewer Overflow Analysis and Planning (SSOAP) and Applications. **Fu-hsiung Lai, Srinivas Vallabhaneni, Carl Chan, Edward H. Burgess, Richard Field.** s.l. : U.S. Environmental Protection Agency.

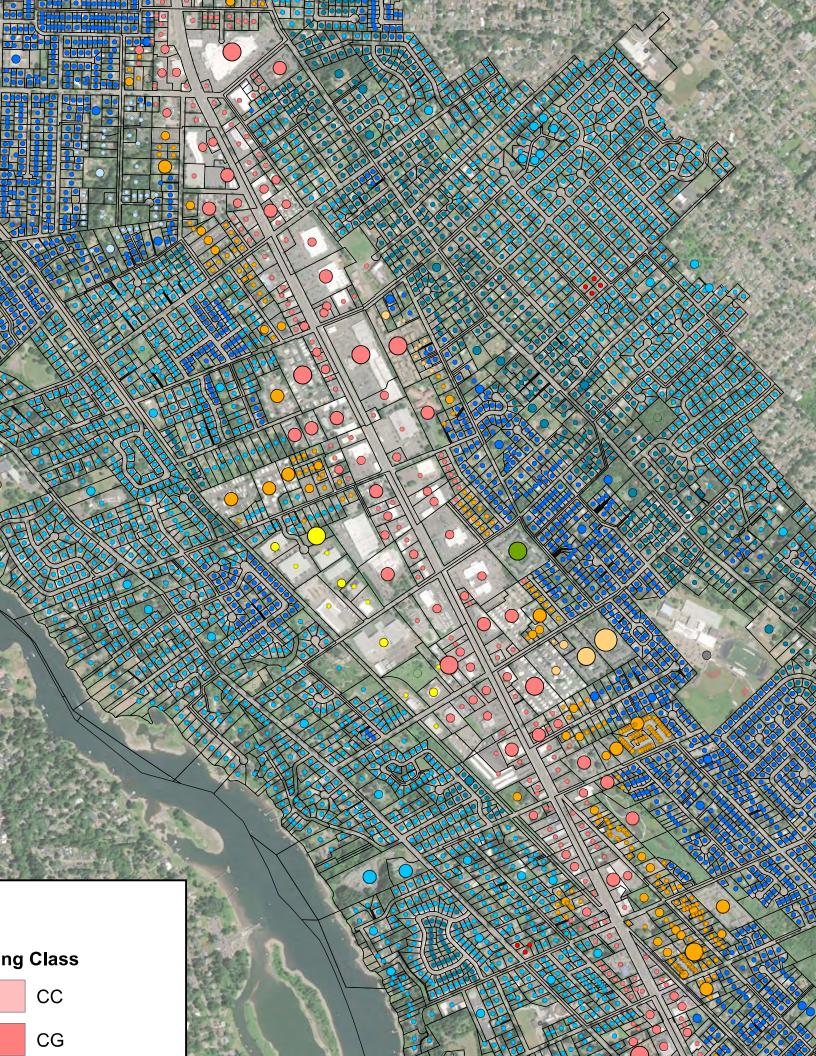
Appendix A Modifications to GIS Shapefiles

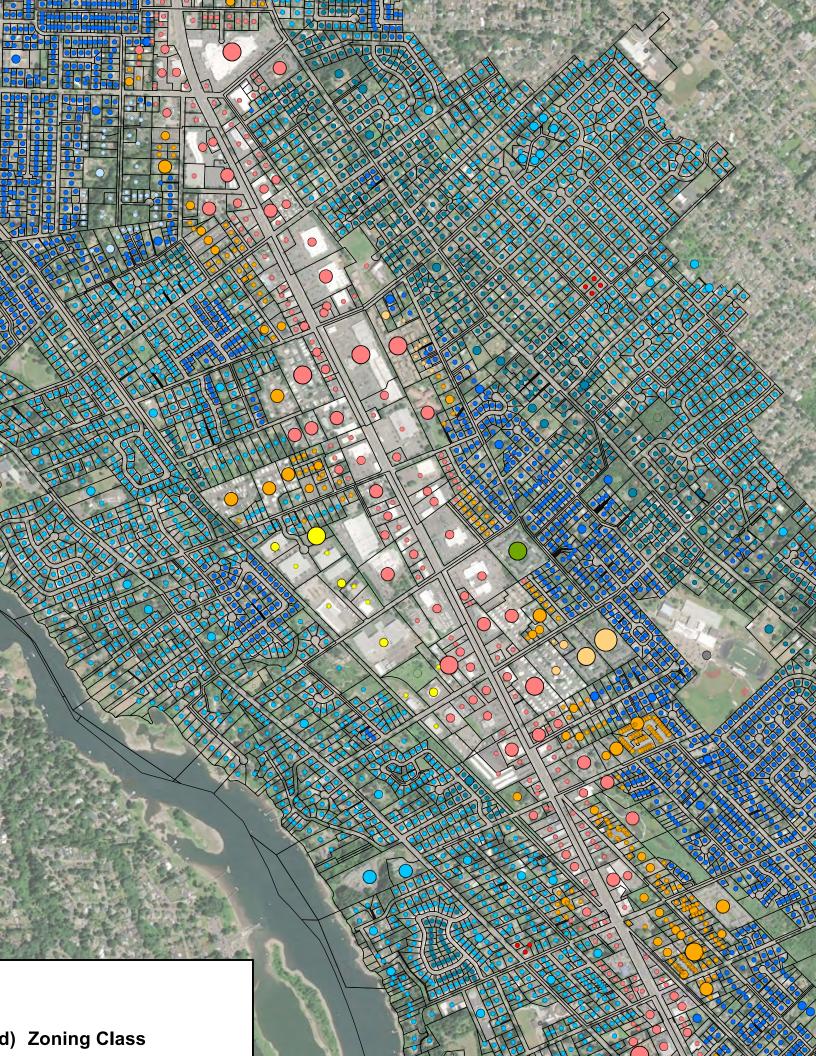
The following tables indicate common notes for assets within the model and what the notes mean.

Gravity Mains


Note	Explanation
Set invert start and/or stop to match manhole.	The inverts provided in GIS did not align with those in the manhole such that there was a lack of continuity with the pipe missing the manhole. The inverts were updated to match the manhole for continuity.
Updated inverts per profile maps.	The inverts of the mains were updated to align with the historical profile maps (record drawings) for OLWS' collection system.
High slope	Mains with high slopes were flagged for confirmation. In most cases, the profile maps confirmed the steep slopes.
Minimum slope assumption	For mains not included in the profile maps with continuity errors, OLWS' minimum pipe slope was assigned to the main as a conservative estimate.


Manholes


Note	Explanation
WSC estimated invert based on adjacent pipe invert values	Many of the manholes were missing invert elevations but the adjacent mains had invert data. In these cases, the invert was revised based on the corresponding invert for the pipe.
Minimum slope assumption	For manholes without profile map information that were missing invert data, OLWS' minimum pipe slope was used to interpolate and estimate an invert.
Missing Rim elevation	When the rim elevation was missing, it was either estimated using LIDAR data for the region or interpolated based on the rim elevation of adjacent manholes

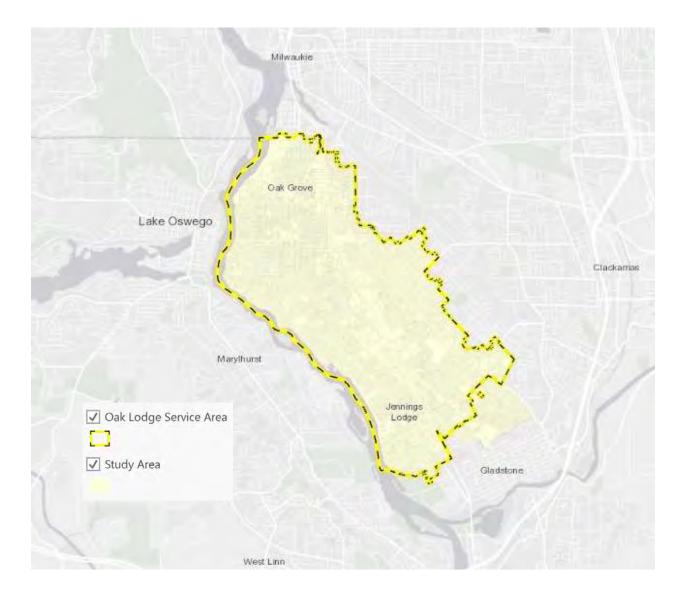


Appendix B Existing and Future Flows

Appendix C Buildable Lands Inventory

MEMORANDUM

Buildable Lands Inventory - Final Draft Oak Lodge Wastewater Master Plan


DATE	January 27, 2023
ТО	Scott Duren, PE, WSC
FROM	Andrew Parish, AICP, and Matt Hastie, AICP, MIG APG
СС	

INTRODUCTION

This memorandum describes the methodology and initial results of a Buildable Lands Inventory (BLI) to support the Oak Lodge Wastewater Master Plan. The BLI is an assessment of the land available for future residential and employment capacity within the Oak Lodge service area and its wastewater basins (see Figure 1).

The components of this memorandum are as follows:

- Source Data
- Step 1: Environmental Constraints
- Step 2: Definition of Residential Land
- Step 3: Development Status
- Step 4: Acreage and Capacity
- Summary and Next Steps

Figure 1. Oak Lodge Service Area and Additional Study Area (Gladstone)

LEGAL BASIS

This report uses state rules and guidelines to guide the analysis since they represent best practices in Oregon for conducting a BLI. However, because this work is not conducted as part of a locally adopted or state acknowledged process, some of its methodology and assumptions differ from statute and rules.

The State administrative rules further define buildable land in the context of a Residential BLI as follows.

(2) "Buildable Land" means residentially designated land within the urban growth boundary, including both vacant and developed land likely to be redeveloped, that is suitable, available and necessary for residential uses. Publicly owned land is generally not considered available for residential uses. Land is generally considered "suitable and available" unless it:

(a) Is severely constrained by natural hazards as determined under Statewide Planning Goal 7;

(b) Is subject to natural resource protection measures determined under Statewide Planning Goals 5, 6, 15, 16, 17 or 18;

(c) Has slopes of 25 percent or greater;

(d) Is within the 100-year flood plain; or

(e) Cannot be provided with public facilities.

(7) "Redevelopable Land" means land zoned for residential use on which development has already occurred but on which, due to present or expected market forces, there exists the strong likelihood that existing development will be converted to more intensive residential uses during the planning period.

OAR 660-024-0050

(2) As safe harbors, a local government, except a city with a population over 25,000 or a metropolitan service district described in ORS 197.015(13), may use the following assumptions to inventory the capacity of buildable lands to accommodate housing needs:

(a) The infill potential of developed residential lots or parcels of one-half acre or more may be determined by subtracting one-quarter acre (10,890 square feet) for the existing dwelling and assuming that the remainder is buildable land;

(b) Existing lots of less than one-half acre that are currently occupied by a residence may be assumed to be fully developed.

Middle Housing Legislation

The Oregon State Legislature passed House Bill (HB) 2001 during the 2019 regular session. HB2001 contains numerous provisions related to the development of "middle housing," defined as duplexes, triplexes, quadplexes, townhomes, and cottage clusters.

HB2001 has the following implications for this BLI:

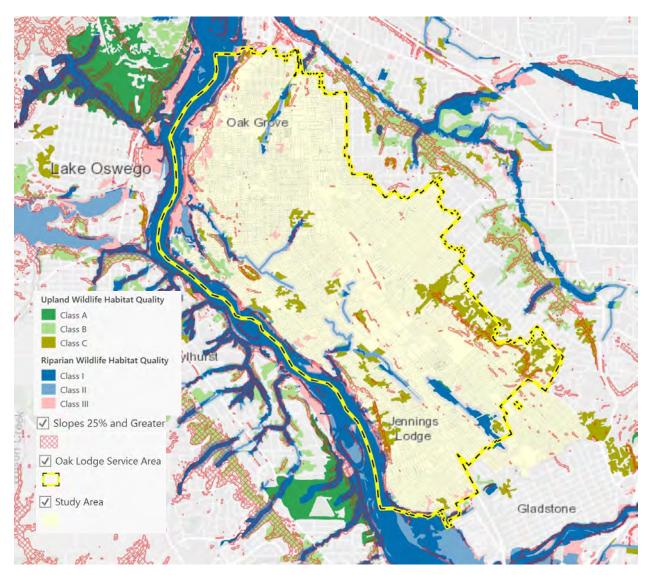
- Duplexes must be allowed on all residential lots that allow a single family detached dwelling.
- Other middle housing types must be allowed in all residential zones, with some discretion given to local jurisdictions regarding siting and design so long as they do not "individually or cumulatively discourage the development of middle housing types through unreasonable costs or delay."

 Density expectations "<u>may not project an increase in residential capacity above achieved</u> density by more than three percent without quantifiable validation of such departures." That is, the allowance of additional middle housing by HB2001 cannot be the sole basis for assuming a significantly increased capacity in a city's residential zones.

These provisions are addressed in Step 4 of this memorandum.

SOURCE DATA

This BLI is based on GIS data from the Metro Regional Land Inventory System (RLIS) and Oak Lodge Water Services, as follows.


- Taxlot data, including parcel ownership, land value, improvement value, and tax assessor property codes.
- Zoning and Comprehensive Plan designations
- Building Footprints
- Title 13 Environmental Constraints (riparian and upland habitat)
- Metro Vacant Land Inventory

STEP 1: ENVIRONMENTAL CONSTRAINTS

Environmental constraints are shown in Figure 2. They include:

- Slopes 25% and greater
- Title 13 Environmental Constraints (riparian and upland habitat)

Figure 2. Study Area Constraints

Land impacted by environmental constraints is assumed to have limited or no capacity for future development, as follows:

- Slopes 25% and Greater: Fully Constrained
- Riparian Habitat Class I and II: Fully constrained
- Upland Habitat Class A: Fully Constrained
- Riparian Class III and Upland Class B and C: 50% Constrained

STEP 2: CATEGORIZE RESIDENTIAL, EMPLOYMENT, AND OTHER LAND

Land within the study area is categorized by zoning/comprehensive plan designation. Generalized zoning from RLIS is shown in the figure below. The study area is predominantly residential, with a

commercial corridor along Highway 99, and a small commercial/employment node in Oak Grove. Residential and employment land are treated differently in Step 3, and other land (such as parks and schools) are considered unavailable for future development.

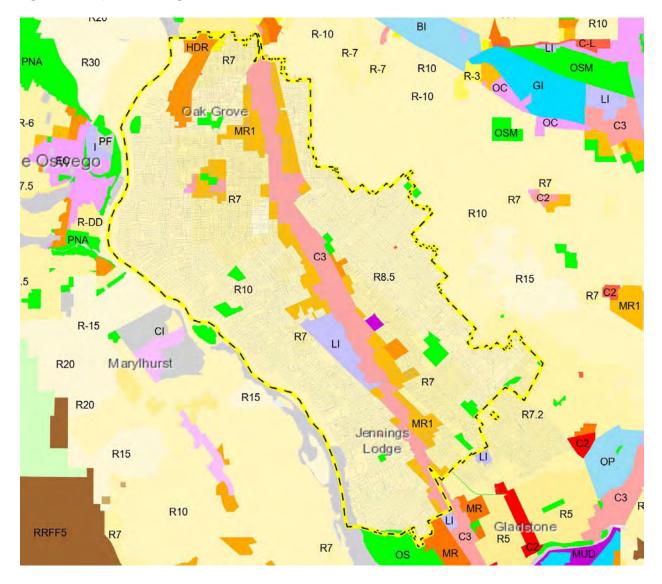


Figure 3. Study Area Zoning

Residential Districts

Residential Land includes taxlots with the following zones.

- Urban Low Density Residential (R-2.5, R-5, R-7, R-8.5, R-10, R-15, R-20, and R-30),
- Village Standard Lot Residential (VR-5/7), Village Small Lot Residential (VR-4/5),
- Village Townhouse (VTH),
- Planned Medium Density Residential (PMD),
- Medium Density Residential (MR-1),

- Medium High Density Residential (MR-2),
- High Density Residential (HDR),
- Village Apartment (VA),
- Special High Density Residential (SHD),
- Regional Center High Density Residential (RCHDR) Districts

Exceptions are as follows:

- Land in public ownership (such as school district & park district) or collective ownership (i.e. a Homeowners Association) is considered unavailable for residential development, unless information to the contrary is available.
- Land owned by a religious or fraternal institution is considered unavailable for residential development unless information to the contrary is available.

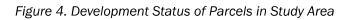
Employment Districts

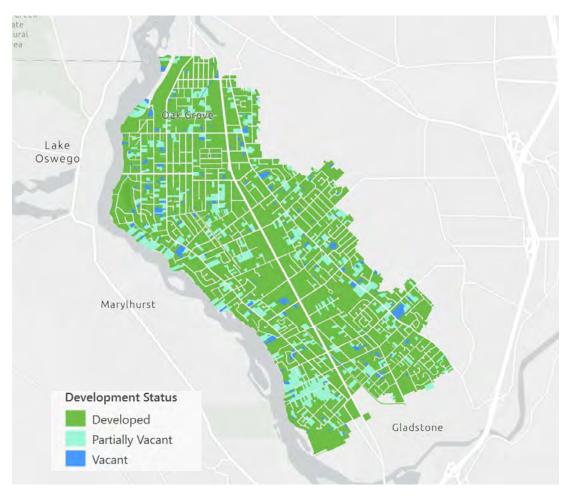
The study area contains land in the C2, C3, LI, and OC designations. Parcels within these zones are assumed to remain/redevelop with employment uses, with the exception of selected lands identified as having the potential for redevelopment as described in the following section.

STEP 3: ASSIGN DEVELOPMENT STATUS

The following "development status" rules are applied to residential land in the study area:

Residential Land


- **Vacant land** is assumed to be fully developable. Taxlots with an improvement value less than \$10,000 that does not fall into other categories is considered vacant.
- **Partially Vacant** land has both vacant and developed acreage. Lots with an existing dwelling containing greater than ½ acre of unconstrained land are assumed to retain ¼ acre for the existing home, while the remaining unconstrained land is considered vacant. (Per safe harbor in 660-024-0050(2))
- **Developed land** includes lots less than ½ acre that are currently occupied (per safe harbor in 660-024-0050(2)) or land that is considered fully developed based on the size, zoning, and level of development on the property. In some cases, developed residential land may be considered redevelopable. These assumptions are detailed in Step 4.


Employment Land

Employment land (including commercial land) is categorized as follows:

• Vacant land is larger than ½ acre and not containing permanent buildings or improvements, or equal to or larger than five acres where less than ½ acre is occupied by permanent buildings or improvements.

- All other employment land is identified as **developed**.
- A subset of land that is developed may be identified as having **redevelopment potential**. These are addressed on a case-by-case basis, as detailed in Step 4.

Comparison with Metro Vacant Land Dataset

As a check of the assumptions used to assess development types, this draft inventory was checked against the Metro RLIS vacant land dataset. These datasets use differing methodologies so perfect agreement is not expected. Areas of vacant land are generally in agreement between the models, however the Metro inventory does not include "partially vacant" parcels.

STEP 4: CALCULATE ACREAGE AND CAPACITY

Gross developable acreage is converted to net acres to account for future rights of way and other needed infrastructure. The 2018 Metro Buildable Lands Inventory¹ uses the following method, which this BLI follows:

- Tax lots under 3/8 acre assume 0% set aside for future streets
- Tax lots between 3/8 acre and 1 acre assume a 10% set aside for future streets
- Tax lots greater than an acre assume an 18.5% set aside for future streets
- Industrial (IND) zoning assumes a 10% set aside regardless of size.

Capacity on net acreage within the study area is calculated using density assumptions based on Clackamas County's development code. The general assumptions are provided in Table 1, and special cases are discussed thereafter.

Zone	Residential Density Range	Notes
R-20	1 unit/16,000 sf	
R-2	1 unit/2,000 sf	
R-3	1 unit/3,000 sf	
R-5	1 unit/5,000 sf	
R-7	1 unit/5,600 sf	
R-7.2	1 unit/5,600 sf	Gladstone designation
R-8.5	1 unit/6800 sf	
R-10	1 unit/8,000 sf	
MR-1	1 unit/3630 sf	
SHD	1 unit/726 sf	
HDR	1 unit/1742 sf	

Table 1. Residential Zones and Density Assumptions

¹ https://www.oregonmetro.gov/sites/default/files/2018/07/03/UGR_Appendix2_Buildable_Lands_Inventory.pdf

Zone	Residential Density Range	Notes					
	Employment Zones						
C2	No residential uses assumed	Potential for					
С3	No residential uses assumed	redevelopment of employment- zoned parcels					
LI	No residential uses assumed	into housing at multifamily densities. See					
ос	No residential uses assumed	Table 5.					
NC	No residential uses assumed						
Other Zones							
OS	No residential uses	Open space					
OSM	No residential uses	Open space					

Residential Capacity

The following table shows the estimated capacity of the vacant and partially vacant land in the study area. Units are forecast using the County's current density calculations, though upcoming changes to the development code related to middle housing will alter what is allowed somewhat (see later section of this memorandum). Highlights are as follows:

- Vacant Lots. There are 227 vacant residential lots in the study area, totaling 91 acres. 63 of those acres are outside of natural resource areas and steep slopes.
 - About 300 units are expected on these sites though some development could be middle housing, potentially resulting in additional units
 - Almost half are on R10 land
 - Almost half are on land in the R-7-8 range
- **Partially Vacant Lots.** There are 475 "partially vacant" residential lots that have a home but enough vacant acreage to support subdivision.
 - Similar distribution of zones as vacant land the R10 zone accounts for about half of the capacity of partially vacant lots.
 - \circ There is capacity for roughly 1,050 units across all zones

Develop- ment Status	Zone	Number of Tax Lots	Gross Acres	Constrained Acres	Vacant Acres	Net Developable Acreage	Unit Capacity
Develope (All Zoi		7,733	2,098.1	247.3	0	0	0
	HDR	1	1.6	1.4	0.0	0.0	0
t	MR1	30	21.6	1.5	12.5	11.1	118
Partially Vacant	R10	297	272.1	57.3	14.5	121.4	531
	R20	9	13.6	5.7	5.6	4.7	8
artia	R7	66	50.9	2.6	31.7	27.5	183
	R7.2	14	11.4	0.4	7.5	6.5	44
	R8.5	52	51.2	9.2	29.0	24.6	134
Total Pa	rtially	469	422.2	78.2	226.8	195.9	1,018
Vaca	nt						
	HDR	2	3.1	1.7	1.5	1.2	30
	MR1	12	4.1	0.0	4.1	3.8	38
l II	R10	100	46.2	19.2	27.0	24.7	93
Vacant	R20	3	1.4	1.1	0.4	0.3	0
>	R7	60	17.2	3.1	14.1	13.0	72
	R7.2	13	3.0	0.2	2.8	2.7	14
	R8.5	36	15.8	2.7	13.0	11.8	61
Total Va	acant	226	90.8	28.0	62.8	57.5	308
Tota	al	8,428	2,611.2	353.9	290.0	258.6	1,326

Table 2. Capacity of Study Area Residential Land

Non-residential capacity

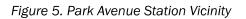
Nearly all employment land in the study area is categorized as "Developed." There are 11 vacant taxlots totaling about 5 acres, split between Light Industrial and Commercial zoning. No residential capacity is assumed in these zones.

Development Status	Zone	Number of Tax Lots	Gross Acres	Constrained Acres	Vacant Acres	Net Developable Acreage
	С3	281	240.2	6.3	0.0	0
Developed	LI	27	61.1	8.3	0.0	0
Total Develop	Total Developed		301.3	14.6	0.0	0.0
Masant	C3	8	2.9	0.4	2.5	2.3
Vacant	LI	3	4.1	1.7	2.4	2.0
Total Vacant		11	6.9	2.1	4.9	4.3
Total		319	308.2	16.7	4.9	4.3

Table 3. Capacity of Study Area Employment Land

Redevelopment and Middle Housing Assumptions

The 2018 Metro BLI uses a "strike price" threshold to identify properties that are more likely to redevelop. This "Strike price" is a dollar amount per square foot of combined building and land value, under which it is assumed that the property could be redeveloped into something providing greater value for the property owner. For suburban areas, this price ranges between \$10 and \$15/sf depending on zoning.


Examining the study area, this screen results in 150 properties at \$10/sf strike price and 203 properties at \$15/sf that may be more likely to see redevelopment during the planning horizon. The following table summarizes the study area tax lots at the more aggressive \$15/sf price. The majority of these potential redevelopment units are on land zoned MR1, and several are manufactured home parks that may be difficult to redevelop and may not see a greater number of residents after development than live there currently.

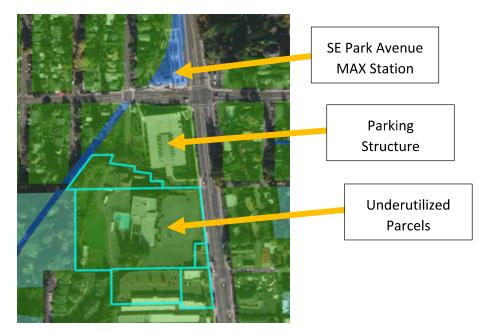

Zone	Gross Acres	Constrained Acreage	Unit Capacity
C3	5.2	0.1	0.0
HDR	1.0	0.3	14
LI	3.2	0.8	0
MR1	13.8	0.6	149
R10	33.9	18.9	47
R20	2.8	0.9	3
R7	5.8	0.2	32
R7.2	1.2	0.0	5
R8.5	4.2	0.7	14
Grand Total	71.1	22.4	264

Table 4. Taxlots	Identified at a	\$15 Strike Price for	r potential Redevelopment
------------------	-----------------	-----------------------	---------------------------

Additional Redevelopment Assumptions

Discussion with County staff has suggested some additional opportunity for redevelopment to occur in the vicinity of the Park Avenue Max Station and along the commercial corridors of the study area. The County is considering changes to zoning maximums to allow up to 60 units/acre near the transit station. There are several sites in the vicinity that meet the definition of "Developed" but would be possible to redevelop at higher densities to form a transit-oriented hub near the station. This could potentially result in several hundred new units in the area – the sites highlighted below total about 10 acres outside of Title 13 areas.

Middle Housing

Part of the impetus for this BLI work is to consider the impacts of Oregon's recent legislation allowing "middle housing" (such as duplexes, triplexes, quadplexes, cottage clusters, and accessory dwelling units) in residential areas statewide. Clackamas County is currently updating its land use regulations to address this legislation by allowing greater housing variety in urban unincorporated areas where infrastructure is available.²

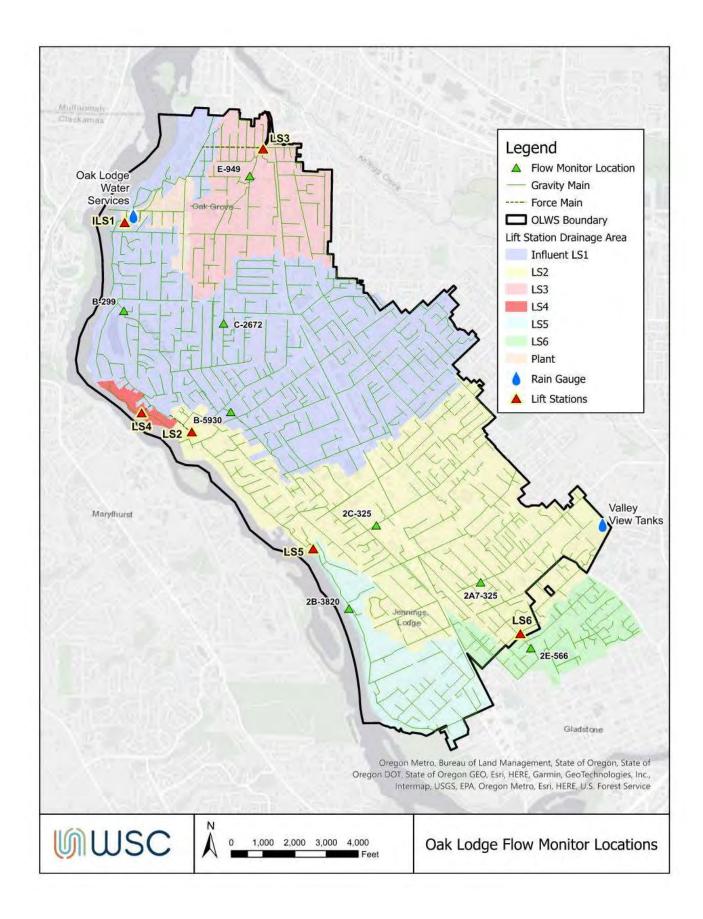
² <u>https://www.clackamas.us/planning/hb2001</u>

State statute and rules generally limit jurisdictions to an assumption of a 3% increase in density in greenfield settings and a 1% increase in infill situations (i.e. lots under ½ acre in size) when calculating the additional development intensity due to the state's middle housing rules.³ This BLI provides a range of growth options that may exceed these limits, though higher assumptions cannot be the basis of certain land use decisions, including urban growth boundary expansions, without additional findings (OAR 660-046-0330(4)).

Table 5. Potential Additional Residential Capacity due to Middle Housing

LAND TYPE	NUMBER OF TAXLOTS	NET DEVELOP -ABLE ACRES	RESIDENTIAL UNITS WITH TYPICAL ASSUMPTIONS (SEE TABLES 2 & 3)	NET ADDITIONAL UNITS	NOTES
Vacant Land	226	57	308	10-100	Only 24 lots are greater than .5 acres – so this is predominantly "infill." If we assume a fairly aggressive increase in capacity of 25% due to new middle housing, we'd see the potential for about 400 new units rather than the current 300.
Partially Vacant Land	469	196	1,018	25-250	About ¼ of these lots are greater than half an acre, indicating potentially greater opportunity for new middle housing development. If we assume a fairly aggressive increase in capacity of 25% due to new middle housing, we'd see about 1300 new units rather than the current 1,018.
Additional Subdivision, ADUs, other Infill on Developed Lots	7,733	-	-	541	It is difficult to estimate the likely transition of developed residences into new middle housing – uptake will likely differ significantly in different parts of the Metro region. If 5% of developed taxlots with existing homes

³ <u>https://oregon.public.law/rules/oar_660-046-0330</u>


LAND TYPE	NUMBER OF TAXLOTS	NET DEVELOP -ABLE ACRES	RESIDENTIAL UNITS WITH TYPICAL ASSUMPTIONS (SEE TABLES 2 & 3)	NET ADDITIONAL UNITS	NOTES
					in the study area were to redevelop, adding on average 1.5 additional units (to account for mostly duplexes, but some 3-4 plex and cluster developments), an additional 541 units would be added to the study area.
Commercial Redevelopm ent	5 (SE Park Avenue area)	10 (SE Park Avenue Area) 10-20 (Elsewhe re along corridor)	-	400 (SE Park Avenue Area) 400-800 (Elsewhere along corridor)	Redevelopment of under-utilized lots near the SE Park Avenue Transit Station seems likely, and long-term retail trends may lead to redevelopment of some commercial properties in the study area at multifamily densities.
TOTAL	8,435	258.6	1,326	Up to 2,091 additional units, for a total of 3,417 Units	This figure represents a significant amount of infill and redevelopment in the study area. Redevelopment of underutilized commercial properties account for the largest component of this growth.

SUMMARY AND NEXT STEPS

The findings of this BLI will inform infrastructure planning work for Oak Lodge Water Services.

Appendix D Flow Meter Locations

MWSC

Appendix F Buildable Lands Inventory

F

Wastewater Master Plan Oak Lodge Water Services

MEMORANDUM

Buildable Lands Inventory - Final Draft Oak Lodge Wastewater Master Plan

DATE	January 27, 2023
ТО	Scott Duren, PE, WSC
FROM	Andrew Parish, AICP, and Matt Hastie, AICP, MIG APG
СС	

INTRODUCTION

This memorandum describes the methodology and initial results of a Buildable Lands Inventory (BLI) to support the Oak Lodge Wastewater Master Plan. The BLI is an assessment of the land available for future residential and employment capacity within the Oak Lodge service area and its wastewater basins (see Figure 1).

The components of this memorandum are as follows:

- Source Data
- Step 1: Environmental Constraints
- Step 2: Definition of Residential Land
- Step 3: Development Status
- Step 4: Acreage and Capacity
- Summary and Next Steps

Figure 1. Oak Lodge Service Area and Additional Study Area (Gladstone)

LEGAL BASIS

This report uses state rules and guidelines to guide the analysis since they represent best practices in Oregon for conducting a BLI. However, because this work is not conducted as part of a locally adopted or state acknowledged process, some of its methodology and assumptions differ from statute and rules.

The State administrative rules further define buildable land in the context of a Residential BLI as follows.

(2) "Buildable Land" means residentially designated land within the urban growth boundary, including both vacant and developed land likely to be redeveloped, that is suitable, available and

necessary for residential uses. Publicly owned land is generally not considered available for residential uses. Land is generally considered "suitable and available" unless it:

(a) Is severely constrained by natural hazards as determined under Statewide Planning Goal 7;

(b) Is subject to natural resource protection measures determined under Statewide Planning Goals 5, 6, 15, 16, 17 or 18;

(c) Has slopes of 25 percent or greater;

(d) Is within the 100-year flood plain; or

(e) Cannot be provided with public facilities.

(7) "Redevelopable Land" means land zoned for residential use on which development has already occurred but on which, due to present or expected market forces, there exists the strong likelihood that existing development will be converted to more intensive residential uses during the planning period.

OAR 660-024-0050

(2) As safe harbors, a local government, except a city with a population over 25,000 or a metropolitan service district described in ORS 197.015(13), may use the following assumptions to inventory the capacity of buildable lands to accommodate housing needs:

(a) The infill potential of developed residential lots or parcels of one-half acre or more may be determined by subtracting one-quarter acre (10,890 square feet) for the existing dwelling and assuming that the remainder is buildable land;

(b) Existing lots of less than one-half acre that are currently occupied by a residence may be assumed to be fully developed.

Middle Housing Legislation

The Oregon State Legislature passed House Bill (HB) 2001 during the 2019 regular session. HB2001 contains numerous provisions related to the development of "middle housing," defined as duplexes, triplexes, quadplexes, townhomes, and cottage clusters.

HB2001 has the following implications for this BLI:

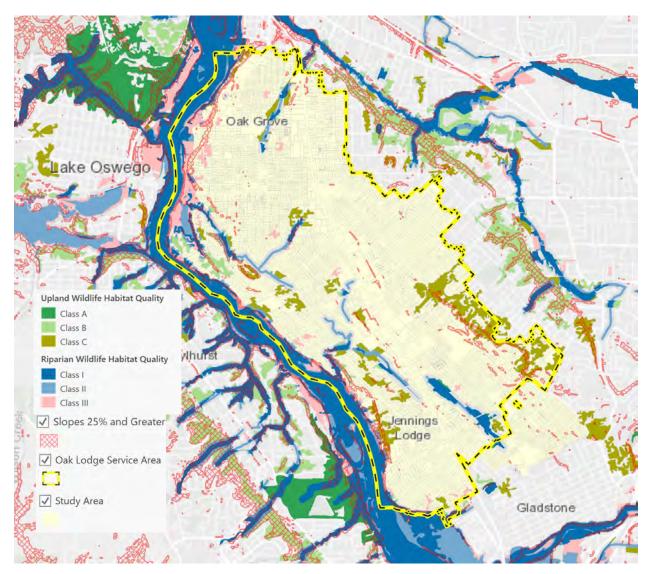
- Duplexes must be allowed on all residential lots that allow a single family detached dwelling.
- Other middle housing types must be allowed in all residential zones, with some discretion given to local jurisdictions regarding siting and design so long as they do not "individually or cumulatively discourage the development of middle housing types through unreasonable costs or delay."

 Density expectations "<u>may not project an increase in residential capacity above achieved</u> <u>density by more than three percent without quantifiable validation of such departures</u>." That is, the allowance of additional middle housing by HB2001 cannot be the sole basis for assuming a significantly increased capacity in a city's residential zones.

These provisions are addressed in Step 4 of this memorandum.

SOURCE DATA

This BLI is based on GIS data from the Metro Regional Land Inventory System (RLIS) and Oak Lodge Water Services, as follows.


- Taxlot data, including parcel ownership, land value, improvement value, and tax assessor property codes.
- Zoning and Comprehensive Plan designations
- Building Footprints
- Title 13 Environmental Constraints (riparian and upland habitat)
- Metro Vacant Land Inventory

STEP 1: ENVIRONMENTAL CONSTRAINTS

Environmental constraints are shown in Figure 2. They include:

- Slopes 25% and greater
- Title 13 Environmental Constraints (riparian and upland habitat)

Figure 2. Study Area Constraints

Land impacted by environmental constraints is assumed to have limited or no capacity for future development, as follows:

- Slopes 25% and Greater: Fully Constrained
- Riparian Habitat Class I and II: Fully constrained
- Upland Habitat Class A: Fully Constrained
- Riparian Class III and Upland Class B and C: 50% Constrained

STEP 2: CATEGORIZE RESIDENTIAL, EMPLOYMENT, AND OTHER LAND

Land within the study area is categorized by zoning/comprehensive plan designation. Generalized zoning from RLIS is shown in the figure below. The study area is predominantly residential, with a

commercial corridor along Highway 99, and a small commercial/employment node in Oak Grove. Residential and employment land are treated differently in Step 3, and other land (such as parks and schools) are considered unavailable for future development.

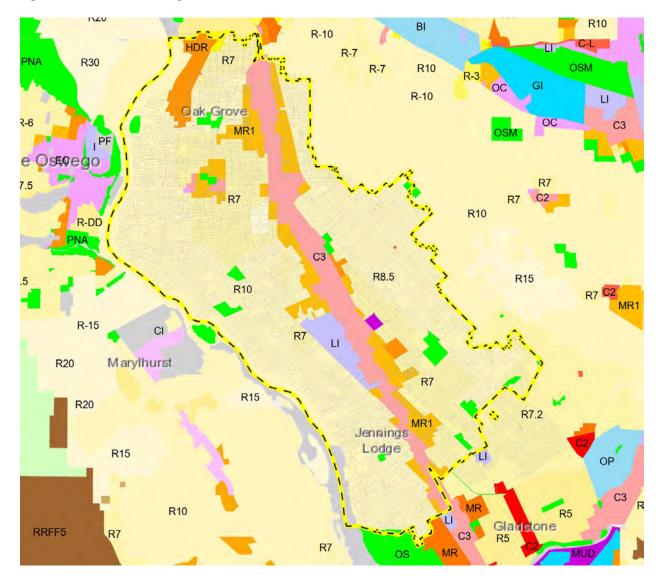


Figure 3. Study Area Zoning

Residential Districts

Residential Land includes taxlots with the following zones.

- Urban Low Density Residential (R-2.5, R-5, R-7, R-8.5, R-10, R-15, R-20, and R-30),
- Village Standard Lot Residential (VR-5/7), Village Small Lot Residential (VR-4/5),
- Village Townhouse (VTH),
- Planned Medium Density Residential (PMD),
- Medium Density Residential (MR-1),

- Medium High Density Residential (MR-2),
- High Density Residential (HDR),
- Village Apartment (VA),
- Special High Density Residential (SHD),
- Regional Center High Density Residential (RCHDR) Districts

Exceptions are as follows:

- Land in public ownership (such as school district & park district) or collective ownership (i.e. a Homeowners Association) is considered unavailable for residential development, unless information to the contrary is available.
- Land owned by a religious or fraternal institution is considered unavailable for residential development unless information to the contrary is available.

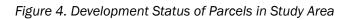
Employment Districts

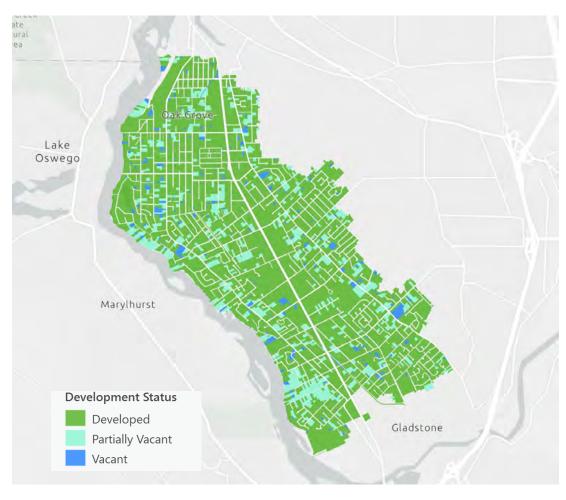
The study area contains land in the C2, C3, LI, and OC designations. Parcels within these zones are assumed to remain/redevelop with employment uses, with the exception of selected lands identified as having the potential for redevelopment as described in the following section.

STEP 3: ASSIGN DEVELOPMENT STATUS

The following "development status" rules are applied to residential land in the study area:

Residential Land


- **Vacant land** is assumed to be fully developable. Taxlots with an improvement value less than \$10,000 that does not fall into other categories is considered vacant.
- **Partially Vacant** land has both vacant and developed acreage. Lots with an existing dwelling containing greater than ½ acre of unconstrained land are assumed to retain ¼ acre for the existing home, while the remaining unconstrained land is considered vacant. (Per safe harbor in 660-024-0050(2))
- **Developed land** includes lots less than ½ acre that are currently occupied (per safe harbor in 660-024-0050(2)) or land that is considered fully developed based on the size, zoning, and level of development on the property. In some cases, developed residential land may be considered redevelopable. These assumptions are detailed in Step 4.


Employment Land

Employment land (including commercial land) is categorized as follows:

• Vacant land is larger than ½ acre and not containing permanent buildings or improvements, or equal to or larger than five acres where less than ½ acre is occupied by permanent buildings or improvements.

- All other employment land is identified as **developed**.
- A subset of land that is developed may be identified as having **redevelopment potential**. These are addressed on a case-by-case basis, as detailed in Step 4.

Comparison with Metro Vacant Land Dataset

As a check of the assumptions used to assess development types, this draft inventory was checked against the Metro RLIS vacant land dataset. These datasets use differing methodologies so perfect agreement is not expected. Areas of vacant land are generally in agreement between the models, however the Metro inventory does not include "partially vacant" parcels.

STEP 4: CALCULATE ACREAGE AND CAPACITY

Gross developable acreage is converted to net acres to account for future rights of way and other needed infrastructure. The 2018 Metro Buildable Lands Inventory¹ uses the following method, which this BLI follows:

- Tax lots under 3/8 acre assume 0% set aside for future streets
- Tax lots between 3/8 acre and 1 acre assume a 10% set aside for future streets
- Tax lots greater than an acre assume an 18.5% set aside for future streets
- Industrial (IND) zoning assumes a 10% set aside regardless of size.

Capacity on net acreage within the study area is calculated using density assumptions based on Clackamas County's development code. The general assumptions are provided in Table 1, and special cases are discussed thereafter.

Zone	Residential Density Range	Notes					
	Residential Zones						
R-20	1 unit/16,000 sf						
R-2	1 unit/2,000 sf						
R-3	1 unit/3,000 sf						
R-5	1 unit/5,000 sf						
R-7	1 unit/5,600 sf						
R-7.2	1 unit/5,600 sf	Gladstone designation					
R-8.5	1 unit/6800 sf						
R-10	1 unit/8,000 sf						
MR-1	1 unit/3630 sf						
SHD	1 unit/726 sf						
HDR	1 unit/1742 sf						

Table 1. Residential Zones and Density Assumptions

9 of 15

¹ https://www.oregonmetro.gov/sites/default/files/2018/07/03/UGR_Appendix2_Buildable_Lands_Inventory.pdf

Zone	Residential Density Range	Notes				
	Employment Zones					
C2	No residential uses assumed	Potential for				
С3	No residential uses assumed	redevelopment of employment- zoned parcels				
LI	No residential uses assumed	into housing at multifamily densities. See				
ос	No residential uses assumed	Table 5.				
NC	No residential uses assumed					
Other Zones						
OS	No residential uses	Open space				
OSM	No residential uses	Open space				

Residential Capacity

The following table shows the estimated capacity of the vacant and partially vacant land in the study area. Units are forecast using the County's current density calculations, though upcoming changes to the development code related to middle housing will alter what is allowed somewhat (see later section of this memorandum). Highlights are as follows:

- Vacant Lots. There are 227 vacant residential lots in the study area, totaling 91 acres. 63 of those acres are outside of natural resource areas and steep slopes.
 - About 300 units are expected on these sites though some development could be middle housing, potentially resulting in additional units
 - o Almost half are on R10 land
 - Almost half are on land in the R-7-8 range
- **Partially Vacant Lots.** There are 475 "partially vacant" residential lots that have a home but enough vacant acreage to support subdivision.
 - Similar distribution of zones as vacant land the R10 zone accounts for about half of the capacity of partially vacant lots.
 - o There is capacity for roughly 1,050 units across all zones

Develop- ment Status	Zone	Number of Tax Lots	Gross Acres	Constrained Acres	Vacant Acres	Net Developable Acreage	Unit Capacity
Develope (All Zoi		7,733	2,098.1	247.3	0	0	0
	HDR	1	1.6	1.4	0.0	0.0	0
t	MR1	30	21.6	1.5	12.5	11.1	118
Partially Vacant	R10	297	272.1	57.3	14.5	121.4	531
	R20	9	13.6	5.7	5.6	4.7	8
artia	R7	66	50.9	2.6	31.7	27.5	183
<u> </u>	R7.2	14	11.4	0.4	7.5	6.5	44
	R8.5	52	51.2	9.2	29.0	24.6	134
Total Pa	rtially	469	422.2	78.2	226.8	195.9	1,018
Vaca	nt						
	HDR	2	3.1	1.7	1.5	1.2	30
	MR1	12	4.1	0.0	4.1	3.8	38
ıt	R10	100	46.2	19.2	27.0	24.7	93
Vacant	R20	3	1.4	1.1	0.4	0.3	0
>	R7	60	17.2	3.1	14.1	13.0	72
	R7.2	13	3.0	0.2	2.8	2.7	14
	R8.5	36	15.8	2.7	13.0	11.8	61
Total Va	acant	226	90.8	28.0	62.8	57.5	308
Tota	al	8,428	2,611.2	353.9	290.0	258.6	1,326

Table 2. Capacity of Study Area Residential Land

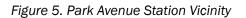
Non-residential capacity

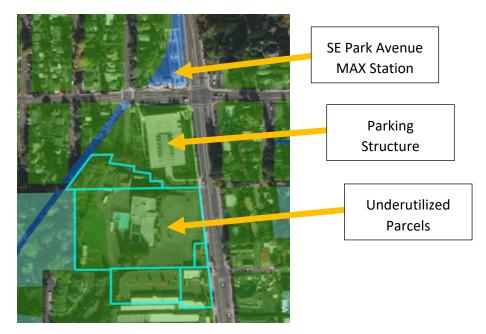
Nearly all employment land in the study area is categorized as "Developed." There are 11 vacant taxlots totaling about 5 acres, split between Light Industrial and Commercial zoning. No residential capacity is assumed in these zones.

Development Status	Zone	Number of Tax Lots	Gross Acres	Constrained Acres	Vacant Acres	Net Developable Acreage
Developed	C3	281	240.2	6.3	0.0	0
Developed	LI	27	61.1	8.3	0.0	0
Total Develope	Total Developed		301.3	14.6	0.0	0.0
Magazet	C3	8	2.9	0.4	2.5	2.3
Vacant	LI	3	4.1	1.7	2.4	2.0
Total Vacant		11	6.9	2.1	4.9	4.3
Total		319	308.2	16.7	4.9	4.3

Table 3. Capacity of Study Area Employment Land

Redevelopment and Middle Housing Assumptions


The 2018 Metro BLI uses a "strike price" threshold to identify properties that are more likely to redevelop. This "Strike price" is a dollar amount per square foot of combined building and land value, under which it is assumed that the property could be redeveloped into something providing greater value for the property owner. For suburban areas, this price ranges between \$10 and \$15/sf depending on zoning.


Examining the study area, this screen results in 150 properties at \$10/sf strike price and 203 properties at \$15/sf that may be more likely to see redevelopment during the planning horizon. The following table summarizes the study area tax lots at the more aggressive \$15/sf price. The majority of these potential redevelopment units are on land zoned MR1, and several are manufactured home parks that may be difficult to redevelop and may not see a greater number of residents after development than live there currently.

Zone	Gross Acres	Constrained Acreage	Unit Capacity
C3	5.2	0.1	0.0
HDR	1.0	0.3	14
LI	3.2	0.8	0
MR1	13.8	0.6	149
R10	33.9	18.9	47
R20	2.8	0.9	3
R7	5.8	0.2	32
R7.2	1.2	0.0	5
R8.5	4.2	0.7	14
Grand Total	71.1	22.4	264

Additional Redevelopment Assumptions

Discussion with County staff has suggested some additional opportunity for redevelopment to occur in the vicinity of the Park Avenue Max Station and along the commercial corridors of the study area. The County is considering changes to zoning maximums to allow up to 60 units/acre near the transit station. There are several sites in the vicinity that meet the definition of "Developed" but would be possible to redevelop at higher densities to form a transit-oriented hub near the station. This could potentially result in several hundred new units in the area – the sites highlighted below total about 10 acres outside of Title 13 areas.

Middle Housing

Part of the impetus for this BLI work is to consider the impacts of Oregon's recent legislation allowing "middle housing" (such as duplexes, triplexes, quadplexes, cottage clusters, and accessory dwelling units) in residential areas statewide. Clackamas County is currently updating its land use regulations to address this legislation by allowing greater housing variety in urban unincorporated areas where infrastructure is available.²

² <u>https://www.clackamas.us/planning/hb2001</u>

State statute and rules generally limit jurisdictions to an assumption of a 3% increase in density in greenfield settings and a 1% increase in infill situations (i.e. lots under ½ acre in size) when calculating the additional development intensity due to the state's middle housing rules.³ This BLI provides a range of growth options that may exceed these limits, though higher assumptions cannot be the basis of certain land use decisions, including urban growth boundary expansions, without additional findings (OAR 660-046-0330(4)).

Table 5. Potential Additional Residential Capacity due to Middle Housing

LAND TYPE	NUMBER OF TAXLOTS	NET DEVELOP -ABLE ACRES	RESIDENTIAL UNITS WITH TYPICAL ASSUMPTIONS (SEE TABLES 2 & 3)	NET ADDITIONAL UNITS	NOTES
Vacant Land	226	57	308	10-100	Only 24 lots are greater than .5 acres – so this is predominantly "infill." If we assume a fairly aggressive increase in capacity of 25% due to new middle housing, we'd see the potential for about 400 new units rather than the current 300.
Partially Vacant Land	469	196	1,018	25-250	About ¼ of these lots are greater than half an acre, indicating potentially greater opportunity for new middle housing development. If we assume a fairly aggressive increase in capacity of 25% due to new middle housing, we'd see about 1300 new units rather than the current 1,018.
Additional Subdivision, ADUs, other Infill on Developed Lots	7,733	-	-	541	It is difficult to estimate the likely transition of developed residences into new middle housing – uptake will likely differ significantly in different parts of the Metro region. If 5% of developed taxlots with existing homes

³ <u>https://oregon.public.law/rules/oar_660-046-0330</u>

LAND TYPE	NUMBER OF TAXLOTS	NET DEVELOP -ABLE ACRES	RESIDENTIAL UNITS WITH TYPICAL ASSUMPTIONS (SEE TABLES 2 & 3)	NET ADDITIONAL UNITS	NOTES
					in the study area were to redevelop, adding on average 1.5 additional units (to account for mostly duplexes, but some 3-4 plex and cluster developments), an additional 541 units would be added to the study area.
Commercial Redevelopm ent	5 (SE Park Avenue area)	10 (SE Park Avenue Area) 10-20 (Elsewhe re along corridor)	-	400 (SE Park Avenue Area) 400-800 (Elsewhere along corridor)	Redevelopment of under-utilized lots near the SE Park Avenue Transit Station seems likely, and long-term retail trends may lead to redevelopment of some commercial properties in the study area at multifamily densities.
TOTAL	8,435	258.6	1,326	Up to 2,091 additional units, for a total of 3,417 Units	This figure represents a significant amount of infill and redevelopment in the study area. Redevelopment of underutilized commercial properties account for the largest component of this growth.

SUMMARY AND NEXT STEPS

The findings of this BLI will inform infrastructure planning work for Oak Lodge Water Services.

MWSC

Appendix G Flow Monitoring TM

G

Wastewater Master Plan Oak Lodge Water Services

MWSC

Technical Memo

Date:	1/18/2023	DED PROFO
То:	Brad Albert, PE	STENGINEESS
CC:	Jeff Page; Haakon Ogbeide, PE	95325PE
Prepared By:	Adam Donald, PE	ada Car
Reviewed By:	Scott Duren, PE	10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2
Project:	Wastewater Master Plan	M J. DONA
Subject:	Flow Monitoring	EXPIRES: 12/31/2023

Water Systems Consulting (WSC) contracted with SFE Global (SFE) to perform flow monitoring services for the preparation of Oak Lodge Water Services' (OLWS) Wastewater Master Plan. The following technical memorandum (TM) provides a summary of the flow monitoring performed, an analysis of the data, and a summary of the results.

1.0 Overview

WSC's subconsultant SFE deployed flow monitors within OLWS' collection system from December 18, 2021 through February 28, 2022. Flow meters were placed in eight locations to capture large portions of the collection system. A map of the flow meter locations is shown in Figure 1-1.

The goal of the flow monitoring was to understand the collection system's response to rainfall, provide a data set for calibrating the hydraulic model to wet weather conditions, and identify areas within the collection system experiencing high levels of rainfall dependent inflow and infiltration (RDII). When possible, meters were placed in manholes with the influent pipe aligned with the effluent pipe, with no substantial internal vertical drop, only one influent pipe coming into the manhole, and in locations far enough upstream from lift stations to avoid backwater influencing the readings to obtain hydraulic conditions that are conducive to meter accuracy. Monitoring locations also require approximately 1-inch of minimum water depth in the pipe to allow the meters to collect a reading, so locations also needed to have a sufficiently large upstream collection area that would produce the minimum flows.

MUSC

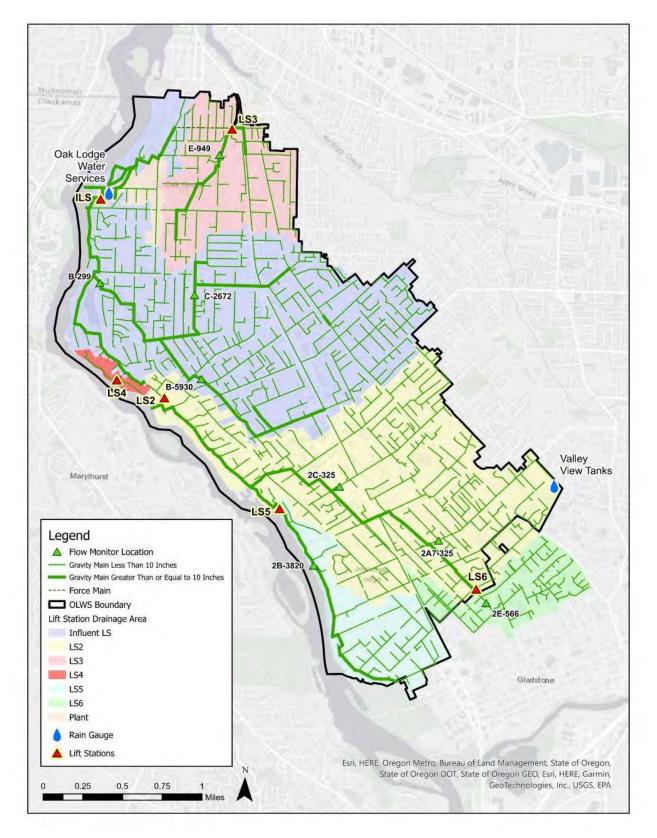


Figure 1-1: Flow Monitoring Map

Oak Lodge Water Services

2.0 Methods and Procedures

SFE Global provided and installed the flow monitors and rain gauges used to collect water surface depth and velocity within each monitoring manhole location and precipitation rates and volumes. A site walk was performed with the SFE Global installation crew, and OLWS staff to confirm the final flow monitoring loctions based on the recommendations from the flow monitoring plan (Appendix A). During this site walk, SFE Global evaluated each manhole to take measurements, determine style of flow meter required, determine traffic control requirements, and mark the manholes to avoid any confusion on installation day.

Flow monitors were installed by SFE Global's installation crew on December 18, 2021. Installation consisted of standard confined space entry procedures, including the use of a tripod to lower the crew into the manhole to install the flow meter within the trough. Most of the flow monitoring sites selected were located outside of the right of way, eliminating the need for traffic control.

ISCO 2150 flow monitors were selected for each location. These monitors use an area velocity (AV) module with a pressure transducer to determine flow level and an AV sensor to determine velocity within the pipe. The AV module unit then calculates the flow rate and total flow data based on these measurements. A transmitter was installed within each manhole that wirelessly transmits this data to a cloud-based server. A local copy of the data is stored within the AV module in the event that the data transmission fails. Figure 2-1 shows the final configuration of the installed flow meter assembly as well as a sketch for where the sensors were installed. In locations where significant ragging or sedimentation was anticipated, the sensor was installed in an "offset" position just above the flowline of the pipe. In these locations additional calibration was performed during installation to adjust readings to account for the offset. The flow meter at manhole 2B-3820 required the use of a weir to accurately measure flow due to elevated water levels. Descriptions of each installation are provided in Appendix B.

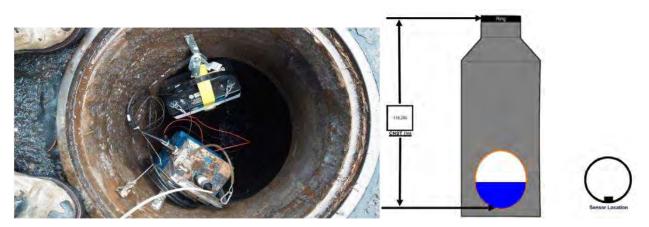


Figure 2-1: Installed Flow Monitor

Flow Monitoring June 13, 2022

3.0 Scatter Plot Analysis

3.1 Overview

Scatter plots are an industry best practice used to analyze the quality of flow monitor data and evaluate collection system performance. Based on the shape of the plot, the scatter plot can indicate whether the meters are reading accurately and whether backwater or sanitary sewer overflows are occurring at the metering manhole. These plots are created by plotting the velocity and depth readings from the flow meters and analyzing the results relative to the pipe curve created using the Manning Equation (Equation 1) to understand if the readings align with anticipated performance.

$$v = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$$

Where: v = flow velocity, ft/s

n = Manning roughness coefficient

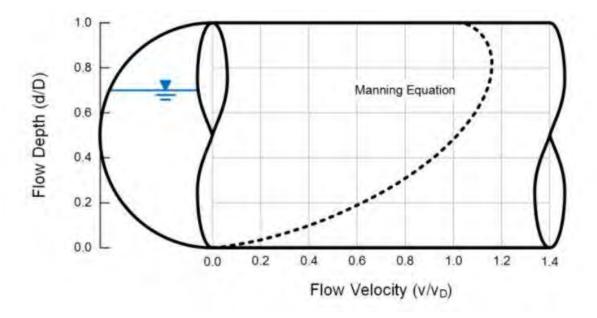
R = hydraulic radius, ft

S = slope of the energy gradient

Equation 1: The Manning Equation

To determine the pipe curve, the Manning Equation is further simplified as shown in Equation 2. The hydraulic radius is dependent upon the flow depth so a pipe curve can be developed by solving for the velocities at a variety of flow depths and plotting this on the scatter plot to compare against the actual flow depth. A sample pipe curve is shown in Figure 3-1.

$$v = 1.486CR^{\frac{2}{3}}$$


Where: v = flow velocity, ft/s

C = hydraulic coefficient = $\frac{1}{n}S^{\frac{1}{2}}$

R = hydraulic radius, ft

Equation 2: The Manning Equation Using the Hydraulic Coefficient

MWSC

Figure 3-1: Manning Equation Pipe Curve (1)

There are three common methods used for developing a pipe curve that fits the data: the Design Method, the Lanfear-Coll Method, and the Stevens-Schutzbach Method. A brief overview is provided in the following subsections. The best fitting pipe curve should be used as indicative of the level of accuracy of the data. The closer the values are to the curve, the more accurate the data set is. Precision is determined by how close individual readings are to one another. Precise data has little spread amongst the data points while non-precise data is spread out.

3.1.1 Design Method

The Design Method assumes uniform flow within the pipe and calculates the hydraulic coefficient (C) by plugging in the slope of the pipe and Manning's roughness coefficient for the pipe material based on as-built records. (1) The curve is then developed by solving for velocity at a range of depths within the pipe equal to or less than the diameter and plotting the velocity versus the depth. When flow monitoring data points fit the Design Method pipe curve well, it indicates the as-built information for the slope and material are accurate. Due to the nature of the equation, a Design Method pipe curve will always pass through the origin (0,0) and is only valid for when the flow monitor depth reading is less than or equal to the diameter of the pipe.

3.1.2 Lanfear-Coll Method

The Lanfear-Coll Method is similar to the Design Method in that it assumes uniform flow, but the hydraulic coefficient (C) is calculated by applying a curve fitting technique to the flow monitoring data. (1) Under this method, the value for C is calculated by maximizing the coefficient of determination (R^2 value) when fitting the Manning's Equation to the data. The coefficient of determination is the proportion of total variation between the calculated results and the

Flow Monitoring June 13, 2022

measured results, and a higher value indicates a curve with less variation from the observed results. This allows the hydraulic coefficient to be calculated when the slope and material of the pipe are not known. If the Lanfear-Coll pipe curve is a better fit to the data than the Design Method pipe curve, then the data for the pipe slope and/or Manning's roughness coefficient is not accurate in the as-builts. Similar to the Design Method, the Lanfear-Coll pipe curve will always pass through the origin (0,0) and is only valid for when the flow monitor depth reading is less than or equal to the diameter of the pipe.

3.1.3 Stevens-Schutzbach Method

The Stevens-Schutzbach Method uses an iterative curve fitting technique to apply the Manning Equation to the flow monitoring data. (1) Unlike the Design Method and the Lanfear-Coll Method, the Stevens Schutzbach Method applies to both uniform and non-uniform flow conditions, which means the curve is not restrained to passing through the origin (0,0). This method accounts for non-uniform flow conditions resulting from downstream obstructions that result in the slope of the energy gradient being less than the pipe slope. Downstream obstructions within the pipe. To determine the hydraulic coefficient (C), an equivalent depth is used in calculations and is defined as the difference between the measured depth at the flow meter and the magnitude of the downstream obstruction. The magnitude of the downstream obstruction is iterated until the coefficient of determination (\mathbb{R}^2 value) is maximized for the curve.

3.2 Flow Meter at Manhole 2A7-325

Manhole 2A7-325 is located in the upper eastern portion of the Lift Station 2 basin. The scatter plot for the flow meter at Manhole 2A7-325 is shown in Figure 3-2. The level and velocity readings resulted in a pattern that did not align with any of the pipe curves. The Stevens-Schutzbach pipe curve fit the data the best but only had an R² value of 0.41 indicating a poor overall fit. There appear to be two factors at play in the data. First, when the velocity and level data were plotted over time, there was a significant shift from January 14, 2022 through January 15, 2022, which resulted in high level readings at a low velocity. The meter readings were likely impacted by ragging during this time period. The readings returned to previous levels after this time. Additionally, the scatterplot indicates that the velocity varies significantly for a constant level, which indicates a problem with the velocity sensor. Since the flow is directly proportional to the velocity reading, a faulty velocity reading results in unreliable flow measurements. With this understanding, the data for this meter should be disregarded and not used for calibration of the model.

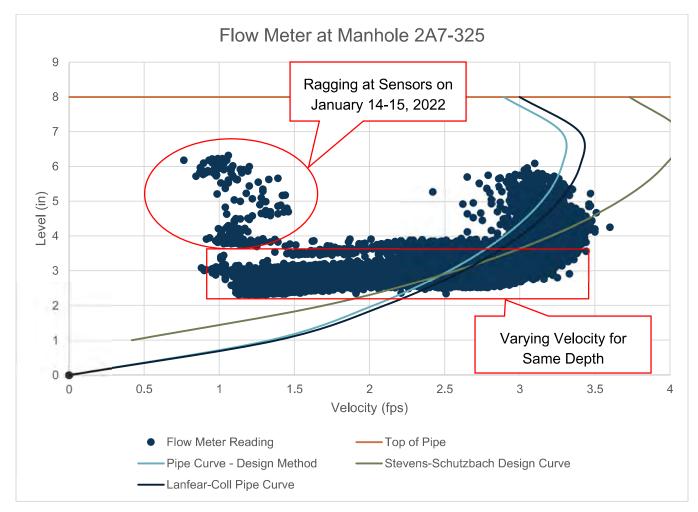


Figure 3-2: Scatterplot for Flow Meter at Manhole 2A7-325

3.3 Flow Meter at Manhole 2B-3820

Manhole 2B-3820 is located in the Lift Station 5 basin. The meter at Manhole 2B-3820 utilized a custom compound weir due to the high levels of flow within the pipe to get an accurate flow reading. When the weir is used, the meters do not measure velocity, so a scatterplot of velocity versus depth was not possible. This data is assumed to be satisfactory for use in calibrating the hydraulic model.

3.4 Flow Meter at Manhole 2C-325

Manhole 2C-325 is located in the Lift Station 2 basin and picks up flow from an upper portion of the basin to the north and east of McLoughlin Blvd. The scatter plot for the flow meter at Manhole 2C-325 is shown in Figure 3-2. The readings from the flow meter resulted in values shifted significantly to the right of what was predicted by the Design Method, indicating the pipe slope and/or Manning's roughness coefficient in the as-builts and model are not representative of the conditions in the field. Both the Lanfear-Coll Method and Stevens-Schutzbach Method

7

produced similar curves indicating that there were little to no obstructions downstream of this location during the flow monitoring period. However, the R² value of the curves are low and indicate poor correlation with observed data. The scatter plot seems to indicate a drifting level sensor as the level measured drifts over a wide range without seeing a corresponding change in velocity. Given the drifting level data, this flow meter's data quality is not good and should not be used in calibrating the hydraulic model.

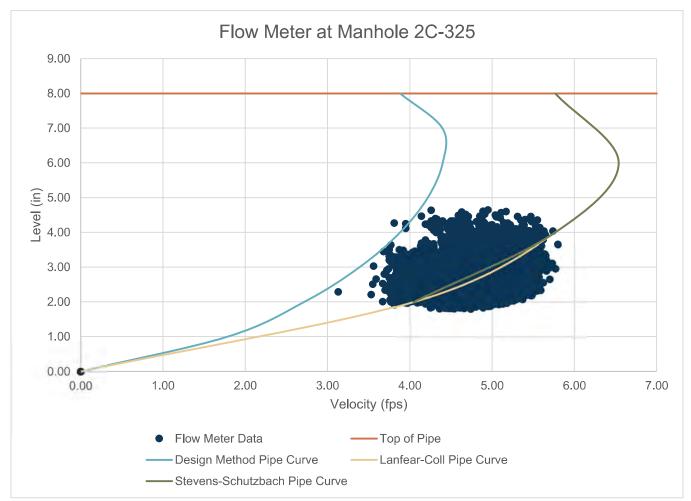


Figure 3-3: Scatterplot for Flow Meter at Manhole 2C-325

3.5 Flow Meter at Manhole 2E-566

Manhole 2E-566 is located in the Lift Station 6 basin and picks up flow from the portion of the City of Gladstone's collection system that connects to OLWS' system. The scatter plot for the flow meter at Manhole 2E-566 is shown in Figure 3-4 and Figure 3-5. For this data set, the Stevens-Schutzbach pipe curve was equivalent to the Lanfear-Coll pipe curve. Neither these curves nor the design curve provided a great fit to the observed data. Manhole 2E-566 is located two manholes upstream of Lift Station 6. There appears to be two distinct patterns at lower flow levels that generally follow the shape of the pipe curve – one on the bottom right and

one above and to the left (circled in red). The direction of this shift indicates that the data is following iso-Q (equal flow) lines and could possibly be impacted by flows at Lift Station 6. Given the appropriate shape of the scatter plot in these two distinct zones, the data is suitable for calibrating the hydraulic model. The velocity vs level data points plotted above the pipe diameter of 8 inches indicate that the manhole is surcharging frequently and is likely influenced by wastewater elevations within the Lift Station 6 wet well.

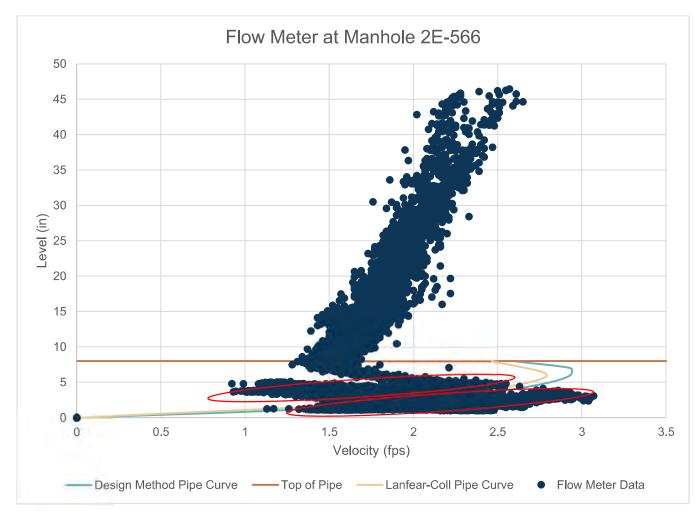


Figure 3-4: Scatterplot for Flow Meter at Manhole 2E-566

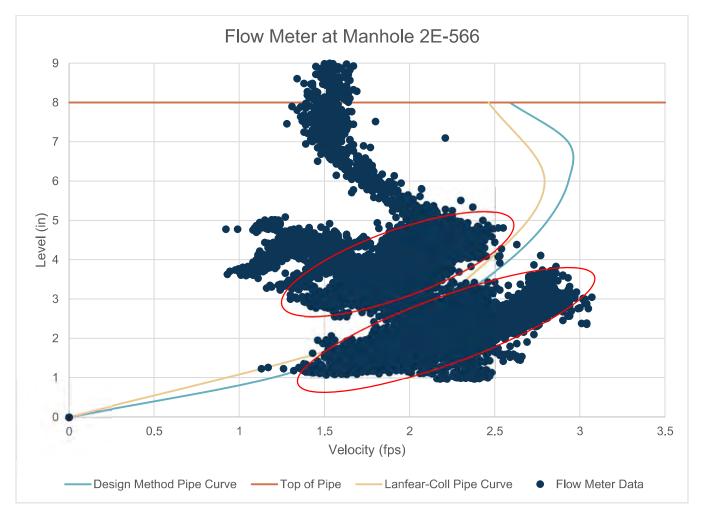


Figure 3-5: Scatterplot for Flow Meter at Manhole 2E-566 at Lower Flow Levels

3.6 Flow Meter at Manhole B-299

Manhole B-299 is located in the Influent Lift Station basin and captures a relatively large portion of the total area of the basin. The scatter plot for the flow meter at Manhole B-299 is shown in Figure 3-6. All three pipe curve methods fit the data well, with the Stevens-Schutzbach Method providing the best fit (R² equal to 0.91). To optimize the fit, a downstream obstruction factor of 1.5 inches was used to subtract from the measured depth. Since this is an 18-inch diameter main, this level of obstruction is minor and could be attributed to sediment buildup or a potential sag downstream. During heavy rain periods, this flow meter measured levels significantly above the top of the pipe indicating significant surcharging. Since the velocity-depth relationship moved up and to the right (level increases and so does flow), the sewer is experiencing orifice flow conditions. Orifice flow conditions indicate that free flow conditions are present downstream of the flow monitor past the restriction. Overall, this flow meter's data is satisfactory for use in calibrating the hydraulic model.

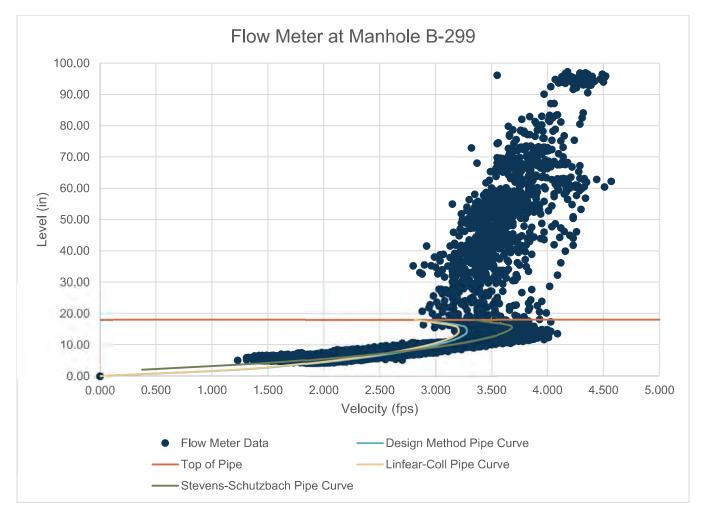


Figure 3-6: Scatterplot for Flow Meter at Manhole B-299

3.7 Flow Meter at Manhole B-5930

Manhole B-5930 is located in the Influent Lift Station basin and captures the southeastern portion of the basin. The scatter plot for the flow meter at Manhole B-5930 is shown in Figure 3-7. The Design Method pipe curve slightly underpredicted the level reading for a given velocity, indicating that the Manning's coefficient and/or the slope used was not accurate. However, the Lanfear-Coll and Steven-Schutzbach pipe curves both fit the data well, with the Steven-Schutzbach pipe curve having the best overall fit (R² value of 0.86). The Steven-Schutzbach pipe curve was optimized using a downstream obstruction value of 0.65 inches, which indicates relatively minor obstructions downstream of the meter given that this is a 15-inch diameter pipe. Based on the strong correlation of the data to the pipe curve, the readings can be considered accurate. The precision for the meter is generally strong with data points located close together, however the precision seems to decrease at higher velocities and higher level readings. Overall, this flow meter's data is satisfactory for use in calibrating the hydraulic model. The flow meter stopped collecting and transmitting data on December 22, 2021, and SFE Global was able to

inspect the meter and resume data collection on January 8, 2022. Unfortunately, the gap in data included one of the largest storm events during the flow monitoring period, but the data includes several smaller storms that will support model calibration.

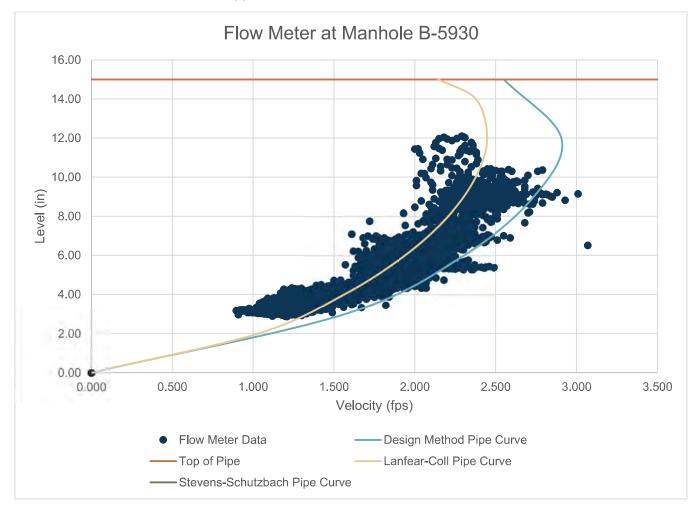


Figure 3-7: Scatterplot for Flow Meter at Manhole B-5930

3.8 Flow Meter at Manhole C-2672

Manhole C-2672 is located in the Influent Lift Station basin and captures the northeast portion of the basin. The scatter plot for the flow meter at Manhole C-2672 is shown in Figure 3-8. The Design Method pipe curve provided the worst overall fit, indicating the slope and/or Manning's roughness coefficient from the as-builts were not accurate. The Stevens-Schutzbach pipe curve provided the best overall fit using a downstream obstruction value of 1.5 inches to achieve an R² value of 0.69. The fit of the pipe curve is fairly good for velocities up to 3.25 feet per second. After this velocity reading, the observed data continues to indicate velocity increasing while the level seems to stabilize around 10 inches. Based on the Manning's Equation, the velocity should show an inflection point around a level of 10 inches and begin to reduce as the pipe continues to fill. This potentially indicates the level sensor's accuracy was diminished at higher levels for

this particular sensor. While the higher velocities seem to be a poor fit, overall, the data had a decent R² fit, indicating moderate accuracy. Precision at this meter was low with levels ranging 4 inches for a given velocity reading. Based on the overall scatterplot pattern, it is not recommended this flow meter be used calibrating the hydraulic model.

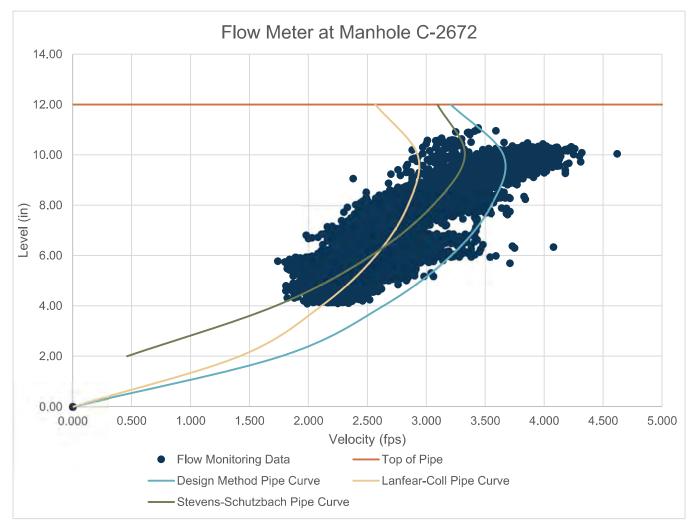


Figure 3-8: Scatterplot for Flow Meter at Manhole C-2672

3.9 Flow Meter at Manhole E-949

Manhole E-949 is located in the Lift Station 3 basin. The scatter plot for the flow meter at Manhole E-949 is shown in Figure 3-9. The Design Method pipe curve is shifted significantly to the right of the data indicating the Manning's roughness coefficient and/or the pipe slope from the as-builts is not correct. The Lanfear-Coll pipe curve provides a better fit (R^2 value of 0.619), but the fit is not optimized because the curve must fit though the origin. The Stevens-Schutzbach pipe curve provided the best fit by using a downstream obstruction value of 1.5 inches to achieve an R^2 value of 0.76. This R^2 value indicates a moderate level of accuracy in

Flow Monitoring June 13, 2022

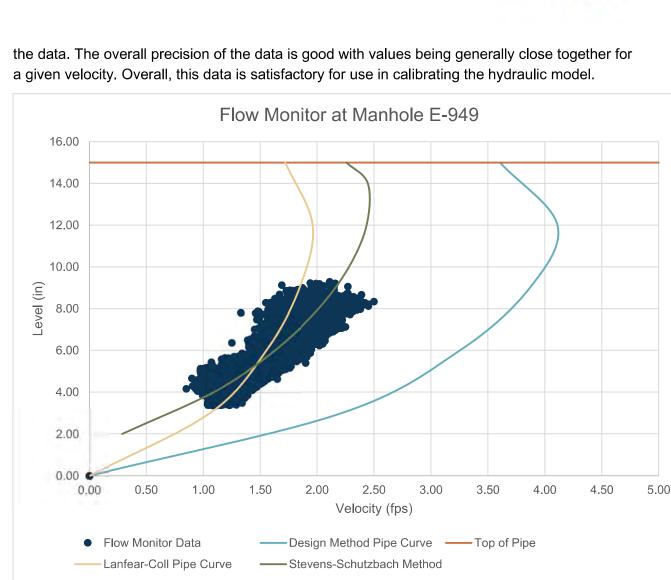


Figure 3-9: Scatterplot for Flow Monitor at Manhole E-949

3.10 Flow Data Summary

The following table provides a summary of which flow meters will be used for calibrating the hydraulic model. Overall, five of the eight meters captured flow data suitable for model calibration.

ທພຣc

Table 3-1: Flow Meter Calibration Summary

Flow Meter	Used for Model Calibration
2A7-325	No
2B-3820	Yes
2C-325	No
B-299	Yes
B-5930	Yes
C-2672	No
E-949	Yes

4.0 Flow Data Analysis

4.1 Overview

Plots of the flow measured at each of the flow meters are included in Appendix C. The following subsections identify dry weather flow, groundwater infiltration, and peak wet weather flow based on the flow monitoring data.

4.2 Dry Weather Flow

For the purposes of developing and calibrating the model, average dry weather flow was determined by evaluating the average flow at OLWS' Influent Lift Station from July 8, 2021 through July 28, 2021, as this period was determined to be most representative of dry weather conditions with no active rain during this time and no rain within the 14 days prior to this period. Flow monitors were not deployed during the summer months so the flow monitoring data could not be used to determine the average dry weather flow in the collection system.

4.3 Determination of Groundwater Infiltration

To determine the impacts of groundwater infiltration (GWI), the winter flow monitoring data was evaluated to determine the average flow under no rain conditions and compared with the average dry weather flow. During the winter months, the soils are often saturated due to an elevated groundwater table so that even when it has not been raining, flows within the collection system are higher than those observed during the summer months.

For the purposes of this master plan, average dry weather flow was only determined at the Influent Lift Station while flow metering data was collected at eight locations throughout the collection system. To estimate average dry weather flow at the locations with flow meters, the calibrated hydraulic model was run under dry weather conditions and the flows extracted from these locations. GWI was then determined for the flow metering subbasin by subtracting the

average dry weather flow model output from the average flow measured under dry conditions during the wintering monitoring period, which was determined to be January 23, 2022 – January 29, 2022. The flow meters whose data was not determined to be suitable for calibration were omitted from the GWI analysis as these data sets did not produce reliable numbers. A summary of the results is shown in Table 4-1.

Table 4-1: Estimated GWI

Flow Meter Location	Modeled ADWF (gpd)	Winter Dry Weather Flow (gpd)	Flow Meter Basin GWI (gpd)
2A7-325	2A7-325 60,832		GWI Analysis
2B-3820	89,747	181,583	91,836
2C-325	146,424	Omitted from	GWI Analysis
2E-566	83,599	120,460	36,861
B-299	518,456	725,020	206,564
B-5930	227,905	278,928	51,023
C-2672	C-2672 168,451		GWI Analysis
E-949	104,941	246,801	141,860

4.4 Wet Weather Flow

To estimate peak wet weather flow, the average hourly flow rate was determined for each hour on each day. The highest average hourly flow rate was designated as the peak hour flow. Peaking factors were estimated by dividing the peak hour flow by the modeled ADWF. A summary of these values is presented in Table 4-2. It should be noted that the peak hour flow for meter B-5930 did not occur during the largest storm during the metering period due to the metering failing to collect data during that storm. The actual peak hour flow was likely higher.

Flow Meter Location	Modeled ADWF (gpd)	Peak Hour Flow (gpd)	Peaking Factor	Occurrence of Peak Flow
2A7-325	60,832	Omitted from Analysis		
2B-3820	89,747	1,053,661	11.7	1/3/22 at 4 am
2C-325	146,424	Omitted from Analysis		
2E-566	83,599	588,784	7.0	12/22/22 at 8 am
B-299	518,456	5,132,466	9.9	1/3/22 at 7 am
B-5930	227,905	1,591,863	7.0	12/18/22 at 11 pm
C-2672	168,451	Omitted from Analysis		
E-949	104,941	1,062,624	10.1	1/3/22 at 11 am

Table 4-2: Peak Wet Weather Flow

Flow Monitoring June 13, 2022

5.0 Rainstorm Analysis

Rainfall data was collected by two rain gauges on opposite sides of OLWS' service area throughout the duration of flow monitoring. Rain Gauge 1 was located at the OLWS Wastewater Treatment Plant and Rain Gauge 2 was located at the OLWS Valley View Tank site. A summary of the largest rainstorms captured is presented in Table 5-1. For the purposes of modeling RDII, the data used for wet weather calibration of the model should ideally include a series of storms that stress the collection system so that the soil is saturated. According to ADS Environmental, "system stressing events are typically more than one inch of rainfall in a 24-hour period."(2) The rain gauges and flow meters captured two storms that meets these criteria. The storm from January 2, 2022 – January 3, 2022 will be used for calibrating the model to wet weather conditions due to it having the largest quantity of rain. In addition to receiving over 1 inch of rain in 24 hours, this storm also had the second largest peak rain intensity and was preceded by smaller storms that allowed for antecedent soil saturation conditions. All of these provide valuable data for developing the wet weather response unit hydrographs within the hydraulic model.

Period	Total Rain (inches)	Peak Rain Intensity (inches/hour)
January 2, 2022, 6:00 pm – January 3, 2022, 6:00 pm	1.65	0.33
February 27, 2022, 11:55 pm – February 28, 2022, 11:55 pm	1.31	0.34
January 5, 2022, 8:35 am – January 6, 2022, 8:35 am	0.96	0.12
December 23, 2021, 10:00 pm – December 24, 10:00 pm	0.88	0.31
January 19, 2022, 1:35 am – January 10, 2022, 1:35 am	0.55	0.06

Table 5-1: Top 5 Rain Event (24 Hour) by Total Rain During Wet Weather Monitoring

6.0 Conclusion

Overall, the flow metering effort successfully captured flow data for eight locations within OLWS' collection system. Based on an analysis of the metering data using the Manning's Equation and scatter plots, only five of these locations were deemed to have valid data for model calibration. One of these five locations (B-5930) did not have flow data logged during the peak rainstorm that will be used for calibrating the hydraulic model. However, this meter did collect flows during the second largest rainstorm (February 27-28, 2022), which will allow it to be incorporated into the model calibration process. These five locations with good data are sufficient for accurately calibrating the hydraulic model.

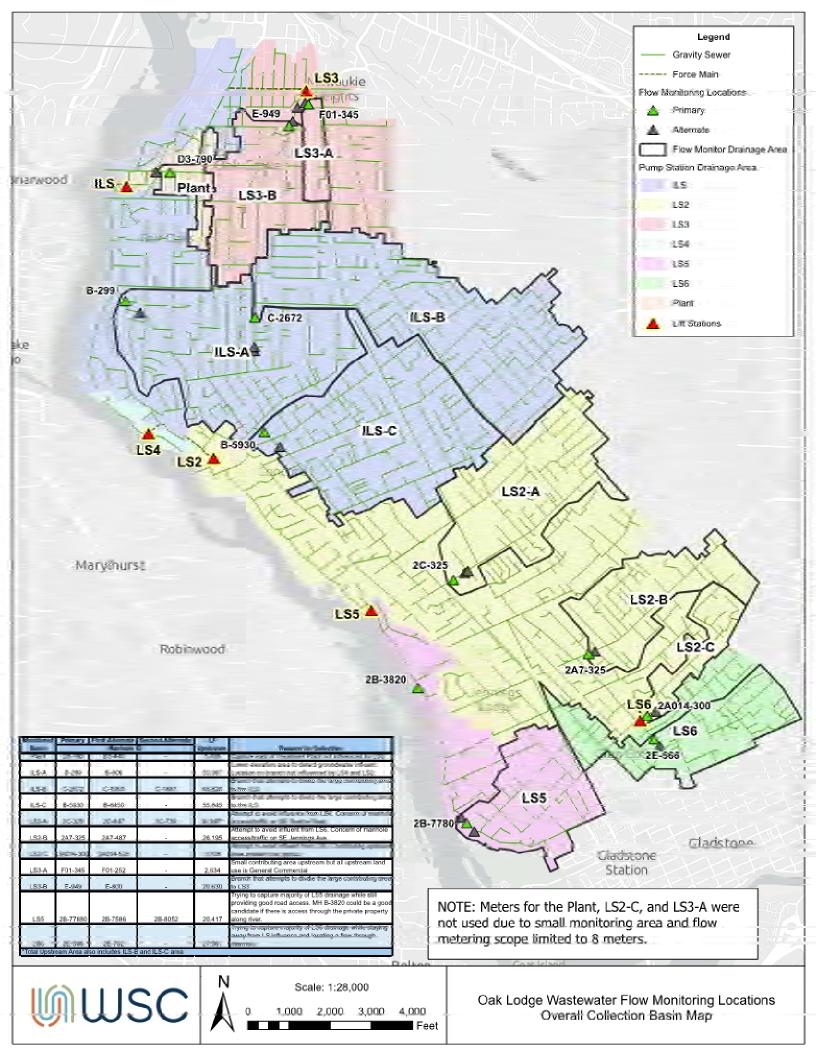
The five locations with good data quality were used to estimate ground water infiltration within each flow metering basin as well as peak wet weather flow. A rainstorm analysis was used to

Flow Monitoring June 13, 2022

determine the largest intensity storm captured for use in calibrating the model. The analysis determined that the storm from January 2, 2022 through January 3, 2022 will provide the best results.

7.0 References

1. **Kevin L. Enfinger, P.E. and Hal R. Kimbrough, Ph.D.** *Scattergraph Principles and Practice: A Comparison of Various Applications of the Manning Equation.* San Diego, CA : American Society of Civil Engineers, 2004.


2. *Gettring More From Flow Monitoring - Interpreting Sewer Flow Data to Yield the Maximum Benefit.* **Paul S. Mitchell, P.E. and Patrick L. Stevens, P.E.** Huntington Beach, CA : Water Environment Federation, 2005, Vols. Collection Systems 2005 - Sustaining Aging Infrastructure: System, Workforce, and Funding.

Flow Monitoring June 13, 2022

Appendix A Flow Meter Plan

Oak Lodge Water Services



Appendix B Flow Meter Installations

Site Details Sheet

CLIENT MONITORING #:

NAME: Oak Lodge Water Services, Oak Grove, OR

WSC

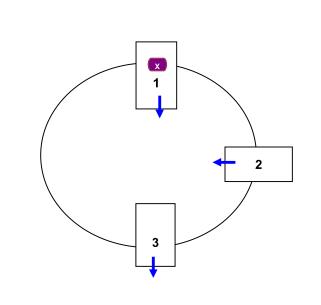
SFE PROJECT #: SFE SITE #: U026B 2A7-325

Project Specific Information			
Client Name:	Water Engineering Consulting		
End User Name:	Oak Lodge Water Services		
Project Name:	Sanitary Sewer Flow Monitoring		
Client Contact:	Scott Duren		
Field Contact:	Scott Duren		
SFE PM Contact: Dylan Carvin			
Site Maintenance: as required			

Site Equipment					
Install / Removal Date:	Dec 15 2021	Feb 28 2022			
Meter Make & Model:	ISCO	2150			
Meter I.D #1 and #2	AB207C00222	na			
Wireless I.D # / Cell #:	SFE Cell	na			
Level / Velocity Type:	Pressure Probe	AV Sensor			
Sensor Mounting:	ing: Compression				
Primary Device:	Area Velocity				
Logging Rate / Call out:	5 minute	24hr			

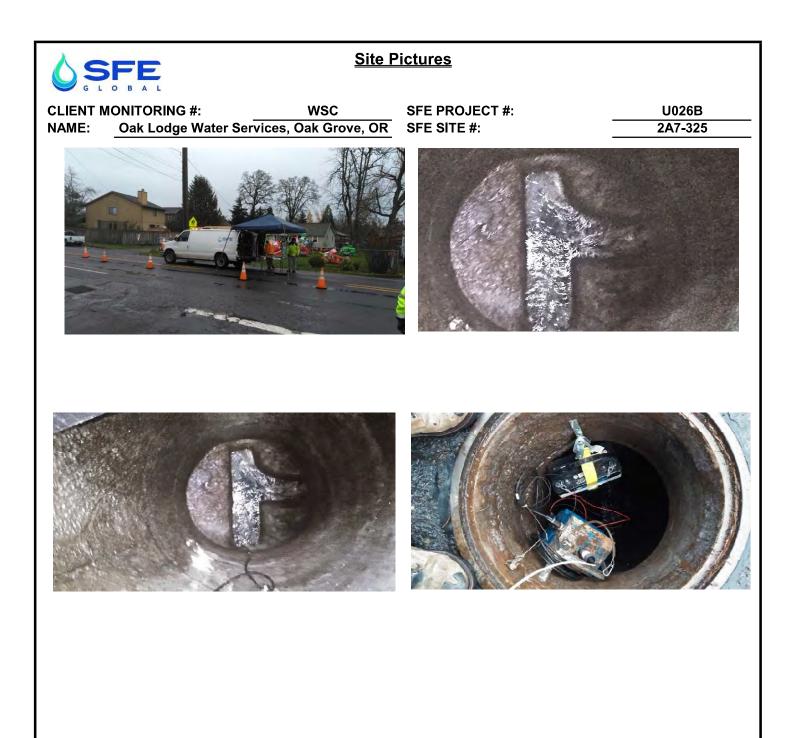
Cito Equi

Site			Site Pro	file		
Client Site #:	2A7-325	Invert Distance	ce (in):	118	Access:	yes
Address (Location):	5322 SE Jennings Ave	Overall Site 0	Overall Site Condition:		residential intersection	
City, State:	Milwaukie, OR	Pipe Size	#1	8	#2	8
GPS (North - West):		(in):	#3	8	#4	na
Landmarks:	na	Location of S	ensor (whic	ch pipe?):	=	1
Traffic Control Req's:	Full Traffic	Overall Pipe	Overall Pipe Condition: good			
Additional Information:	n/a	Additional Inf	Additional Information: na			



Site Setup

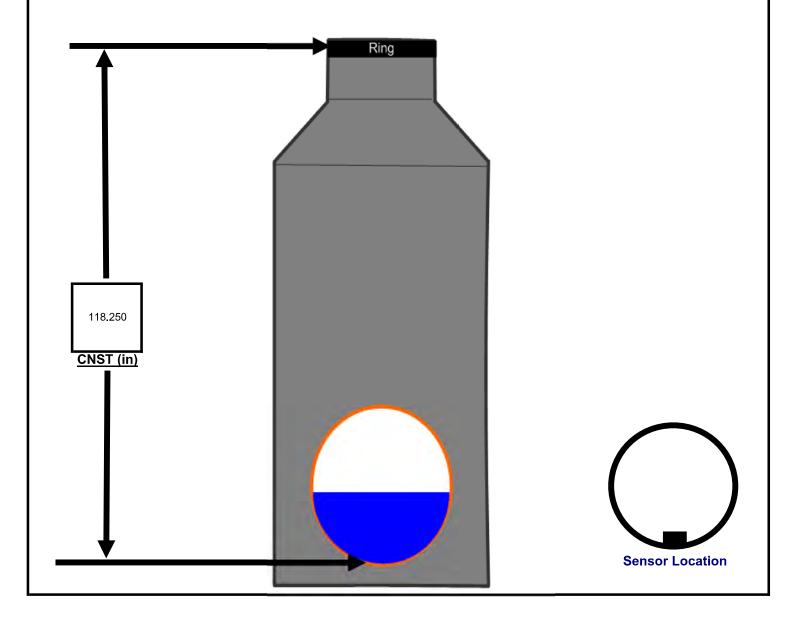
Мар



_

Additional Notes

Notes	
1 area	4 meter
2 manhole prior to meter installation	5
3 manhole after sensor installation	6



 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

SFE PROJECT	#:	U026B
SFE SITE #:		2A7-325
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-15-21	12:04	3.3	3.1	install with 4" offset
1		12:05	3.3	3.2	
2		12:05	3.3	3.3	
3		12:05	3.3	2.2	
Average			3.3	2.9	

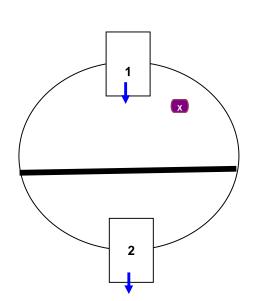
Site Details Sheet

WSC CLIENT MONITORING #: Oak Lodge Water Services, Oak Grove, OR NAME:

SFE PROJECT #: SFE SITE #:

U026B 2B-3820

Project Specific Information			
Client Name:	Water Engineering Consulting		
End User Name:	Oak Lodge Water Services		
Project Name:	Sanitary Sewer Flow Monitoring		
Client Contact:	Scott Duren		
Field Contact:	Scott Duren		
SFE PM Contact:	Dylan Carvin		
Site Maintenance:	Site Maintenance: as required		


Site Equipment					
Install / Removal Date:	Dec 17 2021	Feb 28 2022			
Meter Make & Model:	ISCO 2150				
Meter I.D #1 and #2	BC206D00357	na			
Wireless I.D # / Cell #:	na	na			
Level / Velocity Type:	Pressure Probe	AV Sensor			
Sensor Mounting:	othe	er			
Primary Device:	Weir - Custom				
Logging Rate / Call out:	5 minute	24hr			

Site Location Information				Site Profile			
Client Site #:	2B-3820		Invert Dista	nce (in):	73	Access:	yes
Address (Location):	18200 SE Willamette Dr		Overall Site	Overall Site Condition:		good	
City, State:	Milwaukie, OR		Pipe Size	#1	12	#2	12
GPS (North - West):	45.39083	122.623303	(in):	#3	na	#4	na
Landmarks:	on riverbank		Location of	Sensor (wh	ich pipe?)	: 🗙 =	1
Traffic Control Req's:	Local Traffic		Overall Pipe	e Condition:		good	
Additional Information:	n/a		Additional I	Additional Information: na		na	

Мар

Site Setup

	Additional Notes	
-	-	
-	-	
-	-	

Site Pictures

SFE PROJECT #:

SFE SITE #:

 CLIENT MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

U026B

2B-3820

<u>Notes</u>

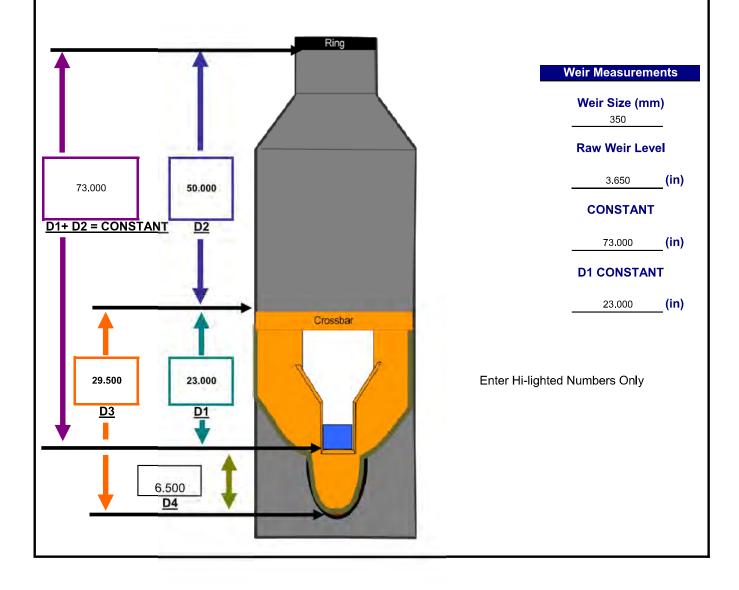
1 area	
--------	--

2 manhole prior to meter installation

3 manhole after sensor and weir installation


4 meter 5

6



Weir Install Sheet

CLIENT FLOW MONITORING #: WSC NAME: Oak Lodge Water Services, Oak Grove, OR

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	2021-12-17	10:44	3.750	3.750	
1		10:46	3.675	4.339	
2		10:47	3.675	3.669	
3		10:48	3.500	3.600	
Average			3.650	3.840	

Site Details Sheet

CLIENT MONITORING #:

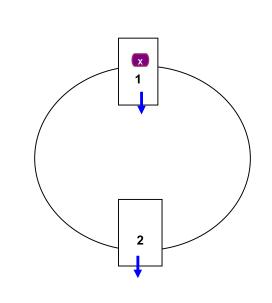
NAME: Oak Lodge Water Services, Oak Grove, OR

WSC

SFE PROJECT #: SFE SITE #: U026B 2C-325

Project Specific Information		
Client Name:	Water Engineering Consulting	
End User Name:	Oak Lodge Water Services	
Project Name:	Sanitary Sewer Flow Monitoring	
Client Contact:	Scott Duren	
Field Contact:	Scott Duren	
SFE PM Contact:	Dylan Carvin	
Site Maintenance: as required		

	Site Equipment				
Install / Removal Date:	Dec 15 21	Feb 28 22			
Meter Make & Model:	ISCO 2150				
Meter I.D #1 and #2	SFEAB077 na				
Wireless I.D # / Cell #:	na	na			
Level / Velocity Type:	Pressure Probe	AV Sensor			
Sensor Mounting:	Compr	ession			
Primary Device:	Area Velocity				
Logging Rate / Call out:	: 5 minute 24hr				


Cito Eaui

Site Location Information					Site Prot	file	
Client Site #:	2C-325		Invert Distar	nce (in):	142.25	Access:	yes
Address (Location):	4111 SE Roethe Rd		Overall Site	Overall Site Condition:		good	
City, State:	Oak Grove, O	R	Pipe Size	#1	8	#2	8
GPS (North - West):	45.397758	122.620897	(in):	#3	na	#4	na
Landmarks:	n/a		Location of	Sensor (w	hich pipe?):	x =	1
Traffic Control Req's:	Full Traffic		Overall Pipe	e Conditior	ו:	good	
Additional Information:	n/a		Additional Ir	nformation	:	na	

Site Setup

Мар

Additional Notes

- incoming pipe is drop pipe, sensor inserted upstream
- -

-

<u>Site Pictures</u>

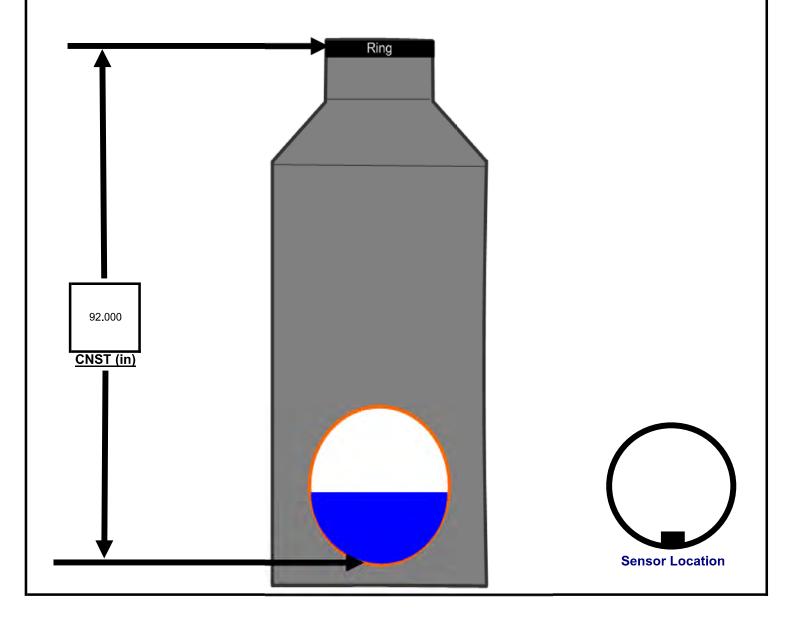
CLIENT M	ONITORING #:	WSC
NAME:	Oak Lodge Water Ser	vices, Oak Grove, OR

SFE	PROJECT #:
SFE	SITE #:

U026B
2C-325

<u>Notes</u>

1 area	4 meter
2 manhole prior to meter installation	5
3 manhole after sensor installation	6



 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

SFE PROJECT #:		U026B
SFE SITE #:		2C-325
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-15-21	9:53	2.5	2.3	install with 4" offset
1		9:54	2.4	2.2	
2		9:54	2.4	2.2	
3		9:54	2.3	2.2	
Average			2.4	2.3	

Site Details Sheet

CLIENT MONITORING #:

Oak Lodge Water Services, Oak Grove, OR NAME:

Project Specific Information

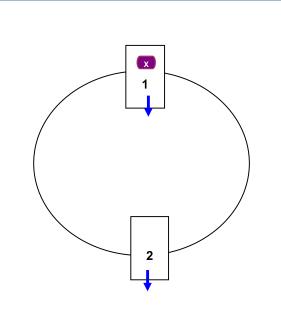
WSC

Client Name:	Water Engineering Consulting
End User Name:	Oak Lodge Water Services
Project Name:	Sanitary Sewer Flow Monitoring
Client Contact:	Scott Duren
Field Contact:	Scott Duren
SFE PM Contact:	Dylan Carvin
Site Maintenance:	as required

SFE PROJECT #: SFE SITE #:

U026B

2E-566


Site Equipment				
Dec 16 21 Feb 28 22				
Make & Model: ISCO 2150				
AB212A01445	na			
na	na			
Pressure Probe	AV Sensor			
Compr	ession			
Area Velocity				
5 minute	24hr			
	Dec 16 21 ISCO AB212A01445 na Pressure Probe Compr Area V			

Site Location Information			
Client Site #:	2E-566		
Address (Location):	18595 Portland Ave		
City, State:	Gladstone, OR		
GPS (North - West):	45.387851 122.599929		
Landmarks:	near Gladstone Public Works		
Traffic Control Req's:	Local Traffic		
Additional Information:	n/a		

Site Profile						
Invert Distance (in):		207.75	Access:	yes		
Overall Site Condition:			good			
Pipe Size	#1	8	#2	8		
(in):	#3	na	#4	na		
Location of Sensor (which		ch pipe?):	x =	1		
Overall Pipe	Condition:		good			
Additional In	formation:		na			

Site Setup

Additional Notes

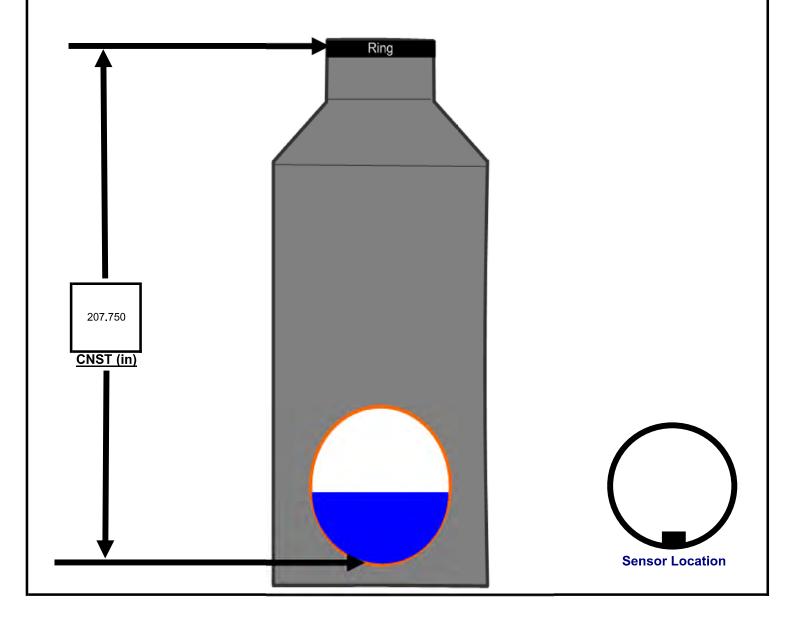
_ _

Site Pictures

CLIENT MONITORING #: wsc NAME: Oak Lodge Water Services, Oak Grove, OR SFE SITE #:

U026B 2E-566

<u>Notes</u>	
1 area	4 meter
2 manhole prior to meter installation	5
3 manhole after sensor installation	6



 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

SFE PROJECT	#:	U026B
SFE SITE #:		2E-566
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-16-21	11:19	3.0	3.0	install with 4" offset
1		11:19	3.0	3.0	
2		11:20	3.0	3.0	
3		11:20	3.0	2.9	
Average			3.0	3.0	

Site Details Sheet

CLIENT MONITORING #:

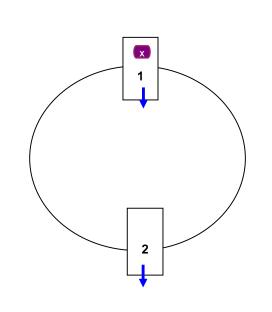
NAME: Oak Lodge Water Services, Oak Grove, OR

WSC

SFE PROJECT #: SFE SITE #: U026B

B-299

Project Specific Information				
Client Name:	Water Engineering Consulting			
End User Name:	Oak Lodge Water Services			
Project Name:	Sanitary Sewer Flow Monitoring			
Client Contact:	Scott Duren			
Field Contact:	Scott Duren			
SFE PM Contact: Dylan Carvin				
Site Maintenance: as required				


Site Equipment						
Install / Removal Date:	Dec 14 21	Feb 28 22				
Meter Make & Model:	ISCO 2150					
Meter I.D #1 and #2	AB207C01382	na				
Wireless I.D # / Cell #:	na	na				
Level / Velocity Type:	Pressure Probe	AV Sensor				
Sensor Mounting:	Hilti Band					
Primary Device:	Area Velocity					
Logging Rate / Call out:	5 minute	24hr				

Site Location Information				Site Profile			
Client Site #:	B-299		Invert Distar	nce (in):	170	Access:	yes
Address (Location):	980 SE Dogwood Ln		Overall Site	Overall Site Condition:		good	
City, State:	Milwaukie, OR		Pipe Size	#1	18	#2	18
GPS (North - West):	45.415653	122.652791	(in):	#3	na	#4	na
Landmarks:	na		Location of	Sensor (w	vhich pipe?):	x =	1
Traffic Control Req's:	Local Traffic		Overall Pipe	Overall Pipe Condition:		good	
Additional Information:	n/a		Additional Ir	formatior	ו:	na	

Site Setup

Мар

Additional Notes

1	<	5	F	-	E	,	
	G	L	0	в	A	L	

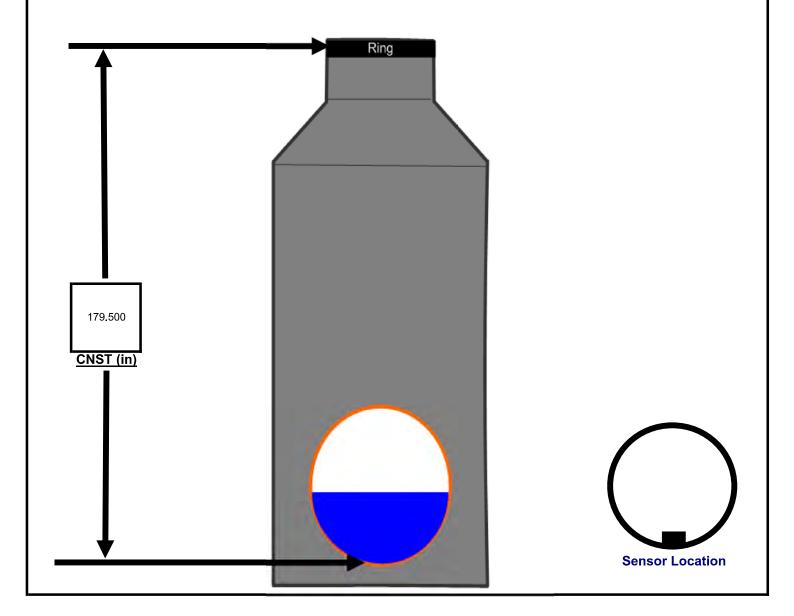
Site Pictures

CLIENT MONITORING #: wsc Oak Lodge Water Services, Oak Grove, OR SFE SITE #: NAME:

SFE PROJECT #:

U026B	
B-299	

<u>Notes</u>	
1 area	4 meter
2 manhole prior to meter	5
3 manhole after sensor install	6



 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

SFE PROJECT	#:	U026B
SFE SITE #:		B-299
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-14-21	17:08	10.5	10.5	install with 4" offset
1		17:09	10.5	10.5	
2		17:09	10.5	10.5	
3		17:10	10.5	10.6	
Average			10.5	10.5	

Site Details Sheet

____ ____ ____

CLIENT MONITORING #: NAME:

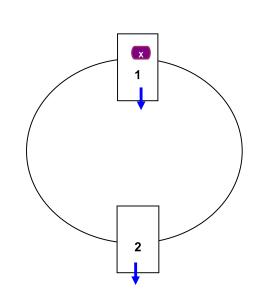
Oak Lodge Water System, Oak Grove, OR

WSC

SFE PROJECT #: SFE SITE #:

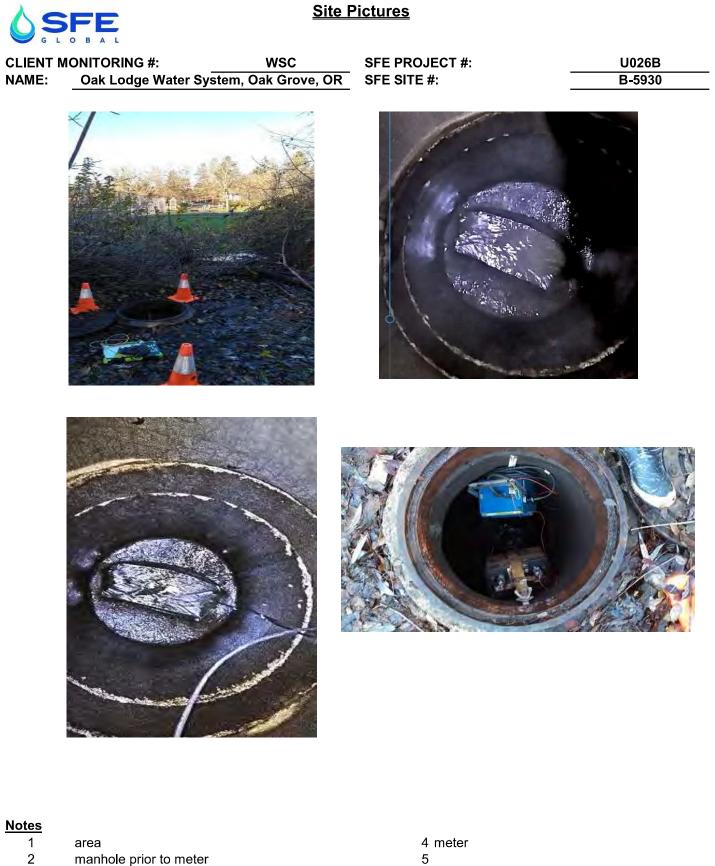
U026B B-5930

Project Specific Information			
Client Name:	Water Engineering Consulting		
End User Name:	Oak Lodge Water Services		
Project Name:	Sanitary Sewer Flow Monitoring		
Client Contact:	Scott Duren		
Field Contact:	Scott Duren		
SFE PM Contact:	Dylan Carvin		
Site Maintenance: as required			


Site Equipment					
Install / Removal Date:	Dec 14 2021	Feb 28 2022			
Meter Make & Model:	ISCO 2150				
Meter I.D #1 and #2	AB207C01390 na				
Wireless I.D # / Cell #:	na	na			
Level / Velocity Type:	Pressure Probe AV Sensor				
Sensor Mounting:	Hilti Band				
Primary Device:	Area Velocity				
Logging Rate / Call out:	5 minute 24hr				

Site	Site Profile					
Client Site #:	B-5930	Invert Distan	nce (in):	135	Access:	yes
Address (Location):	2350 SE Swain Ave (Risley Park)	Overall Site	Condition	1:	good	
City, State:	Milwaukie, OR	Pipe Size	#1	15	#2	15
GPS (North - West):	45.407507 122.63888	(in):	#3	na	#4	na
Landmarks:	Risley Park, near Tennis court	Location of S	Sensor (w	hich pipe?):	x =	1
Traffic Control Req's:	Local Traffic	Overall Pipe	Condition	า:	good	
Additional Information:	Risley park, in bushes near tennis crt	Additional In	formation	1:	na	

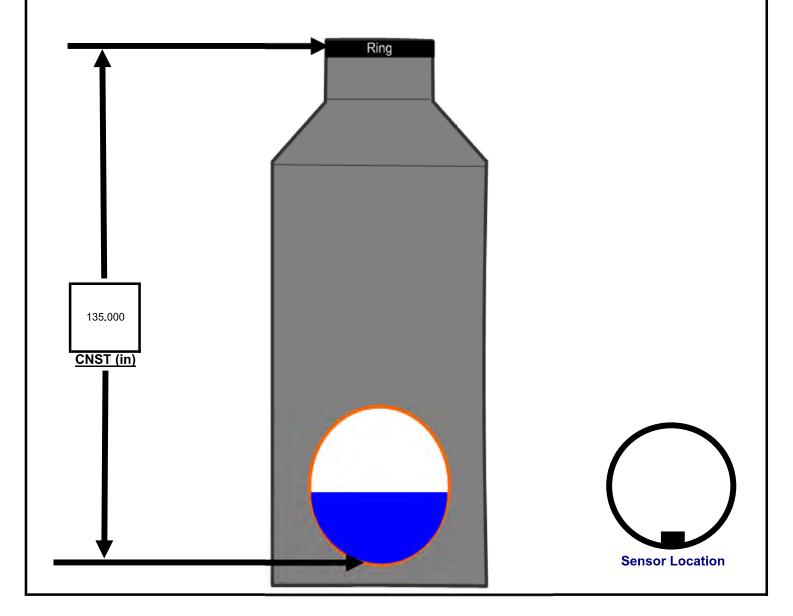
Site Setup



Мар

Additional Notes

	-
_	_
-	-
-	-


1	area	4
2	manhole prior to meter	5
3	manhole after sensor install	6

CLIENT FL	OW MONITORING #:	WSC
NAME:	Oak Lodge Water Syst	em, Oak Grove, OF

SFE PROJECT #:		U026B
SFE SITE #:		B-5930
Technician 1:	Jason Rowley	
Technician 2:	Dylan Carvin	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-14-21	14:49	6.3	6.2	install with 4" offset
1		14:50	6.3	6.2	
2		14:50	6.3	6.2	
3		14:51	6.3	6.2	
Average			6.3	6.2	

_

Site Details Sheet

WSC

CLIENT MONITORING #:

Oak Lodge Water Services, Oak Grove, OR NAME:

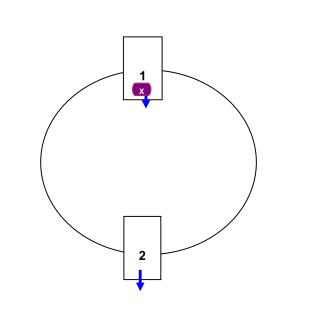
Project Specific Information

Client Name:	Water Engineering Consulting
End User Name:	Oak Lodge Water Services
Project Name:	Sanitary Sewer Flow Monitoring
Client Contact:	Scott Duren
Field Contact:	Scott Duren
SFE PM Contact:	Dylan Carvin
Site Maintenance:	as required

SFE PROJECT #: SFE SITE #:

U026B

C-2672


Site Equipment					
December 15 2021	February 28 2022				
ISCO 2150					
AB207C01400	na				
na na					
Pressure Probe	AV Sensor				
Compression					
Area Velocity					
all out: 5 minute 24hr					
	December 15 2021 ISCO AB207C01400 na Pressure Probe Compr Area V				

Site Location Information				
Client Site #:	B-5930			
Address (Location):	14825 SE Ruper	t DR		
City, State:	Oak Grove, OR			
GPS (North - West):	45.414743	122.640811		
Landmarks:	na			
Traffic Control Req's:	Full Traffic			
Additional Information:	n/a			

		Site Prof	file	
Invert Distar	nce (in):	89	Access:	yes
Overall Site Condition:			good	
Pipe Size	#1	12	#2	12
(in):	#3	na	#4	na
Location of Sensor (which pipe?):			x =	1
Overall Pipe Condition:			good	
Additional Information:			na	

Мар

Additional Notes

-
-
-

Site Setup

6	<	5	F	-	E	
	G	L	0	в	A	L

Site Pictures

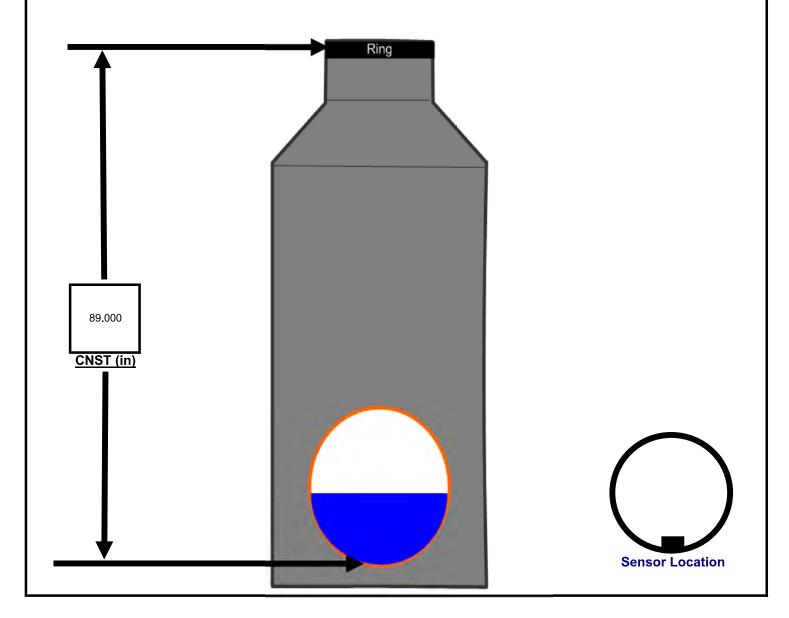
 CLIENT MONITORING #:
 WSC
 SFE PROJECT #:

 NAME:
 Oak Lodge Water Services, Oak Grove, OR
 SFE SITE #:

U026B

C-2672

<u>Notes</u>	
1 area	4 meter
2 manhole prior to meter	5
3 manhole with sensor	6



 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

SFE PROJECT	ˈ#:	U026B
SFE SITE #:		C-2672
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-15-21	14:19	6.5	6.5	install with 4" offset
1		14:20	6.5	6.6	
2		14:20	6.5	6.6	
3		14:20	6.5	6.7	
Average			6.5	6.6	

Site Details Sheet

wsc

CLIENT MONITORING #:

NAME: Oak Lodge Water Services, Oak Grove, OR SFE PROJECT #: SFE SITE #:

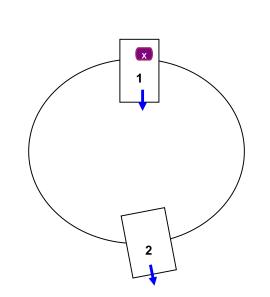
U026B E-949

24hr

Project Specific Information			
Client Name:	Water Engineering Consulting		
End User Name:	Oak Lodge Water Services		
Project Name:	Sanitary Sewer Flow Monitoring		
Client Contact:	Scott Duren		
Field Contact:	Scott Duren		
SFE PM Contact:	Dylan Carvin		
Site Maintenance: as required			

Site Equipment Install / Removal Date: December 17 2021 February 28 2022 Meter Make & Model: ISCO 2150 Meter I.D. - #1 and #2 AB206C01493 na Wireless I.D # / Cell #: na na AV Sensor Level / Velocity Type: Pressure Probe Hilti Band Sensor Mounting: Primary Device: Area Velocity

5 minute


Site	Location Infor	mation			Site Prof	file	
Client Site #:	E-949		Invert Distar	nce (in):	142.25	Access:	yes
Address (Location):	13124 SE Rup	pert Dr	Overall Site	Condition:		good	
City, State:	Oak Grove, O	R	Pipe Size	#1	15	#2	15
GPS (North - West):	45.422489	122.640266	(in):	#3	na	#4	na
Landmarks:	n/a		Location of	Sensor (wł	nich pipe?):	x =	1
Traffic Control Req's:	Full Traffic		Overall Pipe	Condition	:	good	
Additional Information:	n/a		Additional Ir	formation:		na	

Logging Rate / Call out:

Site Setup

Additional Notes

· · ·	-		-
· · ·	-		-
	-		-

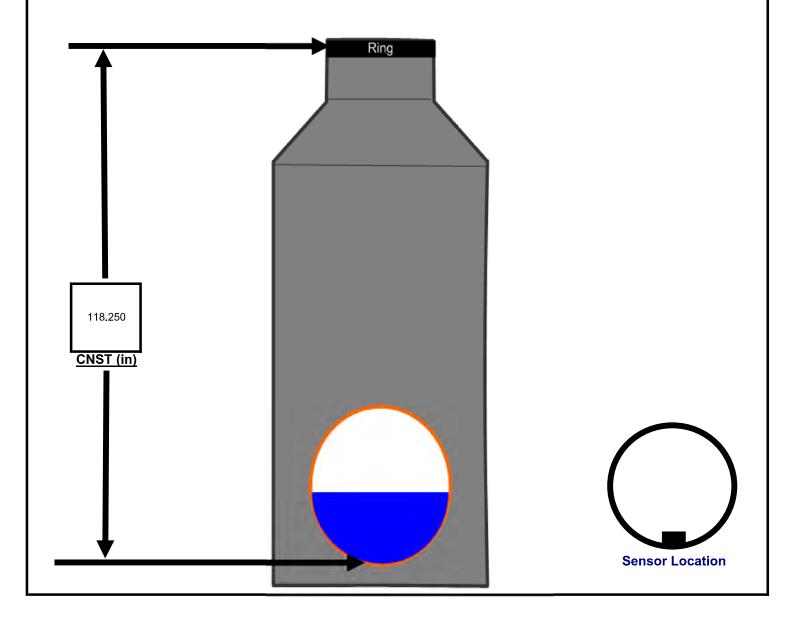
<u>Site Pictures</u>

CLIENT M	ONITORING #:	WSC	S
NAME:	Oak Lodge Water Ser	vices, Oak Grove, OR	S

SFE PROJECT #:	
SFE SITE #:	

U026B	
E-949	

Notes 1 more pictures will be obtained upon next site visit	4	
2 3	5 6	

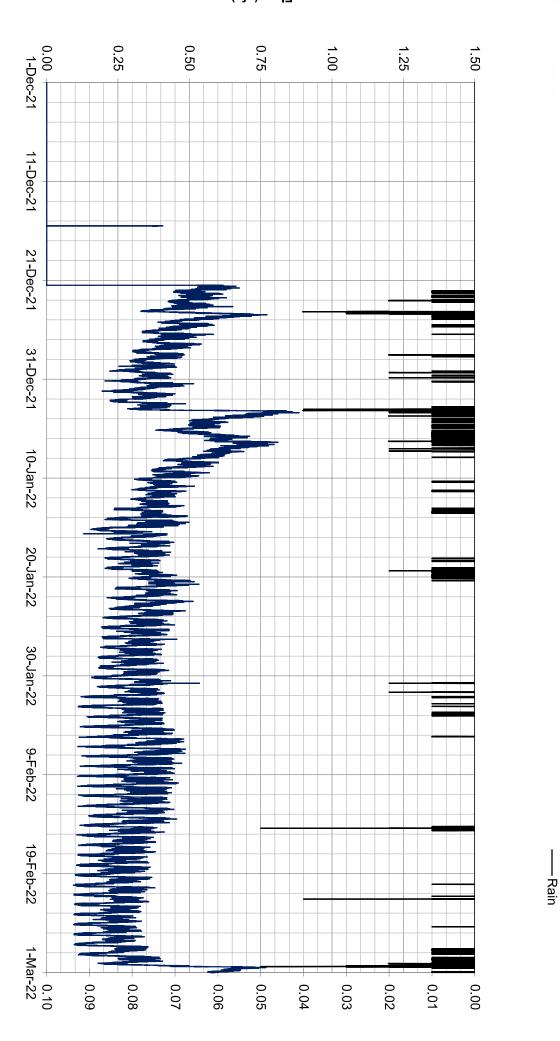


 CLIENT FLOW MONITORING #:
 WSC

 NAME:
 Oak Lodge Water Services, Oak Grove, OR

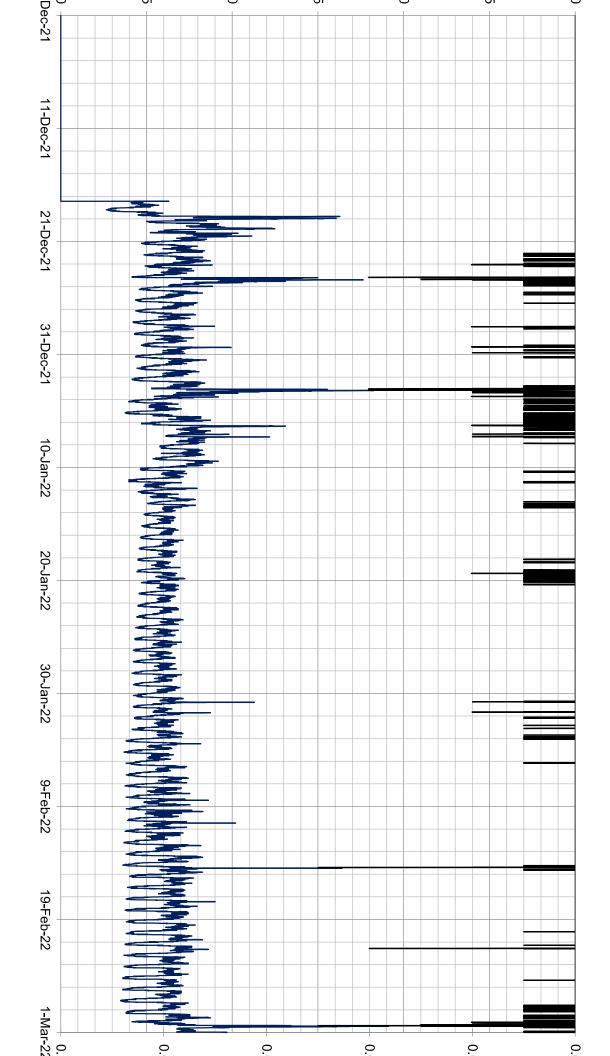
SFE PROJECT #:		U026B
SFE SITE #:		E-949
Technician 1:	Dylan Carvin	
Technician 2:	Jason Rowley	

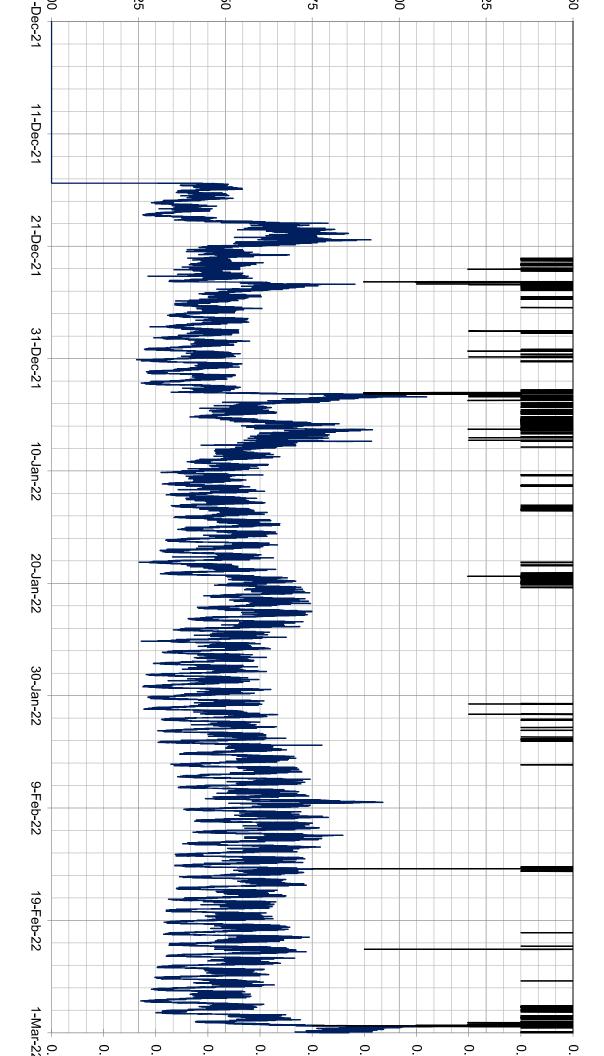
Reading	Date	Time	Field Meas	Meter Depth	Comments
Number	(m/d/yyyy)	(hh:mm)	(in)	(in)	(Zero Meter Level before Installation)
Initial	12-17-21	12:35	5.5	5.7	install with 4" offset
1		12:37	5.5	5.7	
2		12:38	5.5	5.7	
3		12:40	5.5	5.7	
Average			5.5	5.7	



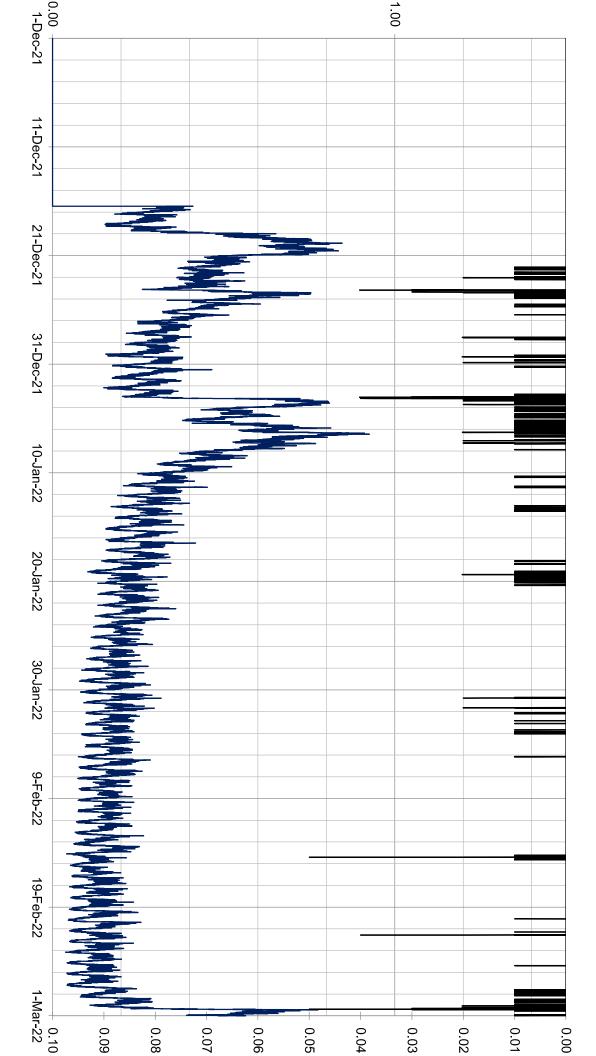
Appendix C Flow Meter Graphs

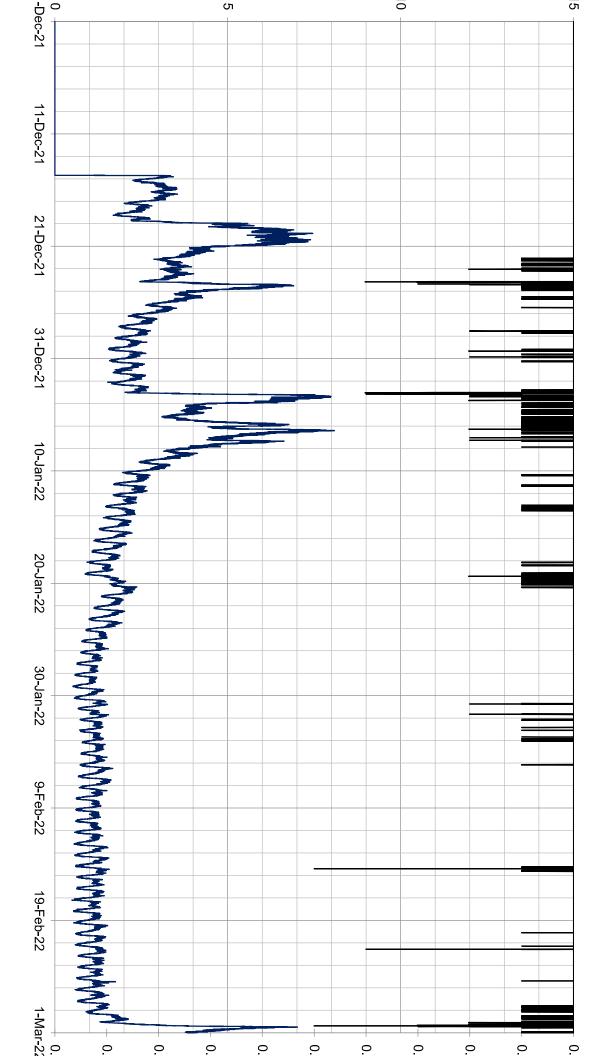
Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #2A7-325 December 1, 2021 - February 28, 2022


- Flow

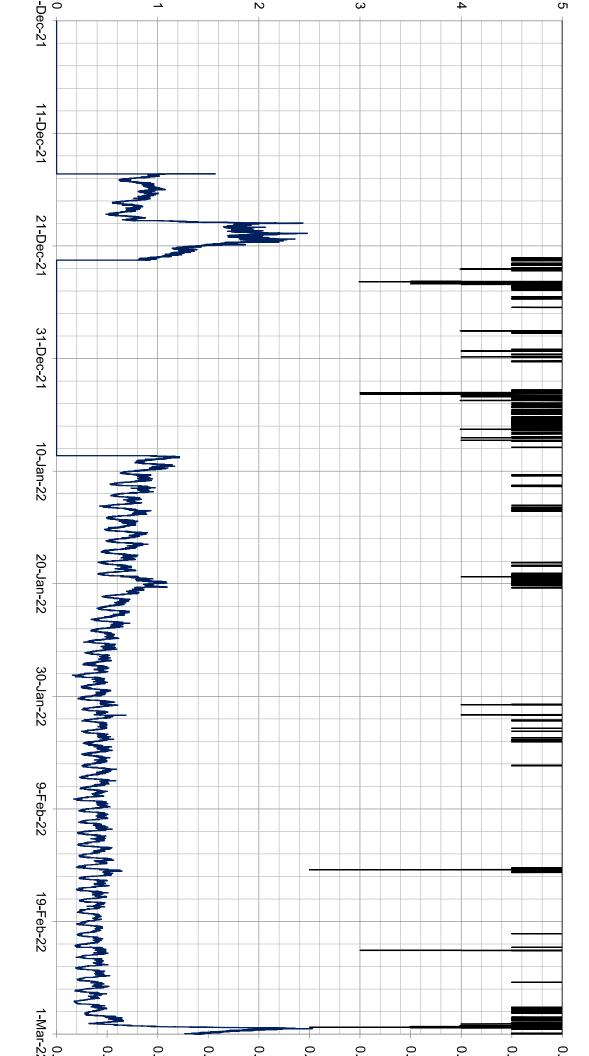


(ni) nisЯ


Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #2B-3820 December 1, 2021 - February 28, 2022

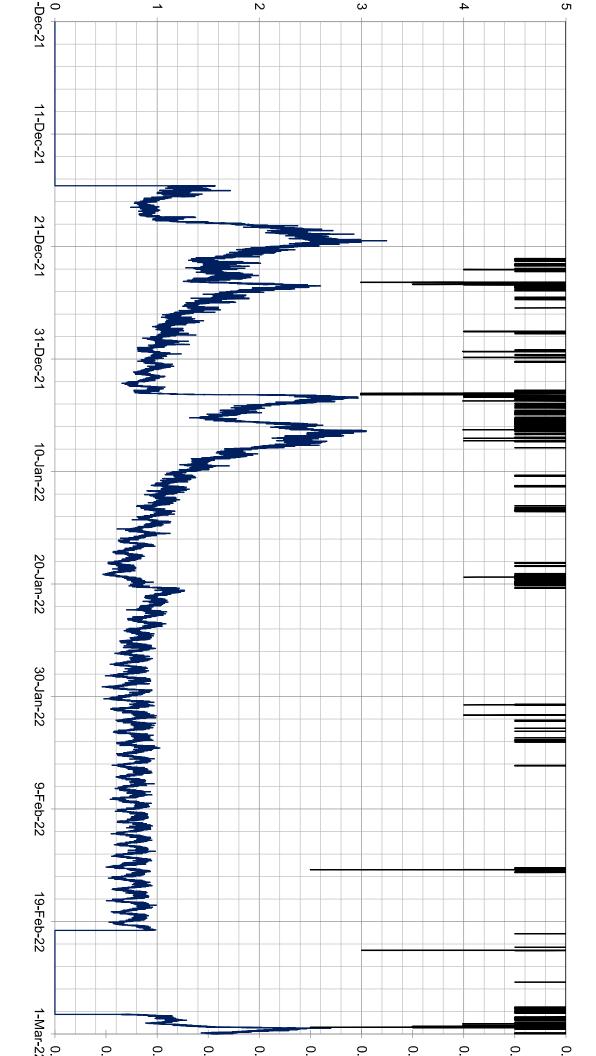


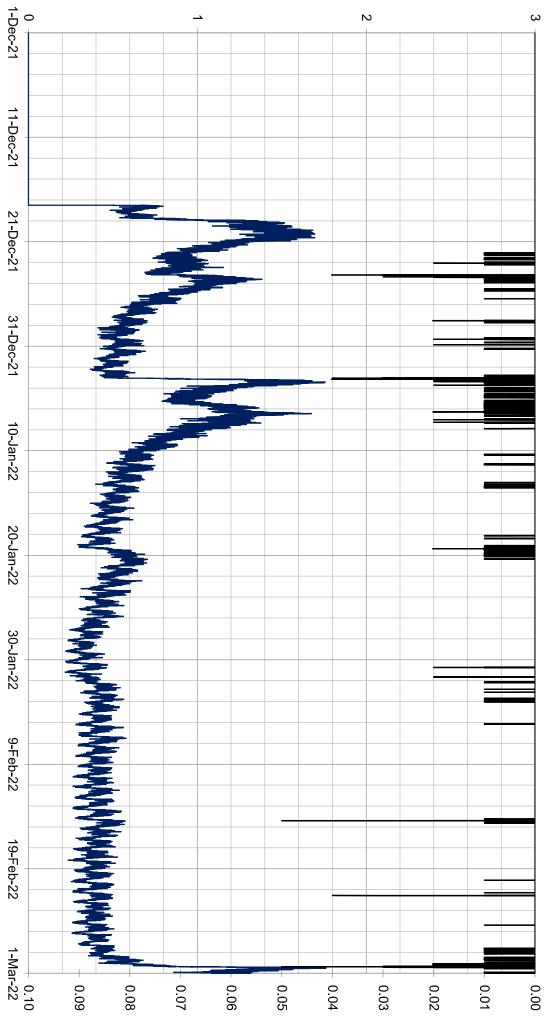
Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #2C-325 December 1, 2021 to February 28, 2022



Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #2E-566 December 1, 2021 - February 28, 2022

Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #B-299 December 1, 2021 - February 28, 2022





Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #B-5930 December 1, 2021 - February 28, 2022

Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #C-2672 December 1, 2021 - February 28, 2022

G

- Flow ---- Rain

Oak Lodge Water Service, Oak Grove, Oregon SFE File U026B - Site #E-949 December 1, 2021 - February 28, 2022

Appendix H Recommended Pipe Upsizing

Н

Wastewater Master Plan Oak Lodge Water Services

| H

The following table identifies the manhole IDs of the pipes recommended for upsizing to address capacity constraints.

Upstream Manhole	Downstream Manhole	Existing Size (in)	Upgraded Size (in)	Length (feet)
2A-8842	2A-8520	12	15	321.9
2A-8091	2A-7723	14	18	364.2
2A-8455	2A-8091	14	18	366.7
2A-246	A-13554	20	24	246.8
2A-6917	2A-6748	14	18	160.9
2A-7357	2A-6917	14	18	439.0
2A-7723	2A-7357	14	18	367.6
B-5666	B-5459	15	18	205.2
B-5244	B-5122	15	18	105.0
B-5122	B-4792	15	18	329.8
B-5930	B-5666	15	18	264.2
B-6203	B-5930	15	18	272.8
B-8274	B-8037	15	18	237.5
B-8620	B-8274	15	18	345.4
B-8984	B-8891	12	15	91.0
B-8891	B-8620	12	15	270.9
B-7789	B-7434	15	18	355.0
B-8037	B-7807	15	18	230.1
B-7807	B-7789	15	18	17.8
B-566	B-378	18	24	188.0
B-906	B-566	18	24	339.9
B-1465	B-1454	18	24	11.0
A-2552	A-2203	24	30	344.5
A-2203	A-2061	24	30	138.5
B-2650	B-2480	18	24	169.1
B-2480	B-2426	18	24	54.1
B-2426	B-2206	18	24	218.5
B-1454	B-1090	18	24	352.4
B-378	B-299	18	24	80.1

A-13554A-131652124389.9A-2061A-18632430200.2B-2841B-26501824191.0B-3026B-28411824203.6A-10467A-102522124214.6B-3554B-34461824108.0B-3446B-32521824194.0B-1893B-14651824205.5B-3262B-30261824205.5A-2812A-26772430130.6B-2096B-80951824202.0A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124241.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518349.0B-7101B-67521518335.1A-12929A-128192124480.3A-12929A-128192124208.0B-7434B-7101151838.8A-12310A-118302124208.0B-4792B-4604151831.4B-4792B-4604151831.4B-4462151831.4B-4462151831.4B-4464B-4462151831.4B-4464B-4462	Upstream Manhole	Downstream Manhole	Existing Size (in)	Upgraded Size (in)	Length (feet)
B-2841 B-2650 18 24 191.0 B-3026 B-2841 18 24 203.6 A-10467 A-10252 21 24 214.6 B-3554 B-3446 18 24 108.0 B-3446 B-3252 18 24 434.8 B-3252 B-3026 18 24 205.5 A-2812 A-2677 24 30 130.6 B-2206 B-2095 18 24 202.0 A-2677 A-2552 24 30 135.7 B-2095 B-1893 18 24 202.0 A-10780 A-10467 21 24 240.1 B-4108 B-4131 15 18 39.0 B-6450 B-6203 15 18 247.0 B-7101 B-6752 15 18 35.1 A-12929 A-12819 21 24 480.3 A-12929 A-12819 21 <td< td=""><td>A-13554</td><td>A-13165</td><td>21</td><td>24</td><td>389.9</td></td<>	A-13554	A-13165	21	24	389.9
B-3026 B-2841 18 24 203.6 A-10467 A-10252 21 24 214.6 B-3554 B-3446 18 24 108.0 B-3446 B-3252 18 24 194.0 B-1893 B-1465 18 24 30.8 B-3252 B-3026 18 24 205.5 A-2812 A-2677 24 30 130.6 B-2206 B-2095 18 24 202.0 A-2677 A-267 24 30 135.7 B-2095 B-1893 18 24 202.0 A-10780 A-10467 21 24 311.1 A-3056 A-2812 21 24 240.1 B-4108 B-4131 15 18 39.0 B-4680 B-6203 15 18 349.0 B-7434 B-7101 15 18 35.1 A-12929 A-12819 21 24<	A-2061	A-1863	24	30	200.2
A-10467A-102522124214.6B-3554B-34461824108.0B-3446B-32521824194.0B-1893B-14651824434.8B-3252B-30261824205.5A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518349.0B-7434B-71011518335.1A-12929A-128192124480.3A-12310A-118302124480.3A-12318A-129292124208.0B-4792B-46041518188.1A-13186A-13138212427.7B-6752B-64501518301.5B-4604B-44621518301.5B-4604B-44621518301.5B-4604B-4462151824.0A-12510A-123102124192.1A-12510A-123102124192.1A-12709A-123102124192.1	B-2841	B-2650	18	24	191.0
B-3554B-34461824108.0B-3446B-32521824194.0B-1893B-14651824434.8B-3252B-30261824205.5A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-6752151835.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124240.3A-1318A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124192.6	B-3026	B-2841	18	24	203.6
B-3446B-32521824194.0B-1893B-14651824434.8B-3252B-30261824205.5A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124240.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12310A-118302124480.3A-12310A-118302124108.9A-13185A-129292124208.0B-4792B-46041518301.5B-4604B-44621518301.5B-4604B-44621518301.5B-4604B-44621518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-125102124192.1A-12709A-125102124192.1	A-10467	A-10252	21	24	214.6
B-1893B-14651824434.8B-3252B-30261824205.5A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124208.0B-4792B-46041518188.1A-13165A-131382124208.0B-4792B-46041518301.5B-4604B-44621518301.5B-4604B-44621518294.0A-12510A-123102124192.1A-12510A-125102124192.1	B-3554	B-3446	18	24	108.0
B-3252B-30261824205.5A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124480.3A-12310A-118302124480.3A-12310A-118302124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-4462151831.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124192.1	B-3446	B-3252	18	24	194.0
A-2812A-26772430130.6B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-1893	B-1465	18	24	434.8
B-2206B-20951824111.1A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-125102124192.1	B-3252	B-3026	18	24	205.5
A-2677A-25522430135.7B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-13188A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-125102124192.1	A-2812	A-2677	24	30	130.6
B-2095B-18931824202.0A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-13138A-129292124208.0B-4792B-6041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-2206	B-2095	18	24	111.1
A-10780A-104672124311.1A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4624B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-2677	A-2552	24	30	135.7
A-3056A-28122124240.1B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-12709212408.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4604B-44621518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-2095	B-1893	18	24	202.0
B-4168B-4131151839.0B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4604B-44621518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-10780	A-10467	21	24	311.1
B-6450B-62031518247.0B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-125102124192.1	A-3056	A-2812	21	24	240.1
B-7101B-67521518349.0B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-4168	B-4131	15	18	39.0
B-7434B-71011518335.1A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-6450	B-6203	15	18	247.0
A-12929A-128192124111.0A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4624B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-7101	B-6752	15	18	349.0
A-11039A-11001212438.8A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-7434	B-7101	15	18	335.1
A-12310A-118302124480.3A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-12929	A-12819	21	24	111.0
A-12819A-127092124108.9A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-11039	A-11001	21	24	38.8
A-13138A-129292124208.0B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-12310	A-11830	21	24	480.3
B-4792B-46041518188.1A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-12819	A-12709	21	24	108.9
A-13165A-13138212427.7B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-13138	A-12929	21	24	208.0
B-6752B-64501518301.5B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-4792	B-4604	15	18	188.1
B-4604B-44621518131.4B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	A-13165	A-13138	21	24	27.7
B-4462B-41681518294.0A-12510A-123102124192.1A-12709A-125102124199.6	B-6752	B-6450	15	18	301.5
A-12510A-123102124192.1A-12709A-125102124199.6	B-4604	B-4462	15	18	131.4
A-12709 A-12510 21 24 199.6	B-4462	B-4168	15	18	294.0
	A-12510	A-12310	21	24	192.1
A-3790 A-3586 21 27 199.1	A-12709	A-12510	21	24	199.6
	A-3790	A-3586	21	27	199.1

Wastewater Master Plan Oak Lodge Water Services

Upstream Manhole	Downstream Manhole	Existing Size (in)	Upgraded Size (in)	Length (feet)
B-1051	B-906	18	24	145.1
A-599	A-240	24	30	366.6
A-11491	A-11039	21	24	435.0
A-240	A-000	24	30	220.2
A-10252	A-10069	21	24	184.8
A-11001	A-10780	21	24	221.0
A-11830	A-11491	21	24	336.0
C-9487	C-9196	8	10	289.3
B-4131	B-3776	15	18	352.1
A-778	A-599	24	30	604.8
A-1827	A-1479	24	30	339.0
A-1863	A-1842	24	30	16
A-1842	A-1827	24	30	10
B-299	A-2812	18	24	298.5
A-3273	A-3056	21	27	213.2
A-10069	Lift Station 2	21	24	57.5
A-1479	A-1194	24	30	283.1
A-1194	A-778	24	30	412.3
B-3776	B-3554	18	24	222.4

Appendix I WWTP Capacity Assessment

Wastewater Master Plan Oak Lodge Water Services

Technical Memorandum

6500 S Macadam Ave., Suite 200 Portland, OR 97239

T: 503.244.7005

- Prepared for: Oak Lodge Water Services
- Project Title: Wastewater Master Plan

Project No.: 156789.061/3

Technical Memorandum

Subject: Wastewater Treatment Plant (WWTP) Capacity Assessment

Date: February 3, 2023

- To: Brad Albert, District Engineer, P.E. Oak Lodge Water Services (OLWS) Sarah Jo Chaplen, General Manager, OLWS
- From: Art Molseed, P.E., WWTP Lead, Brown and Caldwell
- Copy to: David Hawkins, Plant Superintendent, OLWS Scott Duren, P.E., Project Manager, Water Systems Consulting

Prepared by:

Patricia Tam, P.E.*

Art Molseed, P.E. OR License #15224PE, Exp. 12/31/24

Reviewed by:

Reviewed by:

Kichand Thomas Rick Kelly, Ph.D., P.E.

OR License #84102PE, Exp. 6/30/24

* Professionally licensed in the State of Washington.

EXPIRES: DECEMBER 31, 2024

Limitations:

This document was prepared solely for the Oak Lodge Water Services (OLWS) and Water Systems Consulting, Inc (WSC) in accordance with professional standards at the time the services were performed and in accordance with the contract between OLWS and WSC dated May 18, 2021. This document is governed by the specific scope of work authorized by OLWS; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by OLWS and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

Section 1: Introduction	1
Section 2: WWTP Description	1
Section 3: Wastewater Characterization	
Section 4: Model Calibration	5
4.1 BioWin Calibration	5
4.2 MABLE Calibration	7
Section 5: Capacity Assessment	9
5.1 Simulation Scenarios	9
5.2 Controlling Parameters	
5.2.1 Influent Pumps	
5.2.2 Influent Screens	
5.2.3 Grit Removal	
5.2.4 Aeration Basins	
5.2.5 Aeration Blowers	14
5.2.6 Secondary Clarifiers	14
5.2.7 Ultraviolet Disinfection	
5.2.8 Gravity Belt Thickener	
5.2.9 Aerobic Digesters	
5.2.10 Belt Filter Press	17
5.2.11 Plant Hydraulic Limitations for Gravity-Flow Systems	
5.3 Capacity Rating Chart	
5.3.1 Dry Weather Conditions	20
5.3.2 Wet Weather Conditions	
Section 6: Summary	22
6.1 Summary of Capacity Constraints by Unit Process	22
6.2 Summary of Capacity Constraints by Timing	23
References	
Attachment A: August 2021 Sampling Data	A-1

ii

List of Figures

Figure 1. WWTP process schematic	1
Figure 2. BioWin process flowsheet for secondary system	5
Figure 3. SVI and DSVI data from 2016 to 2021	15
Figure 4. Composite capacity chart for dry weather conditions	19
Figure 5. Composite capacity chart for wet weather conditions	19

List of Tables

Table 1. Current Design Flows and Loadings	2
Table 2. Current NPDES Permit Waste Discharge Limits	2
Table 3. Oak Lodge WWTP Summary of Sampling Results	4
Table 4. BioWin Calibration Summary	6
Table 5. MABLE Calibration Summary for August 2021 Sampling Period	8
Table 6. Modeling Matrix of Ranges of Influent Flows and BOD Concentrations for Dry Weather	9
Table 7. Modeling Matrix of Ranges of Influent Flows and BOD Concentrations for Wet Weather	10
Table 8. Maximum Operating Limits	11
Table 9. Summary of 2022 and 2052 Flows and Loadings	12
Table 10. Summary of Aeration Basin Diffuser Counts	13
Table 11. Summary of SVI and DSVI Data	15
Table 12. Maximum Capacities by Unit Process	22

List of Abbreviations

BOD	biochemical oxygen demand	CDT	colide retention time
BC	Brown and Caldwell	SRT	solids retention time
BFP	belt filter press	SVI	sludge volume index
CBOD	carbonaceous biochemical oxygen demand	TKN	total Kjeldahl nitrogen
COD	chemical oxygen demand	TP	total phosphorus
DEQ	Oregon Department of Environmental Quality	TSS	total suspended solids
DO	dissolved oxygen	UV	ultraviolet
DSVI	dilute sludge volume index	VSR	volatile solids reduction
EPA	United States Environmental Protection Agency	VSS	volatile suspended solids
MMDW	maximum month dry weather	WAS	waste activated sludge
MMWW	maximum month wet weather	WERF	Water Environment Research Foundation
GBT	gravity belt thickener	WWTP	wastewater treatment plant
gpm	gallons per minute		
hp	horsepower		
HRT	hydraulic retention time		
IBRE	interchange bioreactor effluent		
I/I	inflow and infiltration		
kJ/cm ²	kilojoules per square centimeter		
, Ib∕d	pounds per day		
/ lb/hr	pounds per hour		
MMF	maximum month flow		
mgd	million gallons per day		
mg/L	milligrams per Liter		
mL	milliliters		
mL/g	milliliters per gram		
MLSS	mixed liquor suspended solids		
MLVSS	mixed liquor volatile suspended solids		
MMF	maximum month flow		
NPDES	National Pollutant Discharge Elimination System		
OLSD	Oak Lodge Sewer District		
OLWS	Oak Lodge Water Services		
PDR	plant drain return		
PSRP	Process to Significantly Reduce Pathogens		
RAS	return activated sludge		
SCADA	Supervisory Control and Data Acquisition		
scfm	standard cubic feet per minute		
SND	simultaneous nitrification denitrification		
SOR	surface overflow rate		
	Dusting	Delekwall	

Brown AND Caldwell

Section 1: Introduction

This Technical Memorandum (TM) documents the capacity assessment of the Oak Lodge Water Services (OLWS) Wastewater Treatment Plant (WWTP). As part of the evaluation, special sampling was conducted to provide characterization data to set up and calibrate process and solids mass balance models. The calibrated models were then used to evaluate plant capacity under different seasonal conditions. The models can also be subsequently used to determine requirements for process improvements and equipment sizing for future operating conditions. This TM documents the sampling results and assessment of the existing capacity and potential future capacity limitations at the WWTP.

The objectives of this TM are as follows:

- Summarize results from the special wastewater characterization.
- Summarize calibration of the biological process and solids mass balance models.
- Evaluate unit process capacities using the calibrated models.
- Using the projected flows and loadings developed for the Master Plan, estimate timing of the unit process capacity limitations.
- Provide preliminary recommendations for addressing the capacity constraints.

Section 2: WWTP Description

The Oak Lodge WWTP is a secondary treatment facility with a current rated maximum month flow (MMF) of 10.5 million gallons per day (mgd). Plant treatment processes include preliminary treatment with screenings and grit removal, secondary treatment including aeration basins and secondary clarifiers operating as a modified Ludzack-Ettinger (MLE) process, aerobic digestion, and sludge dewatering.

Figure 1 shows a process flow schematic of the existing liquid and solid stream treatment processes.

Figure 1. WWTP process schematic

OLWS has recently completed a Solids Piping Project that will allow waste activated sludge (WAS) to be pumped to an existing gravity belt thickener (GBT). WAS can then be thickened in the GBT prior to entering the aerobic digesters. Secondary sludge is currently thickened in two of the clarifiers by turning off the return activated sludge (RAS) pumps once a day to accumulate a sludge blanket in the clarifiers. More detailed descriptions of the current plant operation and equipment design criteria are included in the TMs for Tasks 6.1 and 6.4.

Table 1 summarizes the current design flows and loadings, and Table 2 summarizes the current National Pollutant Discharge Elimination System (NPDES) permit discharge limits.

	Table 1. Currer	nt Design Flows an	d Loadings		
Parameter	Flow (mgd)	BOD (lb/d)	TSS (lb/d)	TKN (lb/d)	NH₃-N (Ib∕d)
Average annual	4.3	6,680	7,450	994	775
Average dry weather	3.5	-	-	-	-
Average wet weather	5.2	-	-	-	-
Maximum month dry weather (MMDW)	-	7,250	8,960	1,354	1,055
Maximum day dry weather	8.6	10,900	12,970	-	-
Maximum month wet weather (MMWW)	10.5	7,440	8,390	1,244	970
Maximum day wet weather	17.3	11,090	13,290	-	-
Peak hour ^a	18.0	-	-	_	-

Note: Based on design flows and loadings shown in the Phase 1A and Phase 1B plant expansion record drawings (2012).

a. Hydraulic carrying capacity of all facilities is designed to pass a peak instantaneous flow of 20 mgd to avoid overtopping of walls, flooding of weirs, etc.

Table abbreviations:

BOD = biochemical oxygen demand

TSS = total suspended solids

TKN = total Kjeldahl nitrogen

NH3-N =ammonia-nitrogen

	Table 2. Curre	ent NPDES Permit V	Vaste Discharge L	imits		
	Average Effluent	Concentrations	Manthly Average		Deily Meyimum	
Parameter	Monthly (mg/L)	Weekly (mg/L)	Monthly Average (lb/d)	Weekly Average (lb/d)	Daily Maximum (Ib/d)	
May 1–October 31						
Carbonaceous BOD ₅	rbonaceous BOD₅ 10 15 490 740 9				980	
TSS	10	15	490	740	980	
		November 1-Ap	oril 30			
BOD ₅	30	45	2,600	3.900	5,200	
TSS	30	45	2,600	3,900	5,200	

Note: Based on NPDES permit effective May 1, 2022.

Table abbreviations:

lb/d = pounds per day

mg/L = milligrams per Liter

Brown AND Caldwell

Section 3: Wastewater Characterization

Historical plant data from 2016 to 2021 were reviewed as part of this capacity assessment task. The historical data allow development of flow and load peaking factors and were used for the flow and load projections. Review of the historical data was discussed in the TM prepared for Task 6.2. To supplement the historical data, a special wastewater characterization was conducted to provide data to calibrate the biological process and plant-wide solids mass balance models. Sampling took place from August 10 to 24, 2021. The sampling plan is summarized in the TM "Wastewater Characterization Sampling Plan" (dated October 4, 2021). The TM also includes descriptions of the sampling locations and types of samples collected.

During the sampling period, 24-hour composite samples were collected for 7 days and grab samples were collected for 9 days from selected process streams. These samples were analyzed for a range of parameters. In addition, 2-hourly diurnal sampling of the raw influent was also conducted. The diurnal samples were analyzed for total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total phosphorus (TP) and alkalinity. The diurnal sampling results were used in conjunction with hourly flow data to develop normalized diurnal patterns to facilitate dynamic simulation of the secondary system.

Table 3 summarizes the average flows and concentrations over the 15-day sampling period. Daily sampling data and measurements are provided in Attachment A to this TM.

WWTP Capacity Assessment

			Table 3. 0	Table 3. Oak Lodge WWTP Summary of Sampling Results	WTP Sun	imary of	Samplin	g Results				
Parameter*	Raw Influent	Secondary Influent	Final Effluent	Anoxic Selector Effluent	Mixed Liquor	RAS	WAS	IBRE (Digester 2) ª	Digested Sludge	Dewatered Cake	Plant Drain Return	r arameter permittions? The abbreviations and units for the parameters listed in column 1 are defined as follows:
Flow	1.78	I	1.73	·	ı	0.567	0.020		0.0186	I	0.079	Flow (mgd)
TSS, TS ^b	193	561	6 <u>.</u> 5	I	3,313	14,463	19,788	1.80	1.69	12.8	1,163	TSS = total suspended solids (mg/L) TS = total solids (%)
VSS, VS ^b	181	511	5.3	ı	2,770	12,075	16,600	1.39	1.27	8.6		VSS = volatile suspended solids (mg/L) VS = volatile solids (%)
COD	451	I	28	I	•	•	•		I	I	I	COD = chemical oxygen demand (mg/L)
sCOD	192	I	20	39	•	•	•	1	I	I	I	sCOD = soluble COD (mg/L)
ffCOD	114	I	18	30	•	•	•	1	I	I	I	ffCOD = flocculated and filtered COD (mg/L)
BOD	236	372	1	ı	1	•	•	1	ı	I	138	BOD = biochemical oxygen demand (mg/L)
sbod	85	I	1	ı	1	•	•	1	ı	1	I	sBOD = soluble BOD (mg/L)
CBOD	I	I	2.6	ı	•	•	•	1	I	I	I	CBOD = carbonaceous BOD (mg/L)
SCBOD	ı	I	1.8		1		•		I	I	I	sCBOD = soluble carbonaceous BOD (mg/L)
TKN	46	67	1.9	ı	•	•	•	1	I	I	I	TKN = total Kjeldahl nitrogen (mg/L)
STKN	37	I	1	ı	•	•	•	1	I	I	I	sTKN = soluble TKN (mg/L)
NH ₃ -N	37	I	0.4	5.3	•	•	•	1	I	I	106	NH3-N = ammonia-nitrogen (mg/L)
NO ₃ -N	I	I	3.1	0.2	•	•	•	1	I	I	1.7	NO ₃ -N = nitrate-nitrogen
NO ₂ -N	I	I	0.1	0.1	1	•	•	1	ı	I	I	$NO_2-N = nitrite-nitrogen (mg/L)$
ΤP	5 <u>.</u> 8	9.6	2.9	ı	1	•	•	1	İ	I	I	TP = total phosphorus (mg/L)
P04-P	2.9	I	2.2	4.8	•	•	•		I	I	81	PO_{4} -P = orthophosphate-phosphorus (mg/L)
DO	0.04	I	ı	ı	2.13		•	,	ı	I	ı	$SO_4 = sulfate (mg/L)$
Alkalinity	180	195	68	ı	,			,	I	I	ı	DO = dissolved oxygen (mg/L)
pН	7.52	ı	<u>6.</u> 6		5.2	•	•		1	ı	1	Alkalinity (mg/L calcium carbonate [CaCO ₃])
Temperature	26.0	1	23.5		27.8			1	ı	1	1	Temperature (°C)

Note: Data shown are averages for the period from 8/10/21 to 8/23/21, except for plant drain return (PDR), for which the data are averages for 8/10/21 to 8/24/21. Samples were not collected every day.

a. Interchange bioreactor effluent (IBRE) samples collected from Aerobic Digester 2 (formerly referred to as IBR 2).

b. TSS and VSS data for all process streams, except for IBRE, digested sludge, and dewatered cake, for which TS and VS data are shown.

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

Brown AND Caldwell

4

Section 4: Model Calibration

The sampling data summarized in Section 3 were used to calibrate the process models. These include BioWin and MABLE. BioWin is a commercially available software developed by EnviroSim Associates Limited of Ontario, Canada, that is based upon the International Water Association Activated Sludge Model 1. BioWin allows the prediction of complex biological interactions in suspended growth treatment systems using various mechanistic and empirical models to represent organic material transformations and removals in the process. BioWin incorporates the simulation of carbon oxidation, nitrification, denitrification, and enhanced biological phosphorus removal. For this task, BioWin was used to simulate operation of the secondary system. MABLE is a spreadsheet-based model developed by BC to perform plant-wide solids mass balance calculations.

The following sections discuss the calibration results of each of these models.

4.1 BioWin Calibration

BioWin was used to simulate the secondary system operation, including the aeration basins and secondary clarifiers. During the sampling period, both Aeration Basins 2 and 3 and two clarifiers were in service. Figure 2 illustrates the process flowsheet used in BioWin.

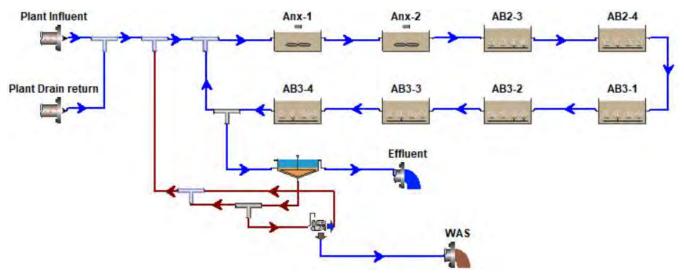


Figure 2. BioWin process flowsheet for secondary system

Table 4 summarizes the BioWin calibration results for the August 2021 sampling period. The model configuration was set up to simulate the typical wasting scheme during the sampling period (intermittent build-up of solids in the clarifiers and subsequent wasting). For a well-balanced model, there should be close correspondence between the simulated and observed behavior. When major discrepancies appear between measured and predicted values for effluent characteristics or major operating variables, investigation of the plant data is carried out to determine their cause.

For the BioWin calibration, it was found that without any adjustments to the influent concentrations (and thus loadings), it would not be possible to match both the measured mixed liquor suspended solids (MLSS), WAS and RAS TSS concentrations. A solids mass balance around the secondary clarifier shows fairly good closure, thus suggesting that the RAS and mixed liquor solids measurements are consistent. It was assumed that the concentrations of soluble components in the influent (e.g., soluble COD, soluble BOD, and ammonia) remain the same as the measured concentrations while the total concentrations were increased.

	Table 4. BioWin	Calibration Summary	
Parameter	Measured	Model Inputs/Assumptions	Model Outputs
Plant influent			
BOD, mg/L	236	332	
lb/d	3,500	4,920	-
TSS, mg/L	193	282	
lb/d	2,860	4,190	
Plant drain return			
Flow, mgd	0.079	0.079	
BOD, mg/L	138	138	-
TSS, mg/L	1,160	800	
WAS flow, mgd	0.02	0.02	-
TSS load, lb/d	3,300	-	3,100
RAS flow, mgd	0.57	0.52	-
TSS, mg/L	14,500	-	13,700
Solids Retention Time, day	-	-	10
MLSS, mg/L	3,310		3,150
MLVSS, mg/L	2,770	-	2,570
MLVSS/MLSS	0.84		0.82
Air flows, scfm			
Aeration Basin 2	510	-	530
Aeration Basin 3	1,070		1,120
Secondary effluent, mg/L			
COD	28		36
CBOD	2.6		3.4
sCBOD	1.8		1.2
TSS	6.5		6.1
VSS	5.3		5.0
TKN	1.9	-	2.9
NH3-N	0.4		0.6
NO ₃ -N+NO ₂ -N	3.2		4.0
TP	2.9		2.6
PO ₄ -P	2.2		2.4
Alkalinity	69		44
Kinetic coefficients a			
AOB µ _{max,n}	-	0.85	-
NOB μ _{max,n}	-	0.90	

Note: Calibration results are from the August 2021 sampling period.

a. AOB μmax,n = ammonia oxidizing bacteria maximum specific growth rate (default = 0.90 d-1).
 NOB μmax,h = nitrite oxidizing bacteria maximum specific growth rate (default = 0.70 d-1).

Table abbreviations:

lb/d = pounds per day

mg/L = milligrams per Liter

MVLSS = mixed liquor volatile suspended solids

 $NO_3-N+NO_2-N = nitrate-nitrogen+nitrite-nitrogen$

scfm = standard cubic feet per minute

Brown AND Caldwell

This adjustment is assumed to be the result of the periodic clogging issue the plant staff had observed with the influent sampler. The influent pumps were replaced in 2019 due to frequent plugging with rags and other debris. The current pumps (Flygt) are more effective at passing rags to the screen influent channel, where influent sampler draws from. Because debris could now accumulate in that channel, the strainer on the suction tubing for the sampler occasionally plugs with debris and ragging. This occurred on the first day of the August sampling period, resulting in the loss of the influent sample on that day (sampler collected only a small volume of samples). It is speculated that even when the sampler is functioning, some solids may be filtered out at the strainer on the sampler suction tubing, thus resulting in a reduction of the measured influent concentrations. Therefore, an increase in the influent concentrations is considered a reasonable adjustment.

The measured plant influent concentrations are also suspected to be underestimated by comparing with historical data. Plant influent monthly average BOD and TSS loads ranged from about 3,000 to 8,000 lb/d since early 2016 (through end of 2021) and have been above 3,500 lb/d since January 2018 (except for August 2021). There is a noticeable drop in loadings during the summer of 2021. Based on the sampling data, the influent BOD and TSS loads would be only 3,500 and 2,860 lb/d, respectively, which are quite low compared to recent plant data (in 2019 and 2020). One possible explanation is that the low plant flows during the August sampling period had exacerbated ragging around the sampler, so that more solids were being filtered out, thus resulting in lower measured influent concentrations.

In addition to adjustment to the influent concentrations, adjustments were also made to better match the effluent ammonia and oxidized nitrogen (nitrate- and nitrite-nitrogen) concentrations. These adjustments include reduction in the dissolved oxygen (DO) concentrations in the second half of Aeration Basin 2 and the kinetic coefficients (maximum specific growth rates for ammonia-oxidizing and nitrite-oxidizing bacteria). Currently, when the system is operated with Basins 2 and 3 in service, Basin 2 is operated at a constant air flow while air flow to Basin 3 is adjusted to meet the DO setpoint at around the midpoint of Basin 3. The model was able to match the measured air flows within 5 percent as shown by the results in Table 4.

4.2 MABLE Calibration

A plant-wide solids mass balance analysis was performed as part of the capacity assessment to:

- Check the validity of solids data.
- Assess existing equipment performance.
- Assist in the performance evaluation of individual unit processes and the whole treatment facility as plant flows and loadings increase.
- Help establish overall plant BOD and solids treatment capacity by correlating flows and loadings to and from the various unit processes.

A solids mass balance tracks the flow of solids in a system. It seeks closure of a solids inventory measurement across a system by solving the following expression:

Mass of solids into process = Mass of solids out of process ± Mass of solids generated/destroyed/converted in process

Closure of solids mass balances may be difficult to achieve because of a lack of critical solids concentration and flow data or by the inaccurate measurement or inappropriate sampling of specific streams. When conducting solids balances, assumptions must be made concerning the validity of certain data to use them as the starting points for (or inputs to) the mass balance calculations. Plant-wide mass balance calculations are performed using MABLE. It is used in conjunction with the BioWin simulator, where the former provides inputs to the simulator and the latter is used to predict secondary sludge production rates and effluent concentrations for use in the mass balance calculations.

Plant-wide solids mass balances were performed to calibrate MABLE using data from the August 2021 sampling period. Tables 5 summarizes mass balance results. The following observations were made from the comparison of the observed and predicted data:

- Using the measured influent concentrations would result in over-prediction of the dewatered cake solids load. That is consistent with the BioWin modeling results discussed above. By increasing the influent concentrations, a better match of the dewatered cake solids load was achieved.
- Both the sampling data and MABLE results indicate low volatile solids reduction (VSR) in the aerobic digesters. In the model, VSR of 10 and 9 percent was used for Digesters 2 and Digesters 3/4, respectively. The overall VSR is 18 percent, less than the minimum volatile solids reduction of 38 percent to meet Class B biosolids requirements. It should be noted that this calculated VSR is based on samples that were collected on eight days during the sampling period and analyzed by an outside laboratory. It may differ from the VSR calculated for the month of August 2021 and reported by OLWS for compliance.

Table 5. MABLE Calibration Summary for August 2021 Sampling Period				
Parameter	Observed	Assumed	Predicted	
Plant influent				
Flow, mgd	1.78	1.78	-	
BOD, mg/L	236	332	-	
TSS, mg/L	193	282	-	
VSS, mg/L	181	264	-	
Final effluent				
Flow, mgd	1.73	-	1.78	
CBOD, mg/L	2.6	2.6	-	
TSS, mg/L	6.5	6.5	-	
VSS, mg/L	5.3	5.3	-	
WAS				
Flow, mgd	0.02		-	
TSS, mg/L	19,800	0.02	18,900	
VSS/TSS	0.84	-	0.83	
Net yield, Ib VSS/BODrem	-	_	0.54	
Digester 2 effluent				
Flow, mgd	-	-	0.02	
%TS	1.8	-	1.7	
TVS/TS	0.77	-	0.81	
VS reduction, %	-	10	-	
Digested sludge				
Flow, mgd	0.02	-	0.02	
%TS	1.7	-	1.6	
TVS/TS	0.75	-	0.80	
VS reduction, %	-	9	-	
Dewatered sludge a				
Wet ton/day	8.6		8.6	
%TS	12.6	-	12.6	
TVS/TS	0.77		0.80	
BFP Filtrate ^b				
Flow, mgd	0.079	-	0.079	
TSS, mg/L	1,160	800	-	
Centrifuge solids capture, %	-	-	80	

a. Dewatered sludge wet tons per day calculated from data for sludge hauled from WWTP. During the sampling period, sludge was hauled off-site on 4 days. Observed data are based on pounds of sludge hauled on those 4 days. In the mass balance model, an average daily dewatered sludge production rate was calculated.

b. Based on plant drain return flows and samples.

Section 5: Capacity Assessment

This section describes the assessment of the overall existing capacity of Oak Lodge WWTP. To estimate plant capacity, the process modeling and plant-wide solids mass balance described above were integrated to develop a comprehensive understanding of how the plant will respond to increased flows and loadings. The result is a series of capacity curves for each operating scenario representing operating limits for each of the major unit processes in the WWTP. The curves were combined into a capacity rating chart that represents an integration of all the evaluation assessments performed in this study. These curves are representative of the current effluent permit conditions.

5.1 Simulation Scenarios

Influent flows and loads as well as plant operating strategies vary seasonally. Typically, a capacity rating chart is developed for dry weather or summer operation and another for wet weather or winter operation. These represent the opposite extremes of plant operating conditions. For the Oak Lodge WWTP, capacity charts were developed for both dry and wet weather conditions. In addition to differences in wastewater characteristics, the plant also needs to meet different permit requirements during these two periods, defined as May to October and November to April, respectively, in the plant's NPDES permit. Therefore, the two simulation scenarios are as follows:

- Dry weather MMF and loadings. Represents the plant operation at the MMF and loadings during the dry weather period. The secondary system operates with two aeration basins (assumed to be Basins 2 and 3) and three clarifiers in service at a solids retention time (SRT) of 10 days. The first half of Basin 2 is unaerated and serves as the anoxic zone. Mixed liquor temperature is 17.5 degrees Celsius (°C), which corresponds to the average of the minimum month influent temperature during the dry weather period in 2016 to 2021 (increased by 1.2 °C to account for temperature increase from the plant influent to the aeration basins).
- Wet weather MMF and loadings. Represents the plant operation at the MMF and loadings during the wet weather period. The secondary system operates with three aeration basins (assumed to be Basins 2, 3, and 4) and four clarifiers in service at an SRT of 8 days. The first half of Basin 2 is unaerated and serves as the anoxic zone. Mixed liquor temperature is 13 °C, which corresponds to the average of the minimum month influent temperature during the wet weather period in 2016 to 2021 (increased by 0.8 °C to account for temperature increase from the plant influent to the aeration basins).

Wastewater characteristics are derived from the special sampling data collected in August 2021. Simulations were conducted using BioWin for the secondary system, and mass balance calculations were performed using the MABLE model for a range of influent flow rates and BOD concentrations that are assumed to represent MMF and loading conditions. The matrix for the dry weather conditions is provided in Table 6, while the matrix for the wet weather conditions is provided in Table 7.

Table 6. Modeling Matrix of Ranges of Influent Flows and BOD Concentrations for Dry Weather					
MMF (mgd)	Plant Influent BOD Concentration (mg/L)				
2.7	200	220	240	260	280
2.9	200	220	240	260	280
3.1	200	220	240	260	280
3.3	200	220	240	260	280
3.5	200	220	240	260	280

Brown AND Caldwell

Table 7. Modeling Matrix of Ranges of Influent Flows and BOD Concentrations for Wet Weather					
MMF (mgd)	Plant Influent BOD Concentration (mg/L)				
6.2	100	120	140	160	180
6.4	100	120	140	160	180
6.6	100	120	140	160	180
6.8	100	120	140	160	180
7.0	100	120	140	160	180

Dynamic simulations were performed for both dry and wet weather conditions based on each set of influent flow and concentrations, with a diurnal pattern applied to account for diurnal variation. The normalized diurnal patterns were derived from the 2-hourly flow and grab sampling data collected during the August sampling period.

5.2 Controlling Parameters

To determine capacity limitations in a WWTP, a series of operating or controlling parameters need to be identified. From model simulations, the required operating and performance values can be established for each controlling parameter that limits operation for a combination of flows and BOD concentrations.

The controlling parameters for the Oak Lodge WWTP and their limiting values are given in Table 8. These values were developed based on original design criteria, current operating practices, and physical configurations. The basis/operating constraints and assumptions used in determining these limiting values are also listed in Table 8.

Table 8. Maximum Operating Limits					
Plant Parameter	Limiting Value	Time Averaging Period for Limit	Basis/Operating Constraints and Assumptions		
Effluent quality	Dry weather: CBOD = 10 mg/L, TSS = 10 mg/L Wet weather: BOD = 30 mg/L, TSS = 30 mg/L	Max month	Current NPDES permit limits (effective 5/1/2022)		
	Liquid	d stream			
Influent pumps	Peak flow capacity = 20 mgd (with 1 large pump out of service)	Peak hour	Per OLSD WWTP Phase 1A and Phase 1B record drawings		
Influent screens	Peak flow capacity = 23.5 mgd	Peak hour	Per OLSD WWTP Phase 1A and Phase 1B record drawings		
Grit removal	Peak flow capacity = 23.5 mgd	Peak hour	Per OLSD WWTP Phase 1A and Phase 1B record drawings		
Aeration basins	Diffuser max air flow capacity = 3 scfm (max month conditions) (dry weather), 2.5 scfm (wet weather)	Max month	Typical max sustained diffuser air flow is in the range of 2.5 to 3.5 scfm per manufacturer recommendation (sustained meaning for longer than a day)		
Aeration blowers	Peak blower capacity =5,448 scfm (with one large blower out of service)	Peak day	Per Aeration Basin Evaluation & Upgrades Project report (June 2019)		
Secondary	Peak SOR = 1,186 gpd/ft ² at 18 mgd	Peak hour (SOR)	Peak hour SOR per design data in OLSD WWTP Phase 1A and Phase 1B record drawings		
clarifiers	SLR evaluated at 90th $\%$ DSVI of 114 mL/g using state point analysis	Max month (SLR)	90 th % DSVI from 2020 and 2021 plant data		
UV disinfection	Peak capacity = 22 mgd	Peak hour	Per OLSD WWTP Phase 1A and Phase 1B record drawings		
Hydraulic limitations	Peak capacity with all units in service = 20 mgd	Peak hour	Peak flow shown on hydraulic profile drawing in OLSD WWTP Phase 1A and Phase 1B record drawings		
Solids stream					
Aerobic digesters	Min HRT for Class B biosolids = 40 days (total) or 28 days (total, accounting for credit given to in-series operation)	Max month	Environmental Protection Agency Part 503 Biosolids Rule Criterion for aerobic digestion operating at 20 °C EPA Manual (EPA-625/R-92/013)		
Belt filter press	Max hydraulic loading limit = 120 gpm Max solids loading limit = 2,000 lb/hr	Max month	1999 design documents for solids handling building; 2021 Biosolids Management Plan		

Table abbreviations:

OLSD = Oak Lodge Sanitary Sewer District (former name for OLWS)

DSVI = dilute SVI

gpm = gallons per minute

HRT = hydraulic retention time

lb/hr = pounds per hour

mL/g = milliliters per gram

scfm = standard cubic feet per minute

SLR = solids loading capacity

SOR = surface overflow rate

To estimate timing of the capacity limitations, the projected 2022 and 2052 flows and loadings were interpolated assuming linear increases. The 2022 and 2052 projections are summarized in Table 9. Comparing the projected flows and loadings with the current design values in Table 1, the projected 2052 MMF as well as maximum month BOD and TSS loadings are lower than the corresponding design flow and loadings. The projected peak hour flow (for both 2022 and 2052) is slightly higher than the design hour flow of 18 mgd, although the facilities were designed to pass a peak instantaneous flow of 20 mgd without overtopping channels and tanks. It should be noted that the projected peak hour flows shown in Table 9 are based on the current contribution of inflow and infiltration (I/I) flows in the collection system. If I/I reduction projects are implemented in the future, thus resulting in a decrease in the peak hour flow, any peak flow-related capacity constraints would occur later.

11

Table 9. Summary of 2022 and 2052 Flows and Loadings				
Parameter	2022	2052		
Flow, mgd				
Average dry weather	2.18	2.51		
MMDW	2.96	3.30		
MMWW	6.33	6.67		
Peak hour flow	19.06	19.52		
BOD ₅ , Ib/d				
Annual average	4,953	5,854		
MMDW	5,399	6,381		
MMWW	6,290	7,435		
TSS, lb/d				
Annual average	4,755	5,620		
MMDW	5,230	6,182		
MMWW	6,371	7,531		

5.2.1 Influent Pumps

The influent pump station was designed to pump the original design 2030 peak flow of 20 mgd with one of the larger pumps out of service. There are four pumps each with a design capacity of 5.5 mgd and one pump with a design capacity of 3.5 mgd. With one of large pumps out of service, the total firm capacity is thus 20 mgd.

5.2.2 Influent Screens

There are two, multi-rake bar screens with one-quarter-inch spacing. There is also a manual screen that has one-half-inch spacing in the bypass channel. Each of the mechanical screens has a design capacity of 11.75 mgd. A total screening capacity of 23.5 mgd is therefore assumed for the capacity analysis.

5.2.3 Grit Removal

Grit removal is achieved in a stacked tray grit removal system (Eutek Headcell). There are two units, each with a design capacity of 11.75 mgd. Therefore, the total peak capacity is 23.5 mgd, matching the screening capacity.

5.2.4 Aeration Basins

There are four basins, each with two passes and a liquid volume of 571,000 gallons. The plant currently operates with two basins in service in the summer and two or three basins in the winter. The basins are equipped with 9-inch membrane disc diffusers. Diffuser counts for each zone in each basin were estimated from total diffuser counts for each basin given in the design drawings (for Phase 1A expansion) and diffuser grid layout shown in the drawings. The estimated diffuser counts are summarized in Table 10.

Table 10. Summary of Aeration Basin Diffuser Counts			
Basin/Zone	# Diffusers	Notes	
Aeration Basin 1	296 (total)	• Total per basin per OLSD WWTP Phase 1A and Phase 1B record drawings	
Pass 1 – first half	74	One grid in each half of each pass	
- second half	74		
Pass 2 – first half	74		
- second half	74		
Aeration Basin 2	1,145 (total)	• Total per basin per OLSD WWTP Phase 1A and Phase 1B record drawings	
Pass 1 – first half	458	• Two grids in first half of Pass 1; 1 grid in second half of Pass 1, first half of	
- second half	229	Pass 2 and second half of Pass 2	
Pass 2 – first half	229		
- second half	229		
Aeration Basin 3	1,145 (total)	• Total per basin per OLSD WWTP Phase 1A and Phase 1B record drawings	
Pass 1 – first half	458	• Two grids in first half of Pass 1; 1 grid in second half of Pass 1, first half of	
- second half	229	Pass 2 and second half of Pass 2	
Pass 2 – first half	229		
- second half	229		
Aeration Basin 4	810 (total)	• Total per basin per OLSD WWTP Phase 1A and Phase 1B record drawings	
Pass 1 – first half	405	• Two grids in first half of Pass 1; 1 grid in second half of Pass 1, first half of	
- second half	135	Pass 2 and second half of Pass 2	
Pass 2 – first half	135		
- second half	135		

Aeration Basin 1 has the least number of diffusers. Submersible mixers are installed in Basins 1 and 2, with six mixers in each basin. Currently, when two basins are in service, the first basin is operated with the first half without air but with the mixers on (as an anoxic zone) and the second half with constant air flow, and the second basin operated with DO control based on measurements by a DO probe at the mid-point of the basin (at the U bend). When three basins are in service, the first basin is half without air (and with mixing) and half constant air flow, the second basin has constant air flow, and the third basin uses DO control based on measurements by the probe at the U bend. Air cannot be balanced within each basin because there are no air flow meters and control valves on the drop legs. DO data and model calibration results indicate frequent low DO concentrations in the second half Basin 2 and first half of Basin 3. Operating at low DO concentrations could result in proliferation of filamentous organisms (low DO filaments) and deterioration in sludge settling.

For this capacity analysis, the current typical operating scheme was assumed, with two basins (Basins 2 and 3) in service for the dry weather scenario (Pass 1 of Basin 2 operating as the anoxic zone), and three basins (Basins 2, 3, and 4) in service for the wet weather scenario (Pass 1 of Basin 2 operating as the anoxic zone). A DO concentration of 2 mg/L was assumed in the aerated zones, except for the last zone where a DO concentration of 1 mg/L was assumed (lower concentration in the last zone to minimize DO in the internal mixed liquor recycle stream routed back to the anoxic zone). These DO concentrations would result in air flow estimates for a system with sufficient DO concentration to prevent low DO filamentous bulking.

As part of the process model calibration, aeration calculations were performed, and the calculated air flow rates were compared with the measured air flows. Alpha factors were adjusted as part of the calibration process. Alpha is the ratio of process water to clean water oxygen mass transfer. Alpha values ranging from 0.45 (in the first aerated zone) to 0.65 (in the last aerated zone) were estimated. These alpha values were

Brown AND Caldwell

used in the capacity analysis. Maximum air flows per diffuser of 3 and 2.5 scfm were assumed under maximum month load condition for dry and wet weather periods, respectively. A lower limit was assumed for wet weather period because peak day loads generally occur during the wet weather period (to provide a bigger allowance for short-term air flow excursion beyond the maximum month limit).

5.2.5 Aeration Blowers

There were originally three high-speed centrifugal blowers that serve the aeration basins. Each blower has a design capacity of 1,824 scfm at a discharge pressure of 9.7 pounds per square inch gage. One of the blowers was not functioning properly and was out of service for several years. As part of the Aeration Blower and Baffle project recently implemented at the WWTP, a new screw hybrid blower is added, replacing the out-of-service high-speed blower. The new blower has a design capacity of 1,800 scfm. The total firm blower capacity is thus 3,624 scfm, with one of the two remaining high-speed blowers out of service.

5.2.6 Secondary Clarifiers

There are four secondary clarifiers, each with a 70-foot-diameter. The clarifiers have a design peak hour surface overflow rate (SOR) of 1,186 gallons per day per square feet (gpd/ft²), based on the original design peak hour flow of 18 mgd. This SOR value is within the range typically recommended for activated sludge systems. The actual SOR limit could be determined by stress testing. It should be noted that as both the projected 2022 and 2052 peak hour flows are above 18 mgd as shown in Table 9, the design SOR limit has already been exceeded. At the projected 2052 peak hour flow of 19.41 mgd, the corresponding SOR is 1,260 scfm.

Secondary clarifier capacity can also be constrained by solids loading rate (SLR) limitation. The SLR limitation is evaluated using state point analysis (SPA). The ability of the clarifiers to process incoming solids load is greatly influenced by the sludge settling characteristics. Sludge volume index (SVI) was used as a surrogate parameter for sludge settling characteristics. SVI data from 2020 and 2021 were evaluated to select a 90th percentile value as a reasonably conservative estimate for use in the SPA. Review of the SVI data shows that the plant often operated with relatively high SVI (with a 90th percentile value of 186 mL/g) during the data period but the effluent TSS concentrations were typically below 15 mg/L. It was thus proposed that dilute SVI (DSVI) values be calculated and used in the SPA. The idea of using dilute DSVI to evaluate clarifier performance was brought up in a Water Environment Research Foundation (WERF) selector study (Gray et al., 2006). In that study, all surveyed SVI data were converted to DSVI using the Merkel correction (Merkel, 1971):

DSVI (mL/g) = SVI (mL/g)
$$\times \left(\frac{300}{\text{SSV30}}\right)^{0.6}$$

where SSV30 = the settled sludge volume after 30 minutes

The authors of the WERF study reiterate previous studies suggesting that SVI equals the DSVI for SSV30 values less than 300 mL, but the SVI begins to diverge at SSV30 values higher than 300 mL. The SVI values for Oak Lodge were thus converted to DSVI using the above equation.

Figure 3 shows the daily SVI and DSVI values from 2016 to 2021. SSV30 data are available only since 2020; therefore, DSVI was calculated only using data from 2020 and 2021. While no seasonable trends can be observed from the SVI and DSVI data, the data show large variations. Table 11 summarizes the data for different percentile values. For assessing the secondary clarifier SLR capacity, the 90th percentile DSVI value of 114 mL/g was assumed.

Brown AND Caldwell

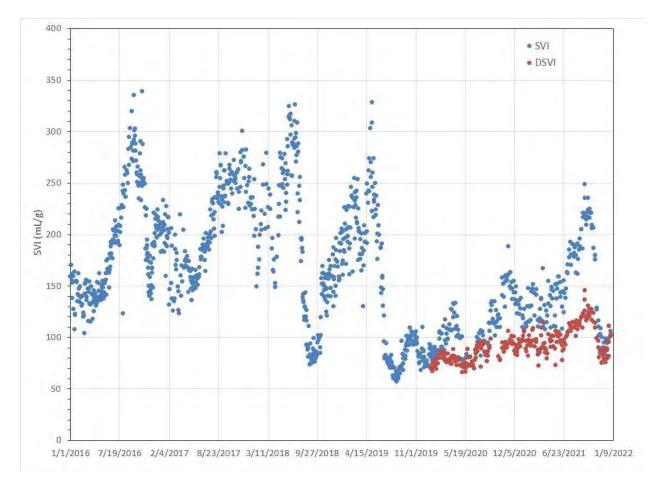


Figure 3. SVI and DSVI data from 2016 to 2021

Table 11. Summary of SVI and DSVI Data				
Parameter	SVI	DSVI		
50 th percentile	118	90		
75 th percentile	147	101		
85 th percentile	163	108		
90 th percentile	186	114		
Maximum	248	146		

Note: Percentile value calculated from daily SVI and SSV30 data from January 2020 to December 2021.

5.2.7 Ultraviolet Disinfection

The ultraviolet (UV) disinfection system consists of two open channels with two banks of UV lamps per channel. Low-pressure, high-intensity lamps are included, designed to deliver a UV dose of 35 kilojoules per square centimeter (kJ/cm²). The peak design capacity is 22 mgd.

5.2.8 Gravity Belt Thickener

The Solids Piping Project currently being constructed at the plant will allow WAS to be pumped to the GBT that has been out of service since the 2012 plant upgrade. The GBT is a 2.2-meter unit made by Ashbrook. WAS thickening in the GBT has several advantages:

- Eliminates the need to thicken sludge in the secondary clarifiers. The RAS pumps can operate continuously and at a higher rate to maintain a low sludge blanket in the clarifiers. That would help minimize denitrification in the clarifiers and solids washout during high flow conditions.
- Increases solids concentration in the digesters, which reduces the hydraulic loading and increases digester HRT.
- Increases percent solids of the dewatered cake, which then reduces the amount of dewatered cake for disposal (in terms of wet tons of cake) and hauling costs.

There are two issues regarding future operation of the GBT that need to be first addressed. Operating at a higher solids concentration in the digesters may require increased aeration to maintain an adequate DO concentration. In addition, there is also a risk of having the process becoming autothermal, which would greatly increase odor generation. Typically, a solids concentration of no more than 3 percent (in the digester) is recommended to prevent autothermal condition, although sometimes that threshold could be as low as 2 percent. A detailed evaluation of these impacts and aeration requirements of the digesters to operate at higher solids concentrations is recommended. For this analysis, it is assumed that the system would continue to operate in the existing scheme without the GBT.

5.2.9 Aerobic Digesters

Solids stabilization is achieved through aerobic digestion. There are four digestion tanks. Aerobic Digesters 1 and 2 are rectangular tanks and were converted from the interchange bioreactors that were part of the Cannibal system installed in the Phase 1B upgrade and subsequently discontinued. Until recently, they were aerated with diffusers with the air supplied by a high-speed blower (K-Turbo blower). The K-Turbo blower failed in the summer of 2022 and was recently replaced by a screw hybrid blower (with the same design capacity as the blower installed as part of the Aeration Blower and Baffle project). In addition, two vertical turbine mixers in each tank provide additional mixing. Sludge from Digesters 1 and 2 is pumped to Digester 3.

Aerobic Digesters 3 and 4 are circular tanks converted from anaerobic digesters in 2012. They have a jet mixing system, with the air supplied by two, high-speed direct drive turbo blowers (Neuros blowers). The digesters are aerated intermittently. One of the blowers recently failed, and OLWS plans to replace it with a screw blower.

The blower for aerobic Digesters 1 and 2 is operated continuously, supplying approximately 2,000 scfm. With both digesters in service, that corresponds to approximately 17 scfm per 1,000 cubic feet (scfm/1,000 ft³) of digester volume. Aeration mixing energy of 20 to 40 scfm/1,000 ft³ is typically recommended to maintain adequate mixing in aerobic digesters. However, since aerobic Digesters 1 and 2 are also equipped with mechanical mixers, the combined effect of mechanical and aeration mixing may provide adequate mixing. For aerobic Digesters 3 and 4, each of the Neuros blowers supply approximately 440 scfm. If each blower supplies air to one digester, the calculated aeration rate is approximately 17 to 18 scfm/1,000 ft³. Because those digesters have a jet mixing system that includes both aeration and pump mixing, there is also likely adequate mixing. No DO data are available, so it is not known if the available air flow is meeting the biological process requirements while maintaining an adequate DO concentration. In the future, when the GBT is placed in service providing thickening of the WAS prior to digestion, increased aeration is likely needed as discussed above.

Brown AND Caldwell

To meet Class B biosolids requirements, the digestion process must meet both the residence time requirements (for pathogen reduction) and vector attraction reduction requirement. For the former, for aerobic digestion, the minimum mean cell residence time, which corresponds to the HRT without recuperative thickening, is 40 days at an operating temperature of 20 °C or 60 days at an operating temperature of 15 °C to qualify as one of the processes to significantly reduce pathogens (PSRPs) in the Part 503 rule by the Environmental Protection Agency (EPA) (EPA, 1994). Operating data indicate that the digesters at Oak Lodge typically operate at a temperature above 20 degrees Fahrenheit, therefore, the 40 days HRT criterion applies. However, because the digestion system at Oak Lodge consists of digesters operating in series (Digesters 1 and 2 followed by Digesters 3 and 4), a lower overall HRT criterion may apply. In accordance with the EPA manual "Control of Pathogens and Vector Attraction in Sewage Sludge" (EPA, 2003), completely mixed reactors in series would be more effective in reducing pathogens than a single reactor and the residence time required to meet pathogen reduction goals may be 30 percent lower than the residence time required in the PSRP definition for aerobic digestion. Therefore, the minimum HRT requirement could be reduced to 28 days at 20 °C or 42 days at 15 °C for systems with digesters in series. Since the lower HRT would not comply with the PRSP conditions required for aerobic digestion in the Part 503 rule, approval of the process as a PSRP by the permitting authority would be required.

The permitting authority for Oak Lodge, Oregon Department of Environmental Quality (DEQ), has given approval to use the lower HRT criterion. The credit for in-series digestion operation is also described in the current Biosolids Management Plan (OLWS, 2021).

Vector attraction reduction requirement is typically met by providing a minimum VSR of 38 percent. Vector attraction reduction can also be demonstrated with additional aerobic digestion in a bench-scale system or by measuring the specific oxygen uptake rate (SOUR). The solids mass balance results for the August 2021 sampling data indicate VSR less than 38 percent. Plant historical data have indicated that monthly average VSR has dropped below the 38 percent threshold a number of times in the past 3 years, often when one of the digesters was out of service. Recent digester operation in 2022 with all four digesters in service has resulted in VSR above the 38 percent level.

For the capacity analysis, it was assumed that all four digesters would be in service. The overall VSR was assumed to meet the minimum 38 percent level for Class B biosolids. It was also assumed that the digesters would have adequate aeration capacity after the failed blower for Digesters 3 and 4 has been rehabilitated or replaced and digester feed sludge concentration is maintained at no more than 2 percent solids. Digestion capacity is thus assessed based on HRT requirements only. Both the 40-day and 28-day limits are considered in the analysis.

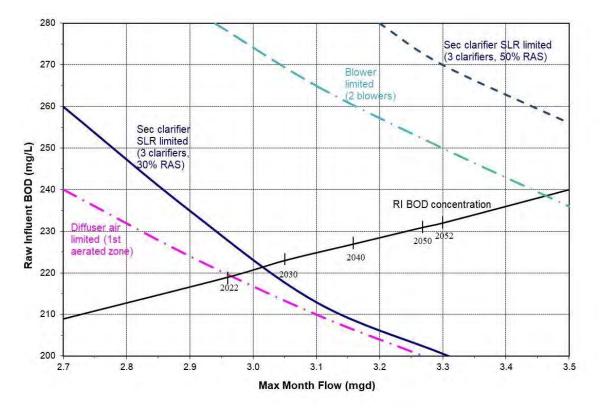
5.2.10 Belt Filter Press

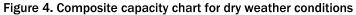
Digested sludge is pumped from Digester 4 to Belt Filter Press 1 (BFP1). BPF1 (a 2.2-meter unit made by Ashbrook) was originally designed for a maximum sludge flow of 150 gallons per minute (gpm) and solids loading rate of 2000 pounds per hour. A flow capacity of 120 gpm was shown in the most recent Biosolids Management Plan (February 2022) prepared by OLWS. Plant data indicate the dewatered cake percent solids ranging from approximately 12 to 14 percent, until early 2022 when the plant switched from dry to liquid polymer. The dewatered cake solids concentration has increased to between 16 and 17 percent. For the capacity analysis, 16 percent was assumed. In addition, solids capture is assumed to be higher (at 90 percent) instead of the 80 percent calculated as part of the solids mass balance model calibration described in Section 4.2. The dewatering system is assumed to operate 7 days a week and 6 hours a day, similar to the current operating schedule.

In addition to BPF1, a second belt filter press, BFP2, was temporarily installed as part of the BFP Installation Project in 2020 to provide redundancy for the dewatering system. After initial installation of BFP2, BFP1 was taken out of service and refurbished. Once BFP1 was put back on-line, BFP2 was uninstalled and is currently being stored adjacent to Aerobic Digesters 1 and 2. For the capacity analysis, BFP2 is assumed to serve as a redundant unit and does not change the dewatering capacity.

5.2.11 Plant Hydraulic Limitations for Gravity-Flow Systems

A plant hydraulic profile analysis was not included in this evaluation. Based on the hydraulic profile given in the Phase 1A and Phase 1B upgrade drawings, the plant was designed to pass a peak instantaneous flow of 20 mgd with all units in service. This matches the total firm raw sewage pumping capacity and is thus considered the maximum hydraulic capacity for the WWTP.


5.3 Capacity Rating Chart


A capacity rating chart provides a method of displaying the results of investigations described in previous sections. Expressed in terms of flow and organic loading, the chart consists of a series of curves that illustrate how each unit process in the WWTP impacts the overall plant capacity. Each curve represents a specific plant process and the condition under which that process reaches its capacity. The chart also contains a curve that represents the projected raw influent BOD concentrations at increasing flow. This curve was developed from the projected plant flow and loadings summarized in Table 9.

Progressing along the raw influent BOD curve from left to right across the chart intersects each plant process capacity curve; each intersection of the influent BOD curve with a plant process curve represents a capacity limitation related to that process at the corresponding influent flow rate and BOD concentration. For that specific plant process curve, the area to the left of and below the curve or just left of a vertical curve corresponds to underloaded operating conditions. The area to the right of and above the curve or just right of a vertical curve corresponds to overloaded conditions. Overall plant capacity is dictated by the plant process constraint that is furthest to the left along the raw influent BOD curve.

Figures 4 and 5 show the composite capacity charts for the MMF and loading conditions for the dry and wet weather scenarios, respectively, as described in Section 5.1. On each chart, the raw influent BOD loading curve represents the influent BOD concentration during the month of MMF and maximum month loadings, with a timeline from 2022 to 2052 labeled on the curve.

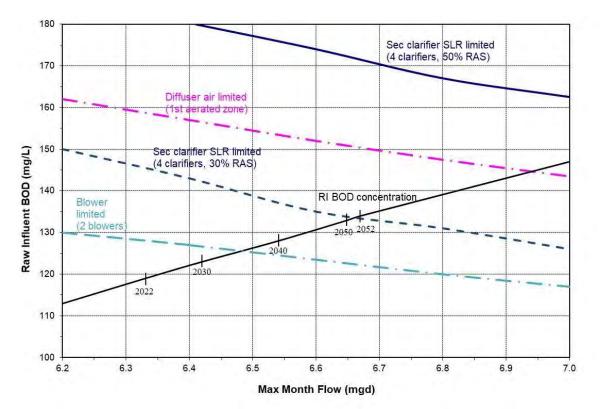


Figure 5. Composite capacity chart for wet weather conditions

Use of contents on this sheet is subject to the limitations specified at the beginning of this document.

5.3.1 Dry Weather Conditions

The results for dry weather conditions, as illustrated in Figure 4, are summarized below.

- Aeration Basin Diffusers: The most stringent limitation is associated with the aeration basin diffusers. This limitation is based on the diffusers in the first aerated zone (in the second half of Basin 2), which are projected to currently approach the estimated diffuser air flow limit. Excessive diffuser air flows result in reduced oxygen transfer efficiency and high headloss across the diffuser membrane and orifice. As mentioned above, this first aerated zone is currently operated with constant air flow rate and low DO concentration. For the capacity analysis, it was assumed that a DO concentration of 2 mg/L would be maintained in all aerated zones (except in the last zone where a DO concentration of 1 mg/L was assumed). That would require addition of air control valves at the droplegs and changes in the aeration control strategy. It should be noted that assuming lower concentrations similar to how the basins are currently operated with limited DO control would result in underpredicting the air flow requirements needed to prevent low DO filamentous bulking.
- Secondary Clarifiers: The secondary clarifiers are projected to reach their solids loading limit in the next few years, at a dry weather MMF of approximately 3.02 and maximum month BOD loading of 5,600 lb/d. This limitation is based on having one clarifier out of service, a RAS rate of 30 percent, and deteriorated settling characteristics (90th percentile DSVI). The plant typically operates at a low RAS rate (less than 50 percent) to produce higher WAS concentration. In addition, the RAS pumps for clarifiers 1 and 2 are turned off for a few hours each day to build up a blanket and further thicken the sludge, providing a digester feed sludge concentration of up to around 20,000 mg/L without a separate thickening step. Operating at a higher RAS rate (and thus a lower sludge blanket) would increase the solids loading capacity. A sensitivity analysis was thus performed to evaluate the impact of operating at a RAS rate of 50 percent. The results, also presented on Figure 4, show that the clarifier SLR limitation can be delayed to beyond 2052 by increasing the RAS rate to 50 percent. In order to operate at the higher RAS rate, operation of the GBT would likely be required to thicken the WAS prior to digestion.
- Aeration Blowers: The aeration blowers are projected to have sufficient capacity until beyond 2052.
- **Other Processes**: For other processes not shown in Figure 3 including digestion and dewatering, the analysis results indicate that they have adequate capacity until beyond 2052. Processes with hydraulic (peak hour) limitations are not included in Figure 3 since peak hour flow occurs during wet weather period.

5.3.2 Wet Weather Conditions

The results for wet weather conditions, as illustrated in Figure 5, are summarized below.

- Aeration Blowers: The most stringent limitation under wet weather conditions is associated with the aeration blowers. The limitation is projected to occur around 2035, at a maximum month flow of approximately 6.48 mgd and maximum month BOD loading of 6,810 lb/d. The aeration blower limitation was found to be more stringent under wet weather conditions than dry weather conditions because maximum month and peak day loading typically occur during wet weather period, even though aeration requirements associated with nitrification are lower.
- Aeration Basin Diffusers: While aeration diffusers are shown to be the most stringent loading-related limitation shown in Figure 5, the limitation is not projected to occur until after 2052. The difference between the results for dry and for wet weather conditions is mainly due to the number of basins in service (3 for wet weather versus 2 for dry weather) and the lower degree of nitrification during the wet weather period (lower temperature and SRT) and thus lower aeration demand.
- Secondary Clarifiers: The secondary clarifiers are projected to have sufficient solids loading capacity until beyond 2052. The analysis was conducted assuming all four clarifiers in service, a RAS rate of 50 percent, and deteriorated setting characteristics (90th percentile DSVI). A higher RAS rate was assumed

Brown AND Caldwell

for the wet weather conditions than for dry weather conditions because it is recommended to maintain a low sludge blanket to prevent solids washout during a peak flow period. However, as mentioned above, the plant typically operates at a low RAS rate to produce higher WAS concentration. Under the current maximum month load conditions, a digester feed solids concentration of at least 11,000 or 16,000 mg/L is needed during wet weather period to meet the 28- or 40-day HRT requirements, respectively, depending on whether the credit for in-series digestion operation is included. Similar to the dry weather evaluation, a sensitivity analysis was thus performed to evaluate the impact on clarifier capacity by operating at a lower RAS rate (30 percent instead of 50 percent). The results are also presented on Figure 5. The analysis shows that the clarifiers would not become SLR limited until near the end of the planning period (around 2051) but the limitation is shown to be more stringent than at a 50 percent RAS rate. Similar to the dry weather condition, in order to operate at the higher RAS rate, operation of the GBT would be required to thicken the WAS prior to digestion.

Besides SLR limitation, SOR limitation is also considered. The clarifiers were originally designed for a peak hour SOR of 1,186 gpd/ft², based on the original design peak hour flow of 18 mgd. The projected 2022 peak hour flow, at 19.07 mgd, already exceeds the original peak hour flow and at the projected 2052 peak hour flow of 19.41 mgd, the corresponding SOR is 1,260 gpd/ft². A peak hour SOR of 1,260 gpd/ft² is still within the range typically recommended for activated sludge systems. To confirm the clarifier capacity in terms of SOR, stress testing is recommended.

- Digestion and Dewatering: Capacity curves associated with digestion and dewatering are not shown on Figure 4. Digester and dewatering limitations are greatly impacted by digester feed sludge solids concentrations. As mentioned above, a digester feed solids concentration of at least 11,000 or 16,000 mg/L is needed to meet the 28- or 40-day HRT requirements at the current flow and loadings. If the secondary system is operated with a 50 percent RAS rate, without any further thickening, the digester total HRT would drop below 28 days under all flow and loading conditions evaluated. In addition, the belt filter press hydraulic load would exceed the 120-gpm limit. Minimum digester feed concentrations of about 13,000 mg/L, 19,000 mg/L and 14,000 mg/L would be needed to meet the 28-day digester HRT requirement, 40-day digester HRT requirement and to stay below the belt filter press hydraulic limit, respectively, through 2052. It should be noted that this analysis was conducted assuming all four digesters are in service. The credit for in-series digestion operation, and thus the lower 28-day HRT requirement, could be applied to allow taking one digester out of service for maintenance, although the vector attraction requirements may not be met under those conditions.
- Other Processes: For other processes that have hydraulic (peak hour) limitations, including influent pumping, influent screening, grit removal, UV disinfection, and plant hydraulics, the peak hour limits were all above the projected 2052 peak hour flow, thus indicating that those processes should have adequate capacity through 2052.

Section 6: Summary

This capacity assessment was conducted for the Oak Lodge WWTP as part of the master planning efforts to identify the existing capacity constraints and timing of those constraints for each major treatment process. Wastewater characterization and calibration of the biological process models and plant-wide solids mass balance model were conducted to set up the tools that were used for the capacity assessment.

Both dry weather and wet weather plant operating conditions were evaluated. The conclusions of this assessment are summarized below by plant processes and timing. The overall conclusion is that the Oak Lodge WWTP has sufficient capacity to treat the projected 2052 flows and loads but the facility would require upgrades of the aeration system for both the aeration basins and aerobic digesters and operation of the GBT as a dedicated thickening process.

6.1 Summary of Capacity Constraints by Unit Process

Table 12 summarizes the unit process capacity evaluation results. The capacity limits presented are expressed in terms of plant influent flow and BOD loadings.

	Table 12. Maximum Capacities by Unit F	Process
Treatment Process	Capacity	Approx. Year Capacity Expected to be Reached
Influent pumps	20 mgd ^a	After 2052
Influent screens	23.5 mgd ^a	After 2052
Grit removal	23.5 mgd ^a	After 2052
A	Dry weather (2 basins): 2.96 mgd, 5,400 lb/d b	Currently at capacity
Aeration basins	Wet Weather (3 basins): 6.94 mgd, 8,390 lb/d ^b	After 2052
A 11	Dry weather (2 basins): 3.47 mgd, 6,890 lb/d ^b	After 2052
Aeration blowers	Wet Weather (3 basins): 6.48 mgd, 6.810 lb/d $^{\rm b}$	2035
Coordon do iñoro	Dry weather (2 basins, 3 clarifiers, 30% RAS): 3.02 mgd, 5,600 lb/d ^b Dry weather (2 basins, 3 clarifiers, 50% RAS): 3.65 mgd, 7,520 lb/d (extrapolated) ^b	2027 After 2052
Secondary clarifiers	Wet weather (3 basins, 4 clarifiers, 30% RAS): 6.66 mgd, 7,440 lb/ d $^{\rm b}$ Wet weather (3 basins, 4 clarifiers, 50% RAS): 7.22 mgd, 9,450 lb/d (extrapolated) $^{\rm b}$	2051 After 2052
UV	22 mgd a	After 2052
Plant hydraulics	20 mgd ^a	After 2052
	Dry weather: > 3.5 mgd, > 8,170 lb/d ^b	After 2052
Aerobic digesters	Wet weather (digester feed TS \leq 1.1%): 6.33 mgd, 6,300 lb/d ^b Wet weather (digester feed TS \geq 1.3%): 6.67 mgd, 7,440 lb/d ^b	Currently at capacity 2052
	Dry weather (2 basins): > 3.5 mgd, $> 8,170$ lb/d ^b	After 2052
Belt filter press	Wet weather (digester feed TS \leq 1.1%): 6.33 mgd, 6,300 lb/d ^b Wet weather (digester feed TS \geq 1.4%): 6.67 mgd, 7,440 lb/d ^b	Currently at capacity 2052

a. Capacity expressed as plant influent peak hour flow.

b. Capacity expressed as plant influent MMF and maximum month BOD loading.

Brown AND Caldwell

22

6.2 Summary of Capacity Constraints by Timing

Capacity constraints at the Oak Lodge WWTP are divided into two phases according to the timing of when they will likely occur. In addition, recommendations were developed to potentially address these capacity constraints or to improve performance. These are summarized below.

Near-Term (now to 2030) Capacity Constraints

• Aeration system limitations. Assuming the DO concentrations are maintained at the recommended level of 2 mg/L in the aerated zones, the diffuser air flow in the first aerated zone would currently be near or at the capacity limit under dry weather conditions. High diffuser air flow would result in lower oxygen transfer efficiency and high headloss across the diffusers. This limitation could be addressed by increasing the diffuser density. The current operating strategy allows DO control only in the last aerated zone due to the lack of control valves along the individual drop legs. The upstream aerated zones are aerated at constant air flows, which result in fluctuations in DO concentrations and often low DO concentrations. It is recommended that control valves and air flow meters be added to the drop legs to improve DO control.

As an alternative, the system could operate in simultaneous nitrification and denitrification (SND) mode. In a SND process, nitrification and denitrification occur concurrently in the same aerobic tank operated at consistently low DO concentrations (approximately 0.4 mg/L or less). Operating in SND mode could provide a significant reduction in aeration demand for nitrification and carbon demand for denitrification but it requires precise control of the DO concentrations in different parts of the basins and thus advanced instrumentation and controls. The biomass, and nitrifiers in particular, generally need to be transitioned to low DO conditions over a period of several weeks. There is also still the potential risk of proliferation of low DO filaments that can lead to poor mixed liquor settleability. To prevent that, an unaerated anoxic zone will still be included. In addition to the anoxic selector, BC has demonstrated that use of hydrocyclones on the WAS stream can also be beneficial to SND performance and maintaining good settleability.

• Secondary clarifier limitations. The secondary clarifiers are projected to reach their solids loading limit in the next few years under dry weather conditions if one clarifier is out of service. This limitation can be addressed by operating all four clarifiers, operating more than 2 aeration basins, or operating at a higher RAS rate (higher than 30 percent). Operating at a low RAS rate and turning off the RAS pump for a few hours a day to allow the sludge to thicken in the clarifiers has the potential to result in deteriorated effluent quality if there is a bulking event, especially in the winter. Without a separate thickening process, operating at a higher RAS rate would produce a thinner digester feed, thus negatively impacting the downstream digester and dewatering operation. In addition to solids loading limitations, the original design peak clarifier SOR is exceeded at the current projected plant peak hour flow rate. Stress testing is recommended to determine the actual peak hour SOR limit.

While not directly impacting capacity, the excessive foaming that often occur at the aeration basins may be associated with high SVIs and cause other operational problems. Potential solutions include addition of water sprays, a classifying selector, and a foam wasting station.

• Aerobic digestion limitations. With all four digesters in service, the digesters have sufficient capacity to meet the HRT requirements for Class B biosolids as long as the digester feed solids concentration is above a certain level. Without a separate thickening process, that requires thickening within the secondary clarifiers, which negatively impacts the clarifier performance and reduces their solids loading capacity as mentioned above. It is recommended that the GBT be brought into service to provide a dedicated thickening step to counteract the potential secondary clarifier limitation.

Brown AND Caldwell

Because operating at a high solids concentration in the digesters may require increased aeration to maintain an adequate DO concentration and may also increase the risk of having the process becoming autothermal, a thickened solids concentration of no more than about 2 to 2.5 percent solids is recommended.

Recent digester performance and review of plant data indicate that, to consistently meet the 38 percent VSR requirement for Class B biosolids, all four digesters would be required to be in service. Having all four digesters in service also provides a higher overall HRT. However, this provides no redundancy in digester operation. An evaluation of the digester aeration system is recommended to investigate the option of taking one digester out of service and potentially operating at a concentration higher than the recommended 2.5 percent solids concentration level.

• Effluent quality limitations. While the modeling results indicate that secondary effluent concentrations would meet the current permit limits under all flows and loadings evaluated, the actual effluent quality may be reduced due to different factors including deteriorated settling characteristics, different influent wastewater characteristics, and clarifier operation. The effluent TSS concentration limit during the dry weather period (10 mg/L for the monthly average limit) has the highest risk of being exceeded, as it has occurred a couple of times since 2020. To meet the effluent limits consistently, effluent filtration is recommended.

Long-Term (after 2030) Capacity Constraints

- Aeration system limitations. The aeration blowers are projected to reach their firm capacity limit around 2035 under wet weather conditions. The blower capacity can be increased by placing all blowers in service but that would result in no redundant blower available. Increasing the diffuser density in the first aerated zone will increase the oxygen transfer efficiency and thus reduce the air flow requirements. Conversion to a SND process will also reduce air flow requirements. Without those changes or other process changes, a new blower will be required.
- Aerobic digestion limitations. Based on the findings of digester aeration system evaluation recommended above, an upgrade of the digester system is likely to be needed.

The recommended improvements discussed above, upon review by OLWS staff and modified as needed, will be incorporated in the WWTP alternatives analysis.

References

A Plain English Guide to the EPA Part 503 Biosolids Rule, EPA/832/R-93/003, September 1994.

Control of Pathogens and Vector Attraction in Sewage Sludge, EPA/625/R-92/013, July 2003.

Oak Lodge Water Services District Water Reclamation Facility Biosolids Management Plan, July 2021.

- Gray, D.M.D et al. 2006. Develop and Demonstrate Fundamental Basis for Selectors to Improve Activated Sludge Settleability. Water Environment Research Foundation, Alexandria, Virginia.
- Merkel, W. 1971. Untersuchungen über das Verhalten des belebten Schlammes im System Belebungsbecken-Nachklärbecken. *Gewasserschutz, Wasser-Abwasser* (ed. B. Bohnke), vol.5, D82, Institut für Siedlungswasserwirtschaft, TU Aachen, Aachen. Cited by Gray *et al.* (2006). p. 4-3.

Attachment A: August 2021 Sampling Data

Values in Italics and n 8/10-8/23 av 11.57	Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021	Day		CALCULATED PARAMETERS	8/10-8/23 av 8/12-8/23 avg	Count	Average	8/24/2021	8/23/2021	8/22/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021	Day		
lics and me 11.57	11.6		13.0				15.0	12.0	18.0	10.0				<u>6.</u> 0	7.0		SSI		TED PAP	g 1.78	L.	1.780	1.752	1.748	1.820	1.738	1.754	1.750	1.763	1 707	1.768	1.799	1.733	1.775	1.789	Flow		
0.925	0.93		0.91				0.92	0.94	0.93	0.95				0.97	0.86		<u>VSS</u> TSS		RAMETER	172.86 193.33	7	172.9		148			190	208	240	108			176	50		TSS mg/L		
0.925																			ŝ	161.29 181.00	7	161.3		135			175	196	222	188			170	43		VSS mg/L		
																				428.71 451.17	7	428.7		500			410	426	419	502			450	294		COD		
1.97	1.97		2.05				1.95	1.89	1.62	1.96				2.03	2.28		<u>COD</u> BOD5			194.71 191.83	7	194.71		194			190	176	175	250			166	212		sCOD mg/L		
1.55	1.55		2.27				1.26	1.28	1.10	1.34				1.67	1.91		<u>Prt COD</u> VSS			111.34 113.58	7	111.34		122			111	124	132	105			87.5	97.9		ffCOD mg/L		
																				220.57 235.83	7	220.6		244			210	225	258	256			222	129		BOD5 mg/L		
	9.55		11.26				8.93	9.16	9.13	10.70				10.18	7.48		t <u>cod</u>			85.57 85.40	7	85.6		82.6			86.9	78.8	87.2	01 л			273	86.4		sBOD5 mg/L		
	0.35		0.33				0.26	0.24	0.21	0.25				0.26	0.91		<u>TKN</u> VSS				0															CBOD mg/L		
	75.65		89.61				69.97	72.57	70.54	85.23				77.19	64.47		7₽ 1₽	Ra			0															sCBOD mg/L	א גא	1
	0.53		0.34				0.41	0.35	0.34	0.36				1.23	0.67		<u>sbod</u> Bod	Raw Influent	58.867	44.73 45.63	7	44.4		44.4			45.9	46.5	45.9	46.9			44.2	39.3		mg/L	Kaw Influent	,
																	<u>scbod</u> Cbod	Ŧ		36.56 37.13	7	36.6		34.9			38.3	36.3	36.8	8 86			34.6	34.3		sTKN mg/L		•
0.68	0.76		0.88				0.78	0.85	0.64	0.62							<u>NH3</u> TKN			31.47 31.47	თ	31.5		39.20			35.90	39.50	29.40	29 10						MH3-N		
																	FupP				0			Ŋ			ND	ND	S				ND	ND		mg/L		
																	FupN				0			Ŋ			ND	ND	S				ND	ND		MO2-N		
	0.04		0.041				0.033	0.030	0.027	0.031				0.034	0.106		SS ₽		7.51855	5.65 5.83	7	5.65		5.58			5.86	5.87	5.94	л 80			5.83	4.56		mg/L		
																				3.83 3.84	7	3.83		3.44			4.05	3.56	3.59	4 68			3.69	3.83		sTP mg/L		
0.219	0.22		0.19				0.21	0.26	0.27	0.17				0.16	0.26		Fbs			2.57 2.90	7	2.57		2.84			3.21	2.84	2.81	2 82			2.88	0.6		PO4-P mg/L		
0.046	0.046		0.04				80 <u>.</u> 0	0.04	0.05	0.04				0.04	0.07		Fus				0															mg/L		
0.503	0.59						0.760		0.552	0.455							Fnox			179.14 179.83	7	179		180			179	174	182	187			182	175		mg/L		
0.44	0.44		0.51				0.55	0.48	0.47	0.48				0.49	0.12		Fpo4			7.53 7.52	8	7.53	7.5				7.6	7.5	7.5			7.5	7.5	7.5	7.6	pН		
	119.5		138.89				114.53	122.41	115.11	137.91				123.63	84.00		A k A k			26.10 25.96	∞	25.94	24.8				25.6	25.6	25.5			26.6	26.5	26.6	26.3	Temp Alk (mmol/L) deg C		

Daily Testing Worksheet

Daily Testing Worksheet

Start Date = 8/10/2021

MEASURED PARAMETERS

	Day		8/10/2021	8/11/2021	8/12/2021	8/13/2021	8/14/2021	8/15/2021	8/16/2021	8/17/2021	8/18/2021	8/19/2021	8/20/2021	8/21/2021	8/22/2021	8/23/2021	8/24/2021	Average	Count
	Flow	mgd																	0
	TSS	mg/L	68	53.3	150				1100	947	653	1300				215		561	ω
	VSS	mg/L	64	48	134				1010	893	607	1140				195		511.4	8
	COD	mg/L	301	284	361				881	1210	942	1380				506		733.1	8
	SCOD	mg/L																	0
	ffcop	mg/L																	0
	BOD5	mg/L	128	112	179				846	763	935	334				240		371.7	œ
	sBOD5	mg/L																	0
	СВОР	mg/L																	0
Scree	SCBOD	mg/L																	0
Screened Influent	TKN		35.5	40.8	40.1				77.4	80.1	74.1	140.0				45.6		66.7	8
lent	stkn	mg/L																	0
	NH3-N	mg/L																	0
	NO3-N	mg/L																	0
	NO2-N	mg/L																	0
	ΤP	mg/L	4.79	6.56	5.94				14.20	12.30	11.40	15.30				6.56		9.63	œ
	sTP	mg/L																	0
	PO4-P	mg/L																	0
	DO	mg/L																	0
	Alk	mg/L	180	176	180				185	188	194	274				181		195	œ
	pН																		0
	Temp	deg C																	0
	Temp Alk (mmol/L)		3.6	3.52	3.6	0				3.76	3.88						0	2.62	

CALCULATED PARAMETERS

							Screened Influent	uent					
Day	SSI	<u>VSS</u> TSS	COD BOD5	Prt COD VSS	COD TKN	TKN VSS	<u>sbod</u>	<u>scbod</u> Cbod	NH3 TKN	TP	SSA AI		 <u>cod</u> Alk
8/10/2021	4.0	0.94	2.35		8.48	0.55					0.075		83.61
8/11/2021	5.3	0.90	2.54		6.96	0.85					0.137		80.68
8/12/2021	16.0	0.89	2.02		9.00	0.30					0.044		100.28
8/13/2021													
8/14/2021													
8/15/2021													
8/16/2021	<u>90.</u> 0	0.92	1.04		11.38	0.08					0.014		
8/17/2021	54.0	0.94	1.59		15.11	0.09	-				0.014		321.81
8/18/2021	46.0	0.93	1.01		12.71	0.12					0.019		242.78
8/19/2021	160.0	0.88	4.13		9 <u>.</u> 86	0.12					0.013		
8/20/2021													
8/21/2021													
8/22/2021													
8/23/2021	20.0	0.91	2.11		11.10	0.23					0.034		
8/24/2021													
Average	49.4	0.91	2.10		10.57	0.29					0.04		165.8

 Average
 49.4
 0.91
 I

 Values in Italics and magenta are inconsistent.
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Daily
Testing
Workshe
ę

MEASURED PARAMETERS

8/		~	œ	00	œ	œ	œ	œ	00	œ	œ	<u>00</u>	œ	80	œ	œ	<u>00</u>			
8/10-8/23 avg	Count	Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
g	0																	mgd	Flow	
	0																	mg/L	TSS	
	0																	mg/L	SSA	
	0																	mg/L	COD	
38.61	9	38.90	41.2	49.2				13.7	40.2	52	46.5				29.2	44.2	33.9		scod	
	7	0 30.20	2 31.9	2 32.1				29.5	2 30.3	37.2	5 30.7				2 19.7				D ffCOD	
29.92	0	20	9	1				J	З	2	7				7					
																		mg/L m	_	
	0																	mg/L r	sBOD5 C	
	0																	mg/L	BODs	Þ
	0																	mg/L	scbod	Anoxic Selector Effluent
	0																	mg/L	TKN	lector E
	0																	mg/L	stkn	ffluent
5.32	9	4.95	2.07	2.46				3.69	6.98	10.40	2.75				3.94	3.76	8.5	mg/L	NH3-N	
0.17	6	0.22	0.49	0.399				ND	0.0957	ND	ND				0.0511	0.193	0.0985	mg/L	NO3-N	
0.05	6	0.05	0.0907	0.0929				ND	0.043	ND	0.0282				0.031	0.0307	ND	mg/L	NO2-N	
0.	0																	mg/L	TP	
	0																	mg/L	sTP	
4	9	4.49	2.34	2.72				3.54	3.84	3.62	3.14				0.268	13.2	7.72	mg/L	PO4-P	
4.76	0	9	4	2				4	4		4				8		2	L mg/L	-P DO	
	0																	mg/L	Alk	
	0																	d	T Hd	
	0																	deg C	Temp	

CALCULATED PARAMETERS

								Anoxic S	Anoxic Selector Effluent	ffluent						
Day	SSI	<u>VSS</u>		COD	Prt COD	TKN	TKN		<u>sBOD</u>	<u>scbod</u>	NH3	тр Гр				AIK
8/10/2021																
8/11/2021																
8/12/2021																
8/13/2021																
8/14/2021																
8/15/2021																
8/16/2021																
8/17/2021																
8/18/2021																
8/19/2021																
8/20/2021																
8/21/2021																
8/22/2021																
8/23/2021																
8/24/2021																
Average																

Values in Italics and magenta are inconsistent.

Daily	
Testing	
Worksheet	

MEASURED PARAMETERS

	Day		8/10/2021	8/11/2021	8/12/2021	8/13/2021	8/14/2021	8/15/2021	8/16/2021	8/17/2021	8/18/2021	8/19/2021	8/20/2021	8/21/2021	8/22/2021	8/23/2021	8/24/2021	Average	Count	8/10-8/23 avg
	Flow	mgd																	0	g
	TSS	mg/L	2160	3620	3520				2940	3420	3460	3440				3940	3180	3298	9	3312.50
	SSA	mg/L	1840	3040	2920				2380	2840	2900	2940				3300	2640.0	2755.6	9	2770.00
	COD																		0	
	SCOD																		0	
	ffCOD	-																	0	
	BOD5	-																	0	
	sBOD5	mg/L																	0	
	CBOD	-																	0	
MIX	SCBOD	mg/L																	0	
Mixed Liquor	TKN	mg/L																	0	
	stkn																		0	
	NH3-N																		0	
	NO3-N	mg/L																	0	
	NO2-N	mg/L																	0	
	TP	mg/L																	0	
	sTP	mg/L																	0	
	P04-P	mg/L																	0	
	DO	mg/L																	0	
	Alk	mg/L																	0	
	рH		6.5	6 <u>.</u> 3	6.5					6.4	6.4	6.5					6.5	6.44	7	
	Temp	deg C	27.3	27.6	27.5	27.6				26.5	26.6	26.6					25.8	26.94	8	27.10

8/10-8/23 avg 3312.50 2770.00

CALCULATED PARAMETERS

	_	8/1	8/1	8/1;	8/1;	8/1-	8/1:	8/1	8/1	8/1;	8/1;	8/2	8/2	8/2:	8/2;	8/2-	
	Day	8/10/2021	8/11/2021	8/12/2021	8/13/2021	8/14/2021	8/15/2021	8/16/2021	8/17/2021	8/18/2021	8/19/2021	8/20/2021	8/21/2021	8/22/2021	8/23/2021	8/24/2021	Average
	ISS	320.0	580.0	600.0				560.0	580.0	560.0	500.0				640.0	540.0	542.2
	<u>VSS</u> TSS	0.85	0.84	0.83				0.81	0.83	0.84	0.85				0.84	0.83	0.84
	<u>COD</u> BOD5																
	Prt COD VSS																
	<u> </u>																
	<u>COD</u> TKN																
	TKN VSS																
-																	
Mixed Liquor	<u>sbod</u> Bod																
luor	<u>scbod</u> CBOD																
	<u>D</u> <u>NH3</u> D TKN																
	<u>cop</u> TP																
	<u>1P</u> VSS																
	<u> </u>																
	<u>cod</u> Alk																

Daily Testing Worksheet

Start Date = 8/10/2021

MEASURED PARAMETERS

8/10-8/23 av	Count	Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
/23 av	unt									_					_			_		
1.73	15	1.730	1.690	1.770	.910	1.800	1.640	1.670	1.710	.670	1.760	1.840	.700	1.690	.660	1.720	1.720	mgd i	Flow	
6.53	∞	σī		σı				6	4.4	3.6	4.4				10	2.8	3.2	mg/L	TSS	
5.33	8	5.2		7				4.8	5.2	3.2	5.2				8	5.2	3.2	mg/L	SSA	
28.23	8	28.2		32.3				27.4	20.2	27.2	27.2				28.5	32.3	30.7	mg/L	COD	
20.29	8	21.73		19.4				31.8	17	20.9	17.8				15.9	22	29	mg/L	scod	
18.38	8	18.38		25.1				23.5	12.4	19.1	17.5				17.2	22	10.2	mg/L	ffCOD	
	0																	mg/L	BOD2	
	0																	mg/L	sBOD5	
2.58	7	2.6		1.97				ND	2.23	1.83	2.87				3.27	4.25	1.66	mg/L	CBOD	
3 1.75	6	1.8		1.07				ND	1.25	1.39	2.01				2.13	2.67	ND	mg/L	SCBOD	-
5 1.86	8	1.9		1.83				2.57	1.43	1.55	2.20				2.44	1.39	1.46	mg/L) TKN	Final Effluent
36	0																	mg/L	stkn	Jent
0	8	0.393		0.436				0.934	0.144	0.180	0.557				0.567	0.179	0.145	- mg/L	NH3-N	
0.39	7	3 3.05		6 2.54				4 3.6	.4 2.72	10 2.98	57 3.17				7 3.42	6	5 2.93	L mg/L	-N NO3-N	
3.05									0	0					0		0		_	
0.10	7	0.10 2		0.113 2				0.137 3	.0623 2		0.129 2				0.0789 4		.0668 3	mg/L n	NO2-N	
2.93	8	2.93		2.21				3.66	2.05	2.28	2.38				4.28	3.3	3.24	mg/L I	TP	
	0																	mg/L	sTP	
2.23	7	2.23		1.91				0.71	1.72	2.11	2.17				4.01		2.97	mg/L	PO4-P	
	0																	mg/L	DO	
68.09	8	68		71.4				66.4	67.9	66.2	75.5				65.3	65.1	66.9	mg/L	Alk	
6.64	9	6.64	6.7	6.7				6.8	6.7	6.7				6.6	6.7	6.3	6.6		рH	
	14	23.49		22.765	22.943	23.167	23.357	23.301	23.235	23.482	23.908	23.991	23.947	24.03	23.815	23.611	23.306	deg C	Temp	
1.37		1.37		1.428	•				1.358	1.324	1.51		•		1.306	1.302	1.338		Temp Alk (mmol/L)	

CALCULATED PARAMETERS

A٧ŧ	8/24	8/23	8/22	8/21	8/20	8/19	8/18	8/17	8/16	8/15	8/14	8/13	8/12	8/11	8/1C		_	
Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
-0.3		-2.0				1.2	-0.8	0.4	-0 <u>.</u> 8				2.0	-2.4	0.0		SS	
Average 0.3 1.14		1.40				0.80	1.18	0.89	1.18				0.80	1.86	1.00	TSS	VSS	
																BOD5	COD	
1.18		1.84				-0.92	0.62	1.97	1.81				1.58	1.98	0.53		Prt COD	
-																	0	
16.04		17.65				10.66	14.13	17.55	12.36				11.68	23.24	21.03	TKN		
0.38		0.26				0.54	0.28	┢	0.42				0.31	0.27	0.46	SSA	TKN	
-																вор	sBOD	Final Effluent
0.64		0.5					0.6	0.8	0.7				0.7	0.6			D SCBOD	uent
0.19		0.24				0.36	0.10	0.12	0.25				0.23	0.13	0.10	D TKN		
_		*				<i>,</i>							ω	ω		2	3	
312.54		285.84				200.00	324.24	346.06	210.85				361.22		459.58	-	<u>22</u>	
							┝		┢				-	0	┢	TP		
0.60		0.316				0.763	0.394	0.713	0.458				0.535	0.637	1.013	VSS	IP	
20.8		22.62					14.87	20.54	18.01				21.82	24.81	22.94	Alk	COD	

Average ______ Values in *Italics* and mag 1.14 a are inconsistent.

ā
Ŧ
<
-
œ
ŝ
÷.
ຮ
<u> </u>
S
5
ž.
ŝ
÷
e
õ
-

MEASURED PARAMETERS

			_	_					_				_					_	_	
	Count	Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
0 507	15	0.566	0.548	0.578	0.549	0.530	0.488	0.544	0.600	0.594	0.615	0.607	0.554	0.588	0.472	0.590	0.633	mgd	Flow	
0.07 1 1	9	14533	15100	15000				14400	13000	14500	16400				14600	14300	13500	mg/L	TSS	
10075	9	12200.0	13200.0	12300				12000	11100	12100	13500				12200	12100	11300	mg/L	VSS	
	0																	mg/L	COD	
	0																	mg/L	scod	
	0																	mg/L	ffcod	
	0																	mg/L	BOD5	
	0																	mg/L	sBOD5	
	0																	mg/L	CBOD	
	0																	mg/L	sCBOD	Return Activated Sludge
	0																	mg/L	TKN	ctivated
	0																	mg/L	stkn	Sludge
	0																	mg/L	NH3-N	
	0																	mg/L	NO3-N	
	0																	mg/L	NO2-N	
	0																	mg/L	ΤP	
	0																	mg/L	sTP	
	0																	mg/L	PO4-P	
	0																	mg/L	DO	
	0																	mg/L	Alk	
	0																		рH	
	0																	deg C	Temp	

8/10-8/23 av 0.567 14463 12075

CALCULATED PARAMETERS

							70	Return A	Return Activated Sludge	Sludge						
Day	ISS	<u>VSS</u> TSS	%Q	 <u>COD</u> BOD5	Prt COD VSS	 <u>COD</u> TKN	TKN VSS		<u>sbod</u> Bod	<u>scbod</u> Cbod	<u>NH3</u> TKN	<u>сор</u> ТР	<u>IP</u> VSS			<u>cod</u> Alk
8/10/2021	2200.0	0.84	35.4%													
8/11/2021	2200.0	0.85	33.3%													
8/12/2021	2400.0	0.84	27.2%													
8/13/2021			32.7%													
8/14/2021			31.3%													
8/15/2021			32.7%													
8/16/2021	2900.0	0.82	34.2%													
8/17/2021	2400.0	0.83	33.7%													
8/18/2021	1900.0	0.85	34.3%													
8/19/2021	2400.0	0.83	31.0%													
8/20/2021			28.1%													
8/21/2021			29.1%													
8/22/2021			29.4%													
8/23/2021	2700.0	0.82	33.1%													
8/24/2021	1900.0	0.87	31.3%													
Average	2333.3	0.84	31.8%													
Values in Ita	Values in Italics and magenta are inconsistent.	genta are ir	nconsistent.													

MEASURED PARAMETERS	ED PAR/	METERS										<u>-</u>										
										Waste Activated Sludge	ctivated \$	Sludge										
Day	Flow gpd	TSS mg/L	VSS mg/L	COD mg/L	sCOD mg/L	ffCOD mg/L	BOD5 mg/L	sBOD5 mg/L	CBOD mg/L	sCBOD mg/L	TKN mg/L	sTKN mg/L	NH3-N mg/L	NO3-N mg/L	NO2-N mg/L	TP mg/L	sTP mg/L	PO4-P mg/L	DO mg/L	Alk mg/L	PH	Temp deg C
8/10/2021	23050	19200	16000																			
8/11/2021	20019	21700	18300																			
8/12/2021	19379	19700	16700																			
8/13/2021	18897																					
8/14/2021	18547																					
8/15/2021	18512																					
8/16/2021	21848	19700	16200																			
8/17/2021	21114	17800	15000																			
8/18/2021	24305	19300	16200																			
8/19/2021	29894	22100	18600																			
8/20/2021	15558																					
8/21/2021	15558																					
8/22/2021	14810																					
8/23/2021	18296	18800	15800																			
8/24/2021	17924	21700	18600.0																			
Count	15	90007	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
8/10-8/23 av		19788	16600	3301.58																		
CALCULATED PARAMETERS	ATED PA	RAMETE	RS																			
										Waste Activated Sludge	ctivated S	Sludge										
Day	ISS	<u>VSS</u> TSS			<u>COD</u> BOD5	Prt COD VSS		<u>cod</u> TKN	<u>tkn</u> VSS		<u>sbod</u> Bod	<u>scbod</u> Cbod	<u>NH3</u> TKN		TP	VSS						Alk
8/10/2021	3200.0	0.83																				
8/11/2021	3400.0	0.84																				
8/12/2021	3000.0	0.85																				
8/13/2021																						
8/14/2021																						
8/15/2021																						
8/16/2021	3500.0	0.82																				
8/17/2021	2800.0	0.84																				
8/18/2021	3100.0	0.84																				
8/19/2021	3500.0	0.84																				
8/20/2021																						
8/21/2021																						
8/22/2021																						
000000	20000																					

 8/23/2021
 3000.0
 0.84

 8/24/2021
 3100.0
 0.86

 Average
 3177.8
 0.84

 Values in *Italics* and magenta are incompared in the second s 0.84 one stent

Daily Testing Worksheet

Start Date = 8/10/2021

ā
=:
<
-
°.
S
±.
Ξ.
Q
<
<
÷
ŝ
÷
ē
e,
-

MEASURED PARAMETERS

8/10-8/23 avr	Count	Averag	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
2 avr	t 0	Je	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	mgd	Flow	
1 80	9	1.80	1.73	1.8				1.79	1.76	1.85	1.78				1.82	1.81	1.82	d % solids		
	9	0 0.77		3 76.90%				9 77.70%	6 77%	5 77.70%	8 77.50%				2 77.20%	1 77.30%	2 77.10%	lids	SA% 3	
0520		77	0%	0%				%0	%	%0	0%				0%	10%	0%	в		
	0																	mg/L n	COD s	
	0																	-	SCOD 1	
	0																	-	ffCOD	
	0																		BOD5	
	0																	_	sBOD5	
	0																	mg/L	CBOD	
	0																	mg/L	scbod	8
	0																	mg/L	TKN	IBR Effluent
	0																	mg/L	stkn	₽
	0																	mg/L	NH3-N	
	0																	-	NO3-N	
	0																	mg/L	NO2-N	
	0																	mg/L	TP	
	0																	mg/L	sTP	
	0																	mg/L	PO4-P	
	0																	- mg/L	P DO	
	0																	/L mg/L	AIK O	
																		ŕ		
	0																	ď	pH Te	
	0																	deg C	Temp	

8/10-8/23 avg 1.8038 0.7730

CALCULATED PARAMETERS

						IBI	IBR Effluent	Ť						
Day	SI	sA SA		Prt COD			<u>sBOD</u>	<u>scBoD</u>	NH3	- <u>Cop</u>	P			<u>Cod</u>
8/10/2021	1.0	1.40												
8/11/2021	1.0	1.40												
8/12/2021	1.0	1.41												
8/13/2021														
8/14/2021														
8/15/2021														
8/16/2021	1.0	1.38												
8/17/2021	<u>1.</u> 1	1.44												
8/18/2021	1.0	1.36												
8/19/2021	1.0	1.39												
8/20/2021														
8/21/2021														
8/22/2021														
8/23/2021	1.0	1.38												
8/24/2021	1.0	1.34												
Average	1.0	1.39												

Values in Italics and magenta are inconsistent.

Daily Testing Worksheet

Start Date = 8/10/2021

MEASURED PARAMETERS

8/10-8/23 av 18605 1.6913 0.7480

CALCULATED PARAMETERS

	Day	8/10/2021	8/11/2021	8/12/2021	8/13/2021	8/14/2021	8/15/2021	8/16/2021	8/17/2021	8/18/2021	8/19/2021	8/20/2021	8/21/2021	8/22/2021	8/23/2021	8/24/2021	
	IS	0.9	0.9	0.9				0.9	1.0	1.0	0.9				0.9	0.9	0.9
	VS %TS	1.24	1.25	1.26				1.26	1.28	1.29	1.27				1.26	1.26	1.26
	BC																
	<u>COD</u> Prt- BOD5V																
	Prt COD VSS																
	<u>COD</u> TKN																
	<u>TKN</u> VSS																
Aerobic Digested Sludge																	
Digested	<u>sbod</u> Bod																
Sludge	<u>scbod</u> Cbod																
	NH3 TKN																
	<u>сор</u> ТР																
	VSS																
	<u>cod</u> Alk																

ā
=
<
œ.
ŝ
<u>د</u>
m
<u> </u>
~
_
Š
Ś
Work
Worksh
Worksh
Workshee
Worksh

MEASURED PARAMETERS

Image Fine Ta Mage CoD CoD Record Record <t< th=""><th>8</th><th></th><th></th><th>∞</th><th>œ</th><th>8</th><th>œ</th><th>8</th><th>∞</th><th>œ</th><th>∞</th><th>œ</th><th>œ</th><th>œ</th><th>œ</th><th>œ</th><th>œ</th><th>8</th><th> </th><th></th><th></th><th></th></t<>	8			∞	œ	8	œ	8	∞	œ	∞	œ	œ	œ	œ	œ	œ	8				
Find 11 7.30% CoD MCD MDD MDD </td <td>10-8/23 avr</td> <td>Count</td> <td>Average</td> <td>/24/2021</td> <td>/23/2021</td> <td>/22/2021</td> <td>/21/2021</td> <td>/20/2021</td> <td>/19/2021</td> <td>/18/2021</td> <td>/17/2021</td> <td>/16/2021</td> <td>/15/2021</td> <td>/14/2021</td> <td>/13/2021</td> <td>/12/2021</td> <td>/11/2021</td> <td>/10/2021</td> <td></td> <td>Day</td> <td></td> <td></td>	10-8/23 avr	Count	Average	/24/2021	/23/2021	/22/2021	/21/2021	/20/2021	/19/2021	/18/2021	/17/2021	/16/2021	/15/2021	/14/2021	/13/2021	/12/2021	/11/2021	/10/2021		Day		
SAVS COD mg/L MCD mg/L MCD mg/L MCD mg/L CBOD mg/L CBOD mg/L TAN mg/L MIX- mg/L MO2-M mg/L MO2-M mg/L MO2-M mg/L MD MD/- mg/L MM MD MD MM MD MD MM MD MD MM MD MD2-M MD MDL MM MD MD2-M MD	-	0																	I I	Flow		
COD SCOD IfCOD BODS CBOD TKN NI3-N NO3-N mg/L mg/L <t< td=""><td>12 80</td><td>9</td><td>12.9</td><td>13.40</td><td>13.2</td><td></td><td></td><td>13.3</td><td>12.7</td><td></td><td>15.2</td><td>12.3</td><td></td><td></td><td></td><td>12.1</td><td>11.9</td><td>11.7</td><td>% solids</td><td>τs</td><td></td><td></td></t<>	12 80	9	12.9	13.40	13.2			13.3	12.7		15.2	12.3				12.1	11.9	11.7	% solids	τs		
scop frcop BoD5 CBOD CBOD TKN M13-N M03-N M02-N mg/L	892 U	9	76.93%	78.10%	77.50%			78.30%	77.70%		78%	71.20%				77.30%	77.30%	77%		SN%		
fices Bobs SBOb CBOD Mod Md Mod Mod Mod Mod MpL		0																	mg/L	COD		
BODS SBODS CBOD TKN NH3-N NO3-N MO2-N mg/L		0																	mg/L	scod		
SBDS CBDD SCBDS TM MIA. MO3-N MO2-N mg/L mg/L <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>mg/L</td><td>ffCOD</td><td></td><td></td></t<>		0																	mg/L	ffCOD		
Dewatered Cake CEOD SCBOD TKN NTAN NO3-N NO2-N TM STP PO4-P DO Alk PH mg/L		0																	mg/L	BOD5		
Dewatered Cake CEOD SCBOD TKN NTAN NO3-N NO2-N TM STP PO4-P DO Alk PH mg/L		0																	mg/L	sBOD5		
SCBOD TKN NTSN NO3-N NO2-N TP STP PO4-P DO Alk PH mg/L		0																	mg/L	CBOD		
TKN NH3-N NO3-N MO2-N TP sTP PO4-P DO Alk pH ng/L mg/L mg/L <td></td> <td>0</td> <td></td> <td>Dev</td> <td>Dew</td>		0																			Dev	Dew
TKN NH3-N NO3-N MO2-N TP sTP PO4-P DO Alk pH ng/L mg/L mg/L <td></td> <td>0</td> <td></td> <td>mg/L</td> <td>TKN</td> <td>rate eu c</td> <td>n harater</td>		0																	mg/L	TKN	rate eu c	n harater
N03-N N02-N TP sTP P04-P mg/L mg/L <th< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>mg/L</td><td>stkn</td><td>ane</td><td>'sko</td></th<>		0																	mg/L	stkn	ane	'sko
NO2-N mg/L TP mg/L sTP mg/L PO4-P mg/L DO mg/L Alk mg/L pH NO2-N mg/L mg/L <td< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>mg/L</td><td>NH3-N</td><td></td><td></td></td<>		0																	mg/L	NH3-N		
TP mg/L STP mg/L PO4-P mg/L DO mg/L Alk mg/L PH mg/L mg/L </td <td></td> <td>0</td> <td></td> <td>mg/L</td> <td>NO3-N</td> <td></td> <td></td>		0																	mg/L	NO3-N		
stp mg/L PO4-P mg/L DO mg/L Alk mg/L pH mg/L mg/L mg/L mg/L mg/L Img/L mg/L ing/L ing/L ing/L Img/L mg/L ing/L ing/L ing/L Img/L ing/L ing/L ing/L ing/L ing/L Img/L ing/L ing/L ing/L ing/L ing/L ing/L Img/L in		0																	mg/L	NO2-N		
P04-P D0 Alk pH mg/L mg/L mg/L mg/L I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		0																	mg/L	TP		
DO mg/L Alk mg/L pH mg/L mg/L l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l		0																	mg/L	sTP		
DO mg/L Alk mg/L pH mg/L mg/L l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l		0																	mg/L	PO4-P		
· · · · · · · · · · · · · · · · · · ·		0																	mg/L			
		0																	mg/L	Alk		
Temp deg C		0																		Рd		
		0																	deg C	Temp		

8/10-8/23 avg 12.80 0.768

CALCULATED PARAMETERS

							Dewate	Dewatered Cake	e						
Day	sI	sΛ	 <u>cod</u>	Prt COD	<u>cod</u>	TKN	10	SBOD	<u>scbod</u>	NH3	<u>COD</u>	IP			<u>COD</u>
		%TS	BOD5	SSA	TKN				СВОР	TKN	Ŧ	VSS			Alk
8/10/2021	10.9	9.01													
8/11/2021	11.1	9.20													
8/12/2021	11.3	9.35													
8/13/2021															
8/14/2021															
8/15/2021															
8/16/2021	11.6	8.76													
8/17/2021	14.4	11.86													
8/18/2021															
8/19/2021	11.9	9.87													
8/20/2021	12.5	10.41													
8/21/2021															
8/22/2021															
8/23/2021	12.4	10.23													
8/24/2021	12.6	10.47													
Average	12.1	9.91													

Values in Italics and magenta are inconsistent.

Daily	
Testing	
Worksheet	

MEASURED PARAMETERS

	Count	Average	8/24/2021	8/23/2021	8/22/2021	8/21/2021	8/20/2021	8/19/2021	8/18/2021	8/17/2021	8/16/2021	8/15/2021	8/14/2021	8/13/2021	8/12/2021	8/11/2021	8/10/2021		Day	
	0																	mgd	Flow	
	6	1163	340	4520				600		1180	260					80		mg/L	TSS	
	0																	mg/L	VSS	
	0																	mg/L	COD	
	0																		scod	
	0																	mg/L	ffCOD	
389.6	5	138.3	17	>1253.7				> 408.87		364	206					45	59.5	mg/L	BOD5	
	0																	mg/L	sBOD5	
	0																	mg/L	CBOD	
	0																	mg/L	sCBOD	Plant
	0																	mg/L	TKN	Plant Drain Return
	0																	mg/L	stkn	turn
	7	106.19	143.00	118.00				123.00		88.00	106.00					77.30	88.0	mg/L	NH3-N	
	7	1.68	1.61	1.42				1.91		1.74	1.83					1.49	1.73	mg/L	NO3-N	
	0																	mg/L	NO2-N	
	0																	mg/L	TP	
	0																	mg/L	sTP	
	7	81.13	83.10	71.50				89.70		76.10	82.60					74.7	90.20	mg/L	PO4-P	
	0																	mg/L	DO	
	0																	mg/L	Alk	
	0																		рH	
	0																	deg C	Temp	

CALCULATED PARAMETERS

	00	Vee
Day	ISS	VSS TSS
8/10/2021		
8/11/2021		
8/12/2021		
8/13/2021		
8/14/2021		
8/15/2021		
8/16/2021		
8/17/2021		
8/18/2021		
8/19/2021		
8/20/2021		
8/21/2021		
8/22/2021		
8/23/2021		
8/24/2021		
Average		

Values in Italics and magenta are inconsistent.

~	_
-	U
	=
5	=
	-
ξ.	-
	~
	ല
÷h.	-
0	
	-
2	_
₹	n.
	- 12
2	COD.
	- Andrews
× .	Ξ.
τ.	
	ō
5	
-	-
5	~
	~
2	
	0
	-
_	<u></u>
Ľ.	ㅈ
۰.	10
	•••
	5
	-
	D.
	Ψ.
	-

Number of samples requested = Current number of samples taken = Number of sample mismatches =

0 ⁸⁴

Start Date =

8/11/2021

MEASURED PARAMETERS

Date Time Flow TSS 8/11/2021 12:00 2.11 48 8/11/2021 14:00 2.04 40 8/11/2021 16:00 1.87 42.7 8/11/2021 18:00 2.11 53.3 8/11/2021 20:00 2.12 53.3 8/11/2021 20:00 1.97 42.7 8/11/2021 20:00 1.93 40 8/11/2021 20:00 1.93 40 8/11/2021 20:00 1.93 40 8/11/2021 20:00 1.93 40	22:00 1.97	0:00 1.33	2:00 0.91	1.38		8:00 2.24	1 8:00 2.24 1 10:00 2.12	1 8:00 2.24 1 10:00 2.12 1 1.766 1.766
VSS 45.3 37.3 38.7 50.7 54.7 40 41.3 60	40	41.3	60	33.3 32	38.7	60	46	
272 336 322 296 288 288	308	288	288	240 152	134	246	268	13
sCOD							>	0
ffcoD							>	0
BOD5							0	0
sBOD5							5	0
TKN 44.9 35.1 32.4 32.4 36.4 35.3	36	36.4	35.3	34.2 30.6	38	49.8	37.1	12
STKN							>	0
NH3-N							>	0
NO3-N							>	0
TON							>	0
TP 6.48 6.42 4.6 4.06 4.06 3.89 3.99 3.99 3.56 4.08	3.99	3.56	4.08	3.67	4.46	6.41	4.66	12
P04-P							>	0
8							>	0
A 217 188 170 159 165 163 163	163	160	138	158	178	223	173.17	12
Temp							>	0

Mis-match	Count	Check	
12	12		
0	12		
0	12		
0	12		
0	12		
0	0		
0	0		
0	0		
0	0		
0	12		
0	0		
0	0		
0	0		
0	0		
0	12		
0	0		
0	0		
0	12		
0	0		

Raw Influent

CALCULATED PARAMETERS

	8/1	8/1	8/1	8/1	8/1	8/1	8/1	8/1	8/1	8/1	8/1	8/1		D D
	8/12/2021	2/2021	2/2021	8/12/2021	2/2021	1/2021	1/2021	1/2021	1/2021	1/2021	1/2021	1/2021		Date
0.00	10:00	8:00	6:00	4:00	2:00	0:00	22:00	20:00	18:00	16:00	14:00	12:00		Time
*	4	0	ά	0	-	<u>'</u>	ω	<u>'</u>	ω	4	ω	ω		SS
000	0.94	1.00	1.09	1.00	86.0	1.03	0.94	1.03	0.95	0.91	0.93	0.94	TSS	SSA
													BOD5	<u>e</u>
													VSS	Prt COD
101	4.94	3.53	4.97	7.25	8.16	7.91	8.56	9.14	9 <u>.</u> 53	9.40	8.80	6.06	TKN	COD
2000	0.83	0.98	0.96	0.64	0.59	0.88	0.90	0.59	0.67	0.91	1.02	0.99	VSS	TKN
													TKN	NH3
E0 01	38.	30.	41.	58.08	70.	80.	77.	76.		71	52.	41.	Т	<u>8</u>
_														_
101	.107	.115	.115	0.080	.068	0.086	.100	071	080.0	.119	.172	.143	VSS	F
	<u> </u>													
														_
_														

MUSC

Appendix J WWTP Alternatives Workshop Materials

WRF Conceptual Analysis of Alternatives (9/28/22) WWMP Alternatives Analysis Update (10/26/22) WWMP Workshop (11/30/22)

Wastewater Master Plan Task 6.6 Conceptual Analysis of Alternatives for WRF

September 28, 2022

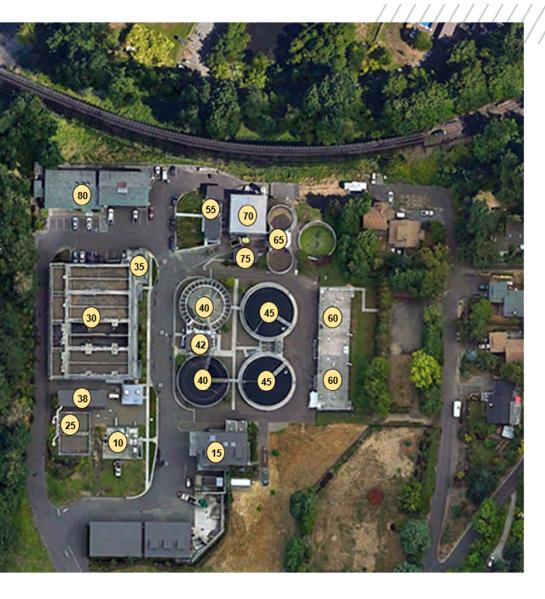
Agenda

- 1. Introductions
- 2. Recap of projected flows and loads and WRF capacity assessment

- **3.** Approach to alternatives development and evaluation for unit processes
- 4. Conceptual analysis for a range of alternatives for each unit process
- 5. Next steps

Note: Projects to address O&M considerations will be incorporated into the wastewater master plan but are not the focus of the meeting today.

Recap of projected flows and loads and WRF capacity assessment


Brown and Caldwell

Summary of Projected Flows and Loads

Parameter	2030 Design (2013 TM)	2022	2052
Flow (mgd)			
Average dry weather	3.5	2.2	2.5
Average annual	4.3	3.2	3.5
Max month dry weather	5.9	3.0	3.3
Max month wet weather	10.5	6.3	6.7
Peak hour	18.0	19.1	19.4
BOD (lb/d)			
Annual average	6,680	4,960	5,860
Max month dry weather	7,250	5,400	6,390
Max month wet weather	7,440	6,300	7,440
TSS (lb/d)			
Annual average	7,450	4,740	5,610
Max month dry weather	8,960	5,220	6,170
Max month wet weather	8,390	6,360	7,510

Brown and Caldwell

- 10 INFLUENT/PLANT DRAIN PUMP STATION
- 15 HEADWORKS
- 25 ODOR CONTROL
- 30 AERATION BASINS
- 35 MIXED LIQUOR FLOW SPLIT STRUCTURE
- 38 PROCESS AERATION BLOWERS
- 40 SECONDARY CLARIFIERS 1& 2
- RAS / WAS PUMPING AND AEROBIC DIGESTER BLOWERS 42
- 45 SECONDARY CLARIFIERS 3 & 4
- 55 DISINFECTION AND 3W SYSTEMS
- **60 INTERCHANGE BIOREACTORS**
- 65 AEROBIC DIGESTER FACILITY
- 70 SOLIDS HANDLING BUILDING
- 75 ELECTRICAL BUILDING
- 80 ADMIN BUILDING

Task 6.3 WRF Capacity Assessment

- Use calibrated process model to characterize current performance
- -Perform capacity assessment of each unit process
- -Identify capacity limited processes
- Draft WRF capacity assessment TM recently delivered to OLWS

WRF Capacity Constraints

 Digestion limited – Operate GBT

- Digestion limited Upgrade digester aeration system
- Clarifier limited Operate clarifiers at higher return rate
 - Aeration limited Add diffusers, improve DO controls

Brown and Caldwell

BC0

Slide 7

- **BCO** Recommend maintaining reference to the numbering as shown on the previous slide Brown and Caldwell, 2022-09-27T18:33:29.410
- AM0 0 Will add numbering from site graphic. Art Molseed, 2022-09-27T20:42:05.385

Task 6.6 Alternatives Development and Evaluation

- Initial conceptual analysis to identify range of alternatives followed by workshop
- More detailed analysis of up to two conceptual alternatives followed by workshop
- -Next steps for tertiary treatment

Brown and Caldwell

Evaluation Criteria

Brown and Caldwell

Evaluation Criteria

 Plan for future needs and opportunities (space planning, meet potential future regulatory discharge requirements, etc)

- 2. Consider operability, maintainability, constructability and reliability
- 3. Protect the environment including compliance with regulatory requirements for discharge to the Willamette River and minimize energy usage
- 4. Minimize capital and O&M costs

Evaluation Process

1. Present current system design criteria and compare to future design criteria

- 2. Identify key assumptions in the analyses for confirmation by OLWS
- **3.** Summarize pros and cons for analyses that include several preliminary alternatives
- 4. Use numerical scoring system from 1 to 3, ^{BCC}e next slide for explanation of scoring rationale.

BC0 Make sure that the basis for this scoring is stated. Who scored? Why is something a 3 vs 2 (are there scoring definitions?)

Brown and Caldwell, 2022-09-27T18:48:01.399

Scoring Rationale

- 1. Relative ranking of alternatives
- 2. Alternative that ranks more favorably (e.g., lowest cost, smallest footprint, easier to construct, etc) scores a 3.

- 3. Alternative that ranks least favorably (e.g., highest cost, largest footprint, most difficult to construct) scores a 1 or 2.
- 4. Alternatives that have approximately equal ranks have similar scores.
- 5. Criteria are not weight, but scores can be adjusted if this is desired.

Alternatives Analysis for Preliminary Treatment-Screening Removal and Processing

Brown and Caldwell

Existing Screenings Removal and Processing Equipment

INFLUENT MECAHNICAL SCREENS	
UNITS	2
TYPE	MULTI-RAKE BAR SCREEN
SIZE (WIDTH), INCHES	42
CAPACITY/UNIT, MGD	11.75
OPENING SIZE, IN	1/4
MOTOR, EA, HP	1
DRIVE TYPE	CS-R
NFLUENT BYPASS BAR SCREEN	
UNITS	1
TYPE	STATIC
SIZE (WIDTH), INCHES	42
CAPACITY, MGD	11.75
OPENING SIZE, IN	1/2
SCREENING CONVEYANCE	
UNITS	1
TYPE	SLUICE TROUGH
FLOW, GPM	80
SCREENING WASHER/COMPACTOR	
UNITS	2
TYPE	GRINDER/AUGER
CAPACITY, CF/HOUR	150
MOTOR, HP	10/3
DRIVE TYPE	CS-R/CS-R

Assumptions

- 1. Alternatives assume continued use of Headworks Building constructed in 2012
- Existing equipment includes fine (1/4-inch bar spacing) screens that have an estimated remaining useful life of 10 to 15 years but could be replaced sooner, if desired.

- 3. Existing fine screens still allow rags and other debris to pass through based on bar spacing and gaps around equipment frame
- Installation of even finer screens (3/16-inch) should trap more rags and debris but may require channel modifications

Proposed Scoring

Screenings Removal and Processing Equipment Alternatives

Criteria	Keep Existing Huber Multi-Rake and Adjust Channel Fit	Replace with Even Finer Screens (=1/4")</th <th>Replace with Perforated Plates</th>	Replace with Perforated Plates
Planning for future	3	3	3
Footprint and future expansion	3	3	3
Potential regulatory changes	3	3	3
O&M considerations			
Operability	3	2	2
Maintainability	3	3	3
Constructability	3	2	2
Reliability	3	3	3
Environmental	3	3	3
Cost and rate impacts			
Construction	3	1	1
• O&M (annual)	2	3	3
TOTAL	26	23	23

OLWS Scoring Input

Alternatives Analysis for Preliminary Treatment-Grit Removal and Processing

Existing Grit Removal and Processing Equipment

GRIT REMOVAL	
UNITS	2
TYPE	EUTEK HEAD CELL
CAPACITY/UNIT, MGD	11.75
<u>GRIT PUMPS</u>	
UNITS	3 (2 DUTY/1 STAND BY)
TYPE	RECESSED IMPELLER CENTRIFUGAL
MOTOR (EACH), HP	20
DRIVE TYPE	ADJUSTABLE
GRIT WASHING/DEWATERING	
UNITS	1
TYPE	EUTEK SLURRY CUP AND SNAIL
MOTOR (EACH), HP	1/3
DRIVE TYPE	ADJUSTABLE

Assumptions

- 1. Alternatives assume continued use of Headworks Building constructed in 2012
- 2. Existing equipment has an estimated remaining useful life of 10 to 15 years but access to Headcell units is difficult due to cover

- 3. Replacement of vortex system with aerated grit tanks would be costly and there are space limitations
- 4. Grit washing and dewatering equipment was selected for use with the Cannibal system, so system returns finer solids to liquid stream that can accumulate in the aeration basins

Proposed Scoring

Grit Removal Equipment Alternatives

Criteria	Keep Existing Equipment and Improve Cover Access to Headcell	Replace Headcell with Alternative Vortex System
Planning for future		
Footprint and future expansion	3	2
Potential regulatory changes	3	3
O&M considerations		
Maintainability	3	2
Constructability	3	1
Reliability	3	3
Environmental	3	3
Cost and rate impacts		
Construction	3	1
• 0&M	2	2
wn and Caldwell TOTAL	23	17

OLWS Scoring Input

Proposed Scoring

Grit Processing Equipment Alternatives

Criteria	Keep Existing Eutek Slurry Cup and Snail	Replace with Alternative Washing and Dewatering System	
Planning for future			
Footprint and future expansion	3	3	
Potential regulatory changes	3	3	
O&M considerations			
Operability	2	3	
Maintainability	3	3	
Constructability	3	2	
Reliability	3	1	
Environmental	3	3	
Cost and rate impacts			
Construction	3	2	
• 0&M	3	2	
rown and Caldwell TOTAL	26	22	

OLWS Scoring Input

Alternatives Analysis for Secondary Treatment

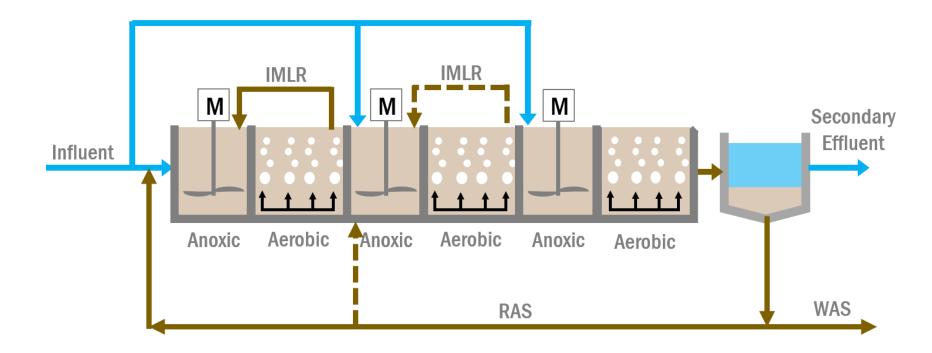
Existing Secondary Treatment Equipment

AERATION BASINS	
UNITS	4
VOLUME, EA, GAL	571,000
ANOXIC ZONE MIXERS	
UNITS	12 (6 IN EACH OF BASINS 1 AND 2)
TYPE	VERTICAL TURBINE
MOTOR, HP	1.5
AERATION DIFFUSERS	
TYPE	FINE BUBBLE (9" DISC)
NUMBER OF UNITS	296 (BASIN 1), 1145 (BASIN 2), 1145 (BASIN 3), 810 (BASIN 4)
MIXED LIQUOR RECYCLE PUMPS	
UNITS	3
TYPE	VERTICAL TURBINE, AXIAL FLOW
CAPACITY, EA, GPM	4400
MOTOR, HP	30

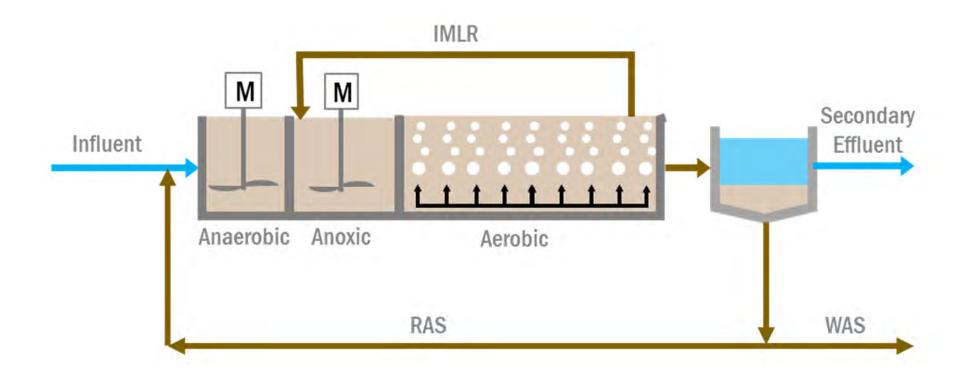
AERATION BLOWERS			
UNITS	3 (NOT INCLUDING BLOWER FOR DIGESTERS 1 AND 2)		
HIGH SPEED TURBO			
UNITS	2		
CAPACITY, EA, SCFM @ PSIG	1,824 @ 9.7		
HYBRID SCREW			
UNITs	1		
CAPACITY, EA, SCFM	1,800		
MOTOR, HP	100		

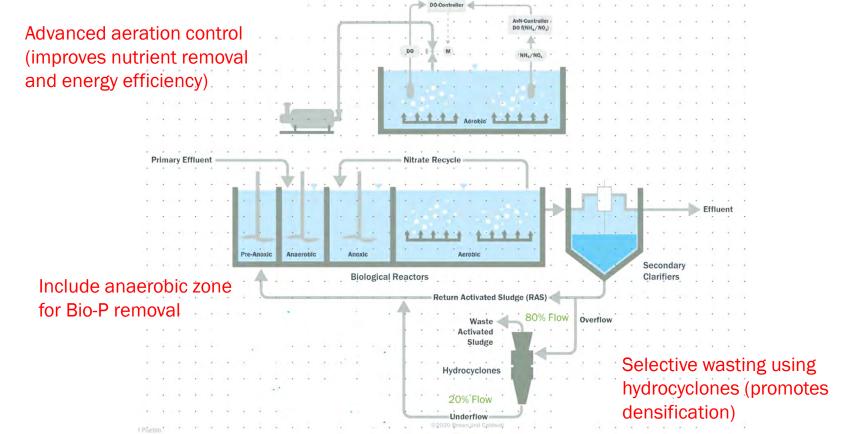
SECONDARY CLARIFIERS	
UNITS	4
DIAMETER, FT	70
SIDEWATER DEPTH, FT	18
RAS PUMPS (CLARIFIER 1 AND 2)	
UNITS	4
TYPE	NON-CLOG CENTRIFUGAL
CAPACITY, EA, GPM @ FT	700 @ 36
MOTOR, HP	10
RAS PUMPS (CLARIFIER 3 AND 4)	
UNITS	3
TYPE	NON-CLOG SUBMERSIBLE
CAPACITY, EA, GPM @ FT	1400 @ 12
MOTOR, HP	7.5

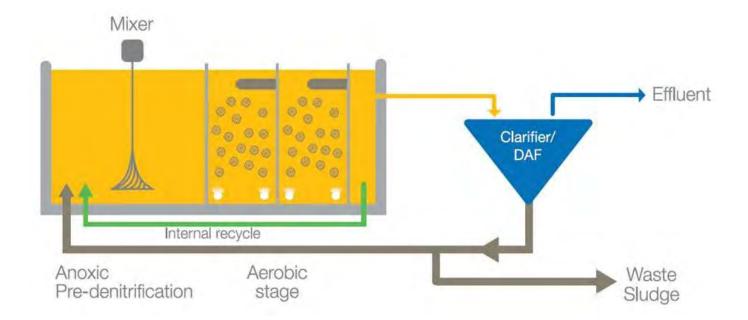
Assumptions

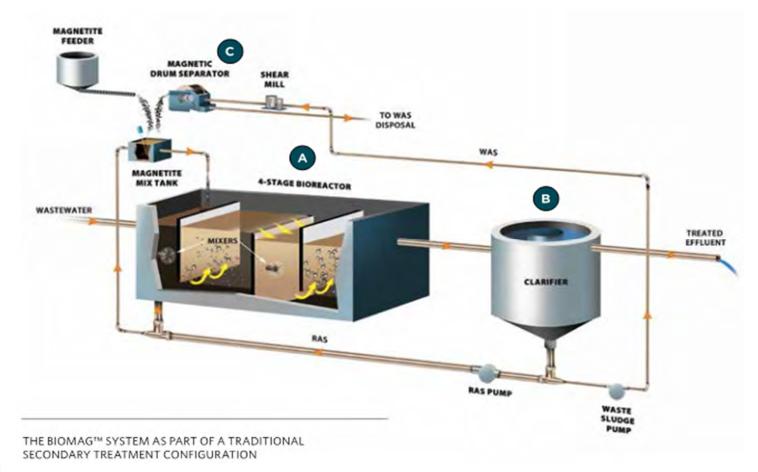

- Alternatives assume continued use of aeration basins
- 2. Current NPDES permit discharge limits will continue to apply in future (but with possible future ammonia and phosphorus limits)

Range of Alternatives – Secondary Treatment

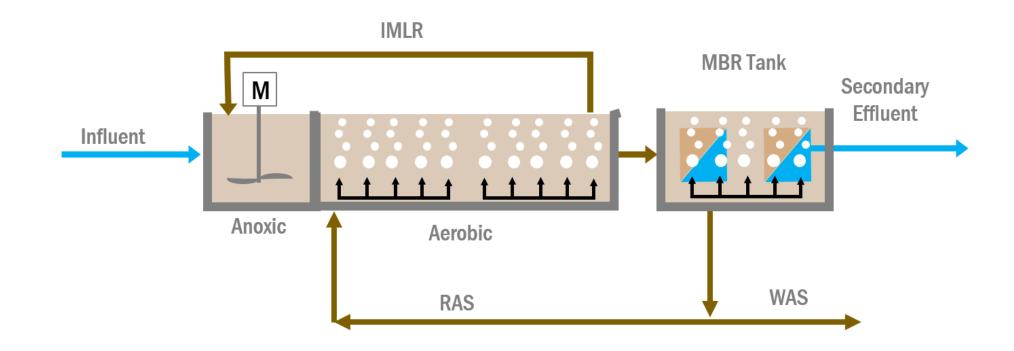

- Modified Ludzack-Ettinger (MLE) (current process)
- Anoxic Step-Feed
- Anaerobic-Anoxic-Oxic (A2O)
- Simultaneous nitrification denitrification (SND)
- Integrated Fixed Film Activated Sludge (IFAS)
- Ballasted sedimentation (BioMag®)
- Membrane bioreactor (MBR)


Anoxic Step-Feed


SND (may be used with hydrocylones as Ntensify[™])


Brown and Caldwell

IFAS


Ballasted Sedimentation (BioMag)

Brown and Caldwell

MBR

Secondary Treatment Alternatives – Pros & Cons

Alternatives	Pros	Cons
MLE (existing process)	 Operator familiarity Low cost for upgrade (new diffusers)	Limited denitrification capabilityRequire chemical addition for P removal
Anoxic step-feed	Reduce aeration requirements by increasing denitrification capability	 Current configuration limited to 2-point step-feed; limited flow split control Requires chemical addition for P removal
A20	Provides both N and P removal	Require changes in IMLR pipingLikely require more basins in service
SND	 Reduce aeration requirements by increasing denitrification capability Can include anaerobic zone for Bio-P removal Increase clarifier capacity (if hydrocyclones included) 	 Require more instrumentation/ controls If include anaerobic zone, likely require more basins in service
IFAS	Increase treatment capacity and nitrification capability	Require proprietary media/new diffusersHigh risk for filamentous bulking
Ballasted sedimentation (BioMag)	 Increase treatment capacity and nitrification capability Increase clarifier capacity 	 Require magnetite addition (for initial installation and continued replenishment) Require additional screening and equipment for magnetite recovery
MBR	Increase treatment capacity and nitrification capabilityEliminate need for tertiary filters	High cost for upgradeHigh operating costs

Proposed Scoring

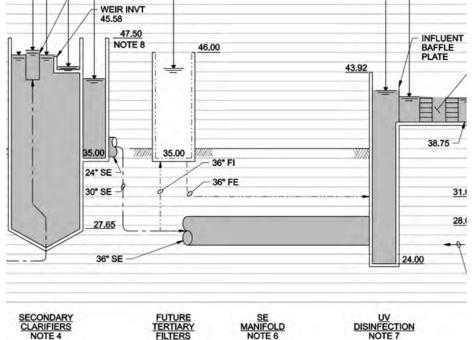
Secondary Treatment Alternatives - Screening₈₂

Criteria	MLE	Anoxic SF	A20	SND	IFAS	BioMag	MBR
Planning for future							
 Footprint and future expansion 	2	1	1	2	2	2	3
 Potential regulatory changes 	1	1	3	3	2	2	3
0&M considerations							
Operability	3	3	3	3	2	2	1
Maintainability	3	3	3	3	2	2	1
Constructability	3	3	2	2	2	2	1
Reliability	3	3	3	2	2	2	3
Environmental	2	2	3	3	2	2	1
Cost and rate impacts							
Construction	3	3	2	2	1	1	1
• 0&M	2	2	2	2	2	2	1
Brown and Caldwell TOTAL	22	21	22	22	17	17	15 40

- GU0 What does Environmental category entail? Is that energy use? Guest User, 2022-09-26T15:48:56.508
- GU1 Also feels like the MLE is worst on potential regulatory changes but those may be well beyond the horizon of our work (who knows?) so that category may not carry as much weight. I would just discuss that (it doesn't need to be on the slide) but I think the conclusion still makes sense that these 3 alts should be carried forward. Guest User, 2022-09-26T15:50:28.292
- BC2 So these are the screening options requiring a more robust alternatives analysis, or are we going to cost alternatives and integrate one into the CIP? Brown and Caldwell, 2022-09-27T18:50:11.230

OLWS Scoring Input

Alternatives Analysis for Tertiary Treatment

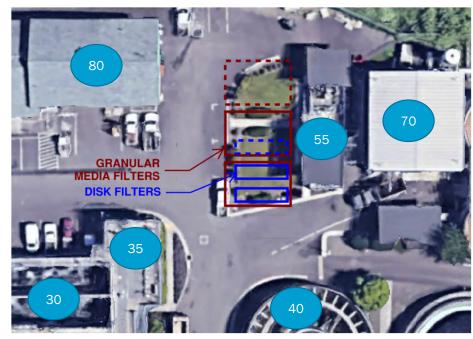

Background

Tertiary filtration has added benefits for future phosphorus removal and mitigation of settling challenges. Tertiary filtration anticipated to be needed in future when last master plan was prepared – space allocated onsite with piping connections

 2022 NPDES permit includes seasonal TSS limits that will require filtration for compliance (exceedance has already occurred)

Table A1: Combined Outfalls 001 and 001A Permit Limits						
Parameter	Units	Average Monthly (See note a.)	Average Weekly (See note a.)	Daily Maximum (See note a.)		
CPOD (May 1 October 21)	mg/L	10	15	-		
CBOD ₅ (May 1 – October 31)	lb/day	490	740	980		
_	% removal	85	-	-		
TSS (May 1 October 31)	mg/L	10	15	-		
TSS (May 1 – October 31)	lb/day	490	740	980		
	% removal	85	-	-		
BOD ₅ (November 1 – April 30)	mg/L	30	45	-		
	lb/day	2600	3900	5200		
	% removal	85	-	-		
	mg/L	30	45	-		
TSS (November 1 – April 30)	lb/day	2600	3900	5200		
	% removal	85	-	-		

Limited Space and Hydraulic Profile Available


From Phase 1B Record Drawings dated November 2010:

From OLWS June 2022 Online Community Conversation

5. ASSUMES FUTURE CLOTH MEDIA FILTERS WITH APPROXIMATELY 2 FEET OF HEADLOSS. GRANULAR FILTERS (WITH APPROXIMATELY 7-10 FEET OF HEADLOSS) WOULD REQUIRE INTERMEDIATE PUMPING. FILTER EFFLUENT FLOWS THROUGH UV DISINFECTION. MAXIMUM FUTURE FILTER CAPACITY ASSUMED TO BE 8.6 MGD.

Comparison of Site Footprint – Disk Filters and Granular Media Filters

Alternatives may be limited based on available space. Could defer third train (shown as dashed line) depending on design flows decided upon for tertiary filtration. Industry standard sizing criteria:

- Design peak hourly flow (19.4 mgd for OLWS)
- 5 gpm / SF of filter area

Requires three trains as shown at left

Other design criteria:

• Additional storage for 3W (non-potable water) system

• Maintain parking if possible – limited available onsite

Will it fit? – Tertiary Filtration Alternatives

Alternatives	Will it fit onsite?	Will it fit in the hydraulic profile? (Or will additional pumping be necessary?)
Disk filters		
Downflow (granular media) filters	?	×
Membrane filters	?	×
Upflow filters	?	×
Iron-coated sand filter (BluePro®)	×	×
Ballasted / chemical clarifiers	×	?
Compressible media filters	?	×

Proposed Scoring

Tertiary Treatment Alternatives - Screening

Criteria	Disk Filters	Granular Media Filters		Membrane Filters	Iron-coated sand filter	Ballasted / chemical	Compress- ible media
	TILEIS	Downflow	Upflow		(BluePro®)	clarifiers	filters
Planning for future							
 Footprint and future expansion 	3	2	2	2	1	1	2
 Potential regulatory changes 	2	3	3	3	3	1	2
O&M considerations							
Operability	3	2	2	2	2	1	1
Maintainability	3	2	2	1	1	2	2
Constructability	3	2	2	2	1	1	2
Reliability	3	2	2	1	1	1	2
Environmental	3	2	2	1	2	2	2
Cost and rate impacts							
Construction	3	2	2	1	1	1	2
• 0&M	3	2	2	1	1	2	2
TOTAL	26	19	19	14	13	12	17

OLWS Scoring Input

Potential Approaches – Tertiary Filtration Alternatives Evaluation

Approach No.	Description	Summary
1	Evaluate Disk filters only	 Solicit quotes from 3-4 manufacturers Compare layouts, anticipated O&M costs, anticipated capital costs Select basis for design configuration (flows outside-in or inside-out)
2	Evaluate Disk filters and Granular Media Filters (with intermediate pumping)	 Solicit quotes from one manufacturer of each Compare layouts, anticipated O&M costs, anticipated capital costs Select disk filters or upflow filters as basis for design. Additional evaluation needed for preliminary design to confirm disk filter configuration (outside-in or inside-out)

Alternatives Analysis for Disinfection

Existing UV Disinfection Equipment

ULTRAVIOLET DISINFECTION	
TYPE	LOW PRESSURE, HIGH INTENSITY
NUMBER OF CHANNELS	2
CAPACITY, MGD	22
CHANNEL WIDTH (EACH), INCHES	28
NUMBER OF LAMPS	224
NUMBER OF BANKS	4
NUMBER OF LAMPS/BANKS	56
POWER (EACH CHANNEL), KW	28
UV DOSAGE	35,000 mW-s/cm^2
UV TRANSMITTANCE	65%

Assumptions

1. Alternatives assume continued use of UV Disinfection Building constructed in 2012

- 2. Existing equipment has an estimated remaining useful life of 10 to 15 years
- 3. There are issues with upstream and downstream gate actuators, flow distribution between channels, and bulb retrieval

Proposed Scoring

Disinfection Alternatives


Criteria	Keep Existing Trojan UV System and Make Gate and Actuator Improvements	Replace with Paracetic Acid	Replace with Alternative UV System
Planning for future			
Footprint and future expansion	3	2	2
Potential regulatory changes	3	1	3
O&M considerations			
Operability	3	2	3
Maintainability	3	2	2
Constructability	3	2	2
Reliability	3	2	3
Environmental	3	2	3
Cost and rate impacts			
Construction	3	1	1
• 0&M	3	2	3
and Caldwell TOTAL	27	16	21

OLWS Scoring Input

Solids End Use Considerations

Existing Biosolids Management

LAND APPLICATION OF CLASS B BIOSOLIDS	
PROCESS TO SIGNIFICANTLY REDUCE PATHOGENS (PSRP)	HRT OF 40 DAYS AT 20 DEG. C BASED UPON CURRENT OPERATION
VOLATILE SOLIDS REDUCTION (VSR)	AT LEAST 38%
STORAGE	STORED ONSITE IN A COVERED SHED (HAS TO BE MOVED)
HAULING	CONTRACT HAULER PICKS UP 2-3 TIMES PER WEEK
DISPOSAL	LAND APPLICATION AT BENEFICIAL REUSE SITE

Assumptions

 Alternatives assume aerobic digestion will be continued and operated such that the minimum requirements for producing Class B biosolids can be met

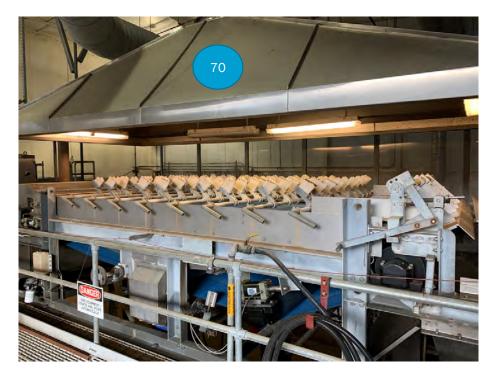
2. Air drying beds are not being considered due to land required, proximity to neighbors and odor concerns, and limited months available to air-dry

Biosolids End Use Alternatives – Pros & Cons

Alternatives	Advantages	Disadvantages
Continue to produce/store Class B biosolids in onsite storage shed with contract hauling to beneficial reuse land application sites	Operator familiarityNo upgrade costs	 High O&M costs to move biosolids from Solids Bldg. to storage shed Potential for odors, especially during warmer months Potential interruption to hauling due to inclement weather/road closures
New drive under storage hopper with contract hauling of Class B biosolids to beneficial reuse land application sites	 Less maintenance for operators Decreased potential for odors due to covered storage hopper 	 High cost for new Solids Bldg. and storage hopper Potential interruption to hauling due to inclement weather/road closures
Thermal drying solids to produce Class A biosolids	 Reduced hauling with higher cake solids percent Possible revenue selling bulk or bagged solids to customers No restrictions for land application, could possibly land apply more locally 	 High cost and energy usage for thermal dryer High O&M costs to operate dryer Rigorous testing requirements

Proposed Scoring

Biosolids Alternatives


Criteria	Continue to produce/store Class B biosolids in onsite storage shed with contract hauling to land application	New drive under storage hopper with contract hauling of Class B biosolids to land application	Thermal drying to produce Class A biosolids
Planning for future			
Footprint and future expansion	3	2	2
Potential regulatory changes	3	3	2
O&M considerations			
Operability	2	3	2
Maintainability	3	3	1
Constructability	3	2	2
Reliability	3	3	2
Environmental	2	3	3
Cost and rate impacts			
Construction	3	1	2
• 0&M	2	3	1
and Caldwell TOTAL	24	23	17

OLWS Scoring Input

Alternatives Analysis for Solids Thickening

Existing Solids Thickening Equipment

Thickening				
Parameter	Value			
GBT				
Units	1			
Туре	GBT			
Width (meter)	2.2			
TWAS Pumps				
Units	2			
Туре	Rotary lobe			
Capacity (each), gpm @ psi TDH	160 @ 25			
Power (each), hp	7.5			
Drive type	Constant speed			

Assumptions

- Although GBT is over 20 years old, it hasn't been operated since 2012, so assume it has an estimated remaining useful life of 7.5 to 15 years
- 2. Dissolved Air Flotation (DAF) was utilized previously at the facility with limited success and is not being considered further

Proposed Scoring

Thickening Alternatives

Criteria	GBTs	Centrifuges	Rotary Drum Thickeners
Planning for future			
Footprint and future expansion	2	2	2
Potential regulatory changes	3	3	3
O&M considerations			
Operability	3	1	3
Maintainability	3	1	2
Constructability	2	2	3
Reliability	3	3	3
Environmental	2	3	3
Cost and rate impacts			
Construction	3	1	3
• 0&M	2	1	3
and Caldwell	23	17	25

OLWS Scoring Input

Alternatives Analysis for Solids Stabilization

Existing Aerobic Digesters

Aerobic Digesters 1 and 2			
Parameter	Value		
Units	2		
Interior length x width (each), ft	40 X 80		
Sidewater depth, ft	18		
Number of diffusers (each)	120		
Mixers, number (each)	2		
Mixers, type	Vertical turbine		
Mixer power (each), hp	1		
Floating decanter, number (each)	1		

Aerobic Digesters 3 and 4		
Parameter	Value	
Units	2	
Diameter (each), ft	35	
Sidewater depth, ft	1 @ 25.8, 1 @ 26.3	
Volume (each), gallons	1 @ 185,400, 1 @ 189,000	

Assumptions

- 1. Will continue to operate with aerobic digestion
- 2. Waste activated sludge is thickened to 2% maximum to maintain hydraulic residence time in the digesters
- 3. Increased aeration capacity will likely be necessary and included with all options

Proposed Scoring

Digestion Alternatives

Criteria	Replace Digesters 3 and 4 in current location and refurbish Digesters 1 and 2 and make necessary aeration and pump improvements	Construct two new digesters east of Digesters 1 and 2 and utilize Digester 3 and 4 area for new SHB	Replace Digesters 3 and 4 to the east and refurbish Digesters 1 and 2 and make necessary aeration and pump improvements
Planning for future			
Footprint and future expansion	3	1	2
Potential regulatory changes	3	3	3
O&M considerations			
Operability	2	3	3
Maintainability	2	3	3
Constructability	3	1	1
Reliability	3	3	3
Environmental	3	2	3
Cost and rate impacts			
Construction	3	1	1
• 0&M	2	3	3
nd Caldwell TOTAL	24	20	22

Brown

OLWS Scoring Input

Alternatives Analysis for Solids Dewatering

Existing Solids Dewatering Equipment

Table 38. Dewatering		
Parameter	Value	
BFP1		
Units	1	
Width (meter)	2.0	
Cake solids, percent dry weight	15	
Solids capture, percent	90	
BFP2		
Units	1	
Width (meter)	1.5	
Cake solids, percent dry weight	15	
Solids capture, percent	90	

Assumptions

- Existing BFP1 was partially rebuilt in 2021 and is in good condition with an estimated remaining useful life of 10 to 15 years
- 2. BFP2, which was recently installed for redundancy, was refurbished and has a remaining useful life of 5 to 10 years and can be installed if needed until new facilities are constructed

Proposed Scoring

Dewatering Alternatives

Criteria	Replace BFP in kind and add 2nd unit for redundancy	Replace BFP with two centrifuge units	Replace BFP with two screw press units
Planning for future			
Footprint and future expansion	2	2	2
Potential regulatory changes	3	3	3
O&M considerations			
Operability	3	2	2
Maintainability	3	2	2
Constructability	2	2	3
Reliability	3	3	1
Environmental	3	3	2
Cost and rate impacts			
Construction	3	1	3
• 0&M	2	1	2
and Caldwell TOTAL	24	19	20

OLWS Scoring Input

• • • • • • • •

Open Discussion

• • • • • • •

What comes next?

Next Steps

1. Week of Oct 3 or 17: Follow-up on solids stream alternatives

- 2. October 26 meeting: Present more detailed information and costs for
 - A. Secondary treatment alternatives
 - B. Recommended tertiary treatment alternative

Thank you!

Wastewater Master Plan Wastewater Treatment Plant Alternatives Analysis Update

October 26, 2022

Agenda

- **1**. Tertiary Treatment Alternatives Analysis
- 2. Solids Handling Alternatives Development
- 3. Secondary Treatment Alternatives Development
- 4. Next steps

Alternatives Analysis for Tertiary Treatment

Objectives

Brown and Caldwell

- Review tertiary filter design criteria and equipment options
- 2. Discuss conceptual layout and associated costs
- 3. Determine next steps

Evaluation and Design Criteria

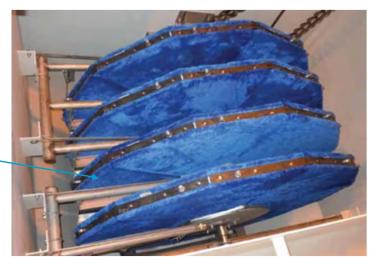
Criteria	Description		
WWTP (2052) flows	 3 parallel filtration units to handle peak hour flow (no standby) Annual average flow of 3.5 mgd (1 train in service) Max month flow of 6.7 mgd (1 train in service) Peak hour flow of 19.4 mgd (3 trains in service) 		
Filter hydraulic loading	 5 gpm¹ per SF of submerged filter area 		
Water quality	 Secondary effluent TSS = 35 mg/L Tertiary filter effluent TSS < 5 mg/L 		
Ancillary equipment provided by manufacturer	 Dedicated local control panels with ability to monitor equipment status via SCADA Backwash pumps 		
Other Considerations	 Additional storage for 3W (non-potable water) system Maintain parking if possible Potential chemical addition to meet future phosphorous limits (chemicals can l added at both secondary and tertiary treatment) 		

¹ Hydraulic loading should be 5 gpm/SF or less of submerged filter area to meet industry guideline for filter efficacy

PT0 Other considerations may also include potential chemical addition to meet future P limit (chemicals may be added at both secondary and tertiary treatment.) Patricia Tam, 2022-10-24T05:37:12.843

AM0 0 @Patricia Tam added Art Molseed, 2022-10-25T23:23:15.311

Alternatives

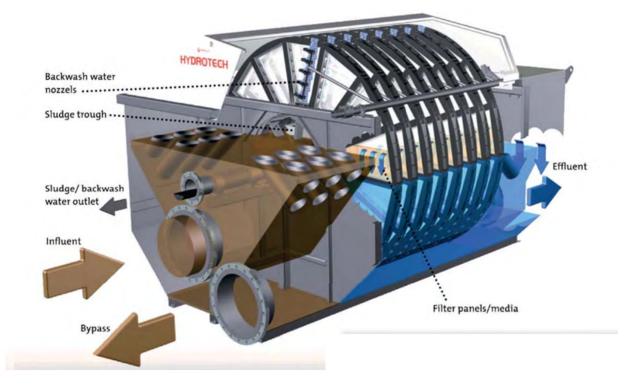

- Veolia woven fabric media
- Aqua Aerobic cloth media
- Nuove Energie SST mesh media

Cloth media -

Woven fabric media

Stainless steel mesh media

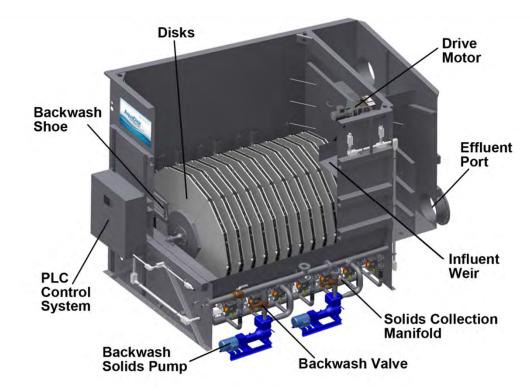
<u>Veolia</u>


Equipment Cost	\$1,423,000
Pore Size	10 micron
HLR at ADF/PHF (gpm/sf)	2.56/4.73
Total No. of Disks	66
Submerged Filter Area	2,847
Max Headloss (ft)	2.18
Tank Material	304 SST
Height (ft)	8.2
Wet Weight (lbs) per Unit	40,785
Drive Motor HP	1.5
Backwash pump HP	20
Power Consumption (kWh/d)	134
Backwash Flow (% of INF)	1.6%

Brown and Caldwell

1. Meets all design criteria, including filter HLR

- 2. Middle equipment cost
- 3. Highest power consumption



Equipment Cost	\$1,569,720
Pore Size	10 micron
HLR at ADF/PHF (gpm/sf)	3.23/ <mark>5.96</mark>
Total No. of Disks	42
Submerged Filter Area	2,260
Max Headloss (ft)	3.06
Tank Material	Painted Steel
Height (ft)	12
Wet Weight (lbs) per Unit	75,000
Drive Motor HP	2
Backwash pump HP	2
Power Consumption (kWh/d)	114
Backwash Flow (% of INF)	1-3%

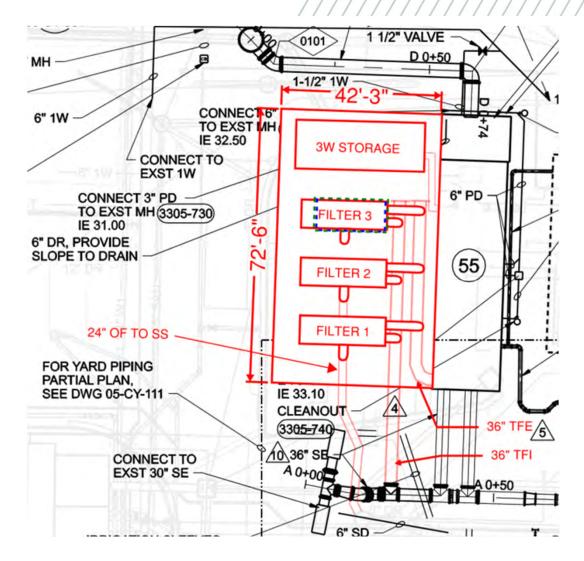
1. Slightly above HLR criterion at peak flows

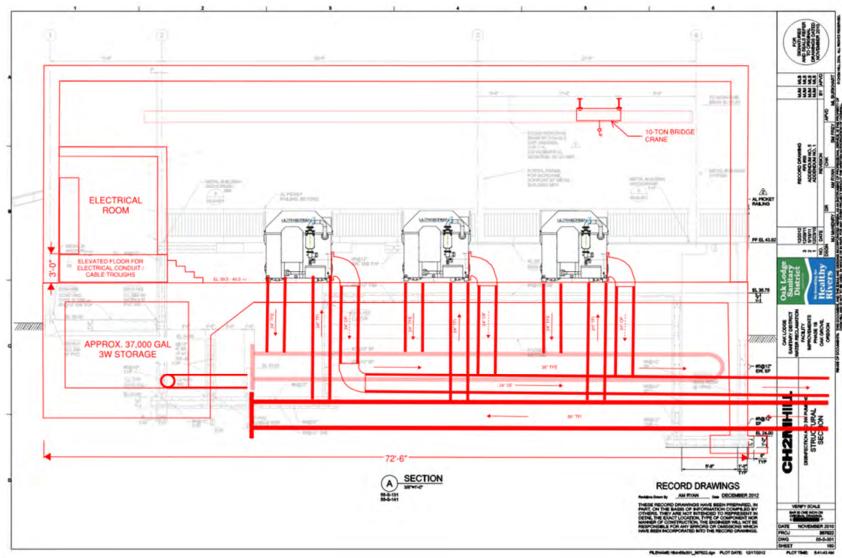
- 2. Highest equipment cost
- 3. Middle power consumption

PT1

Equipment Cost	\$1,132,401	KPO
Pore Size	20 micron	
HLR at ADF/PHF (gpm/sf)	5.5/10.2	
Total Filter Area (sf)	1324	
Submerged Filter Area (sf)	1321	
Max Headloss (ft)	2.20	
Tank Material	304 SST	
Height (ft)	7.6	
Wet Weight (lbs) per Unit	45,100	
Drive Motor HP	3	
Backwash pump HP	15	
Power Consumption (kWh/d)	69	
Backwash Flow (% of INF)	1.5%	

- 1. Does not meet HLR design criteria, furthest off
 - More conservative offering meets criterion but does not fit in available footprint.
 - Manufacturer's statement that they're an ultrascreen rather than a disk filter
- 2. Lowest equipment cost
- 3. Lowest power consumption




KPO Is number of discs still unkown? Katie Pollock, 2022-10-20T23:58:04.064

PT1 Do they have very many existing installations (for municipal WW)? I haven't heard of this company. Also, an an ultrascreen, can they meet the effluent quality requirement? What about potential future P limit (if chemical is added for P removal, possibly at both the secondary clarifier and tertiary filters)? Patricia Tam, 2022-10-24T05:32:25.261

Footprint Comparison

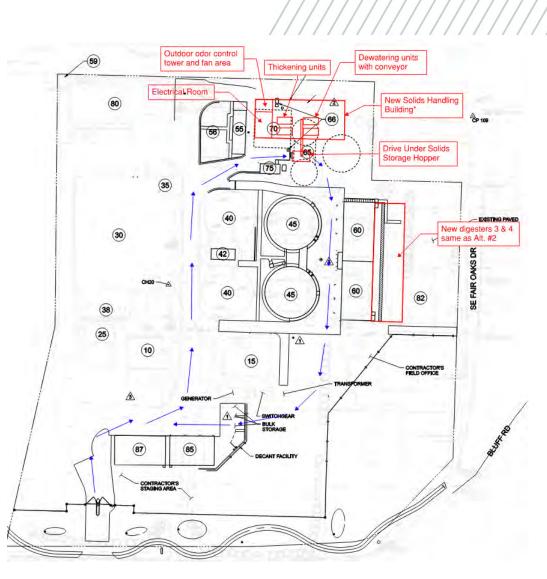
- Similar footprint sizes
 - Veolia
 - Aqua Aerobic
 - Nuove Energie (largest) used as basis for conceptual layout – still fits

Cost Estimate

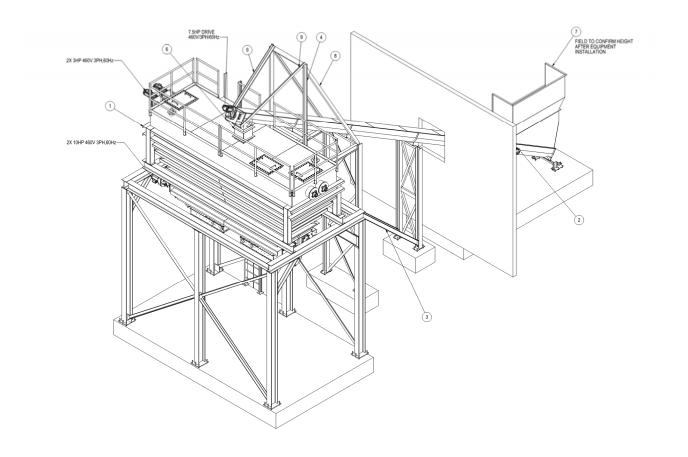
Opinion of Probable Construction Costs

Phase	Description	Gross Total Cost with Markups
01 TOTAL ESTIMATE		
01 Tertiary Filtration, 2 filters with room for 1	future	
01 Site Work		450,584
02 Structural / Architectural		2,009,851
03 Mechanical		2,477,091
04 Site Piping		1,460,837
05 Electrical and Instrumentation Allowand	e	2,196,407
01 Tertiary Filtration, 2 filters	with room for 1 future	8,594,769
02 Tertiary Filtration, add 3rd (future) filter		
03 Mechanical		1,228,929
05 Electrical and Instrumentation Allowand	e	405,933
02 Tertiary Filtration, add 3rd	(future) filter	1,634,861
01 TOTAL ESTIMATE		10,229,630

TAIO

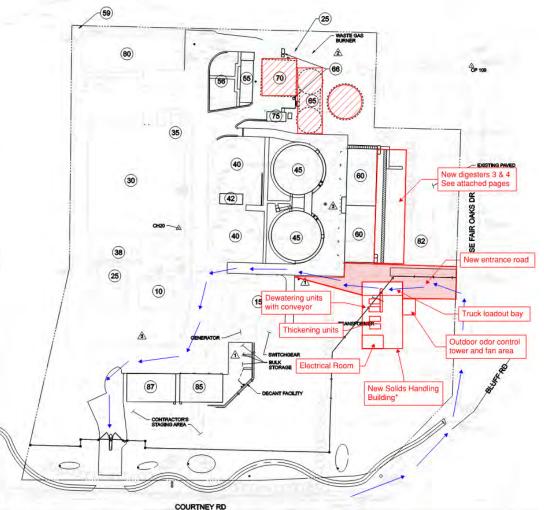

Alternatives Analysis for Solids Treatment

Evaluation and Design Criteria


- Design year: 2052, Startup year = ~2037
- Design for HRT in digesters of 40 days 20 deg. C
 - Will be dependent upon the secondary treatment option chosen
- Assume 4 digesters with 3 being in operation and one redundant unit

Alternative 1

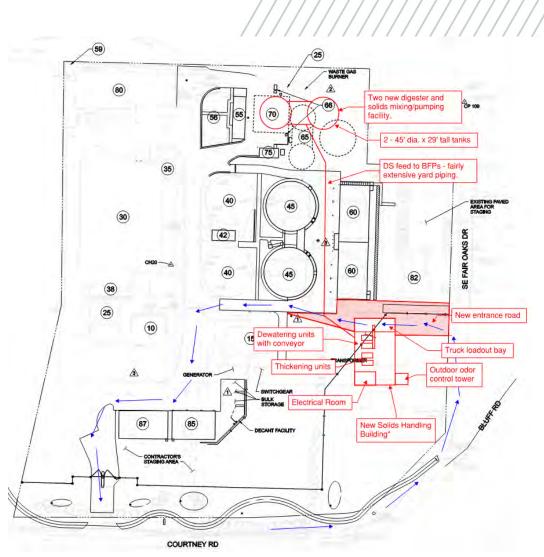
- New Digesters 3 & 4 east of 1 & 2 and new Solids Handling Building in existing location.
- New building would include redundant thickening and dewatering units, TWAS and DS pumps, polymer feed units and storage, electrical room, and other appurtenant equipment.
- Odor control fan and scrubber would be located outside the building similar to existing.
- There would be a drive through sludge storage hopper and truck access as shown with blue arrows.
- Temporary dewatering, and possibly thickening facilities would be needed during construction of the new building after Digesters 3 & 4 are constructed.



Drive Through Storage Hopper

Alternative 2

- New Digesters 3 & 4 east of 1 & 2 and new Solids Handling Building located south of digesters.
- New building would include redundant thickening and dewatering units, TWAS and DS pumps, polymer feed units and storage, electrical room, and other appurtenant equipment.
- Odor control fan and scrubber would be located outside the building.
- There would be a drive through truck bay connected to the building with a new entrance road on the east side. Truck traffic would be as shown in blue arrows.

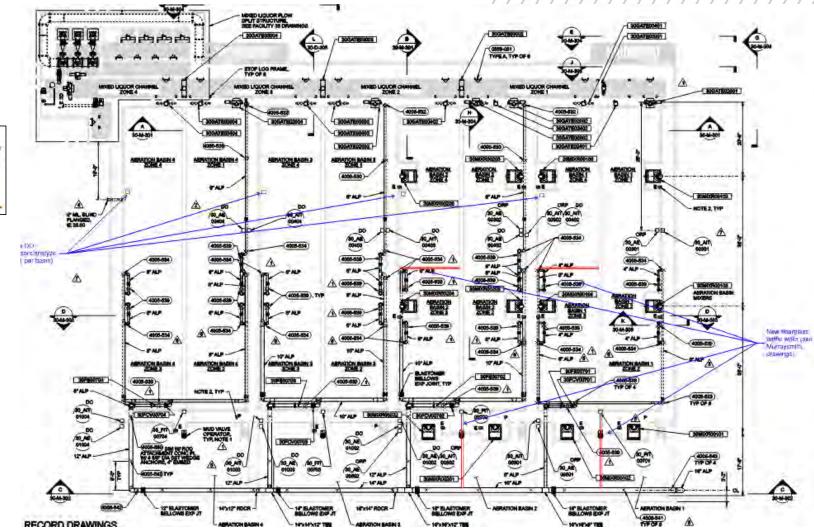

Alternative 2 Preliminary Cost Estimate

\$29,400,00 -50% to +100% for Class 5 \$14,700,000 to \$58,800,000

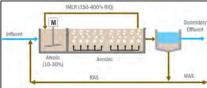
Brown and Caldwell

Alternative 3

- New Digesters 3 & 4 would be constructed in the location of the existing Solids Handling Building and digesters. Building between digesters would house digester mixing pumps and DS pumps.
- New Solids Handling Building would be constructed south of Digesters 1 and 2 and include redundant thickening and dewatering units, TWAS pumps, polymer feed units and storage, electrical room, and other appurtenant equipment.
- Odor control fan and scrubber would be located outside the building.
- There would be a drive through truck bay connected to the building with a new entrance road on the east side. Truck traffic would be as shown in blue arrows.

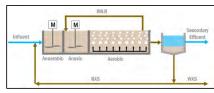

Solids Treatment Alternatives Comparison

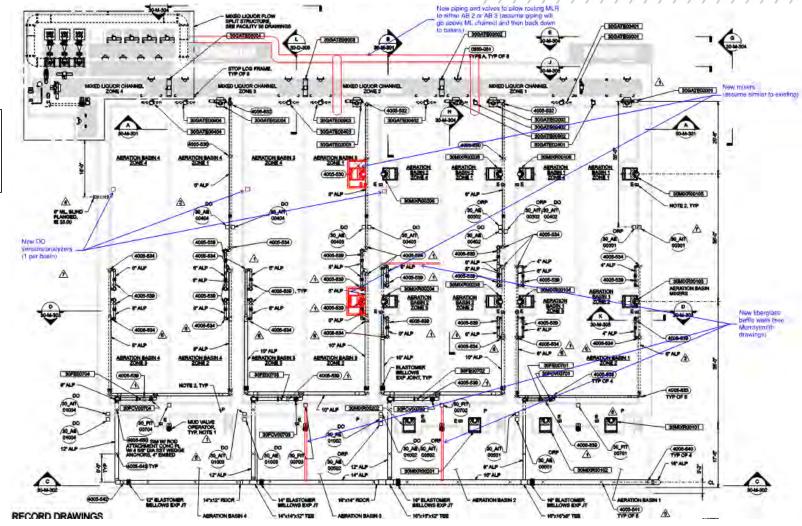
Alternative	Advantages	Disadvantages
Alternative 1	• Would make use of the existing plant site and not require expansion into the current "park" area.	 Truck access for solids pickup could be challenging at the back of the plant. Temporary dewatering, and possibly thickening, facilities would be needed for many months during demo of the existing building and construction of a new building.
Alternative 2	 Truck access to the solids loading bay as part of the new building would seemingly be easier. 	• Expansion into the "park" area south of Digesters 1 and 2 may require permitting and community acceptance.
Alternative 3	 Truck access to the solids loading bay as part of the new building would seemingly be easier. 	 Expansion into the "park" area south of Digesters 1 and 2may require permitting and community acceptance Extensive yard piping through a likely congested area to pump digested sludge from new Digesters 3 and 4 to the new building.

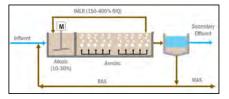

Alternatives Analysis for Secondary Treatment

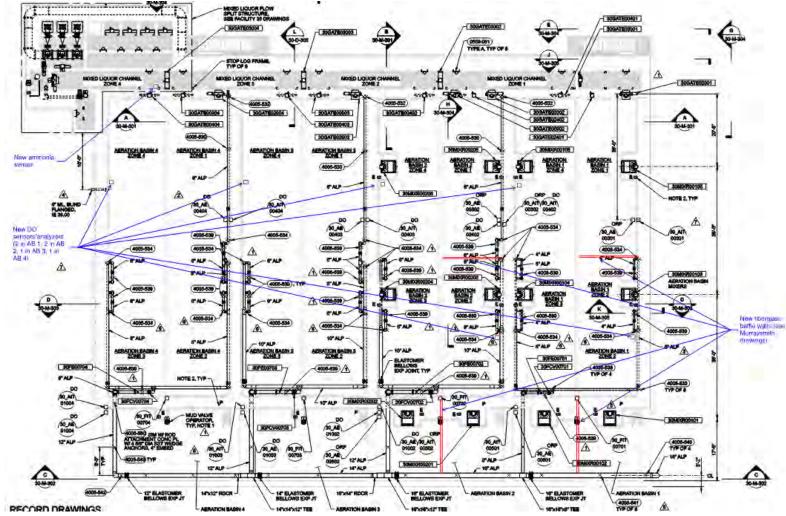
Evaluation and Design Criteria

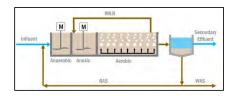
- Design year: 2052, Startup year = 2032
- Existing aeration basins (no expansion or new basins)
- Assumed ammonia limits: 0.5 mg/L (dry weather), 2 mg/L (wet weather)
- Assumed TP limit: 1 to 2 mg/L

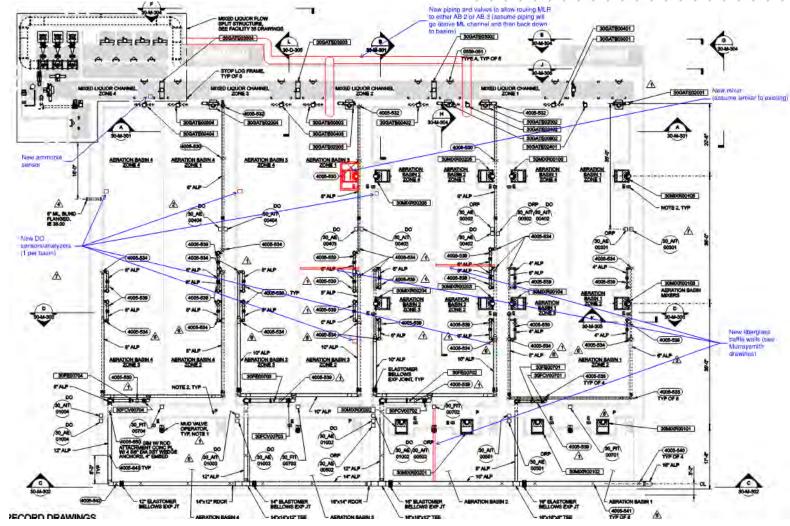



MLE


Brown and Caldwell







Secondary System Alternatives Comparison

Alternatives	MLE	A20	SND	SND/A20
AB modifications	 New baffle walls, DO sensors, air flow meters/control valves, diffusers 	 New baffle walls, DO sensors, air flow meters/control valves, diffusers, mixers Re-route IMLR New IMLR pumps 	 New baffle walls, DO sensors, NH3 sensor, air flow meters/ control valves, diffusers 	 New baffle walls, DO sensors, NH3 sensor, air flow meters/ control valves, diffusers, mixers Re-route IMLR New IMLR pumps
Chemical addition	 Alum for P removal Caustic for pH control (max month) 	 Alum for P removal (if limit < 2 mg/L) Caustic for pH control (max month) 	Alum for P removal	 Alum for P removal (if limit < 1 mg/L)
AB requirements	 2 (dry weather) 3 (wet weather)	 3 (dry weather) 4 (wet weather)	 2 (dry weather) 3 (wet weather)	 3 (dry weather) 4 (wet weather)
Secondary clarifier requirements	 3 (dry weather) 4 (wet weather)	 3 (dry weather) 4 (wet weather) (≈capacity at max mo) 	 3 (dry weather) 4 (wet weather)	 3 (dry weather) 4 (wet weather) (≈capacity at max mo)
Effluent quality	 Meets NH3-N criterion PO4-P ≥ 2 mg/L 	 Meets NH3-N criterion PO4-P ≤ 2.5 mg/L 	 Meets NH3-N criterion PO4-P ≥ 2 mg/L 	Meets NH3-N criterionMeets TP criterion
Average air flow	• 2300 - 2500 scfm	• 2300 - 2600 scfm	• 1800 - 2000 scfm	• 1900 - 2100 scfm

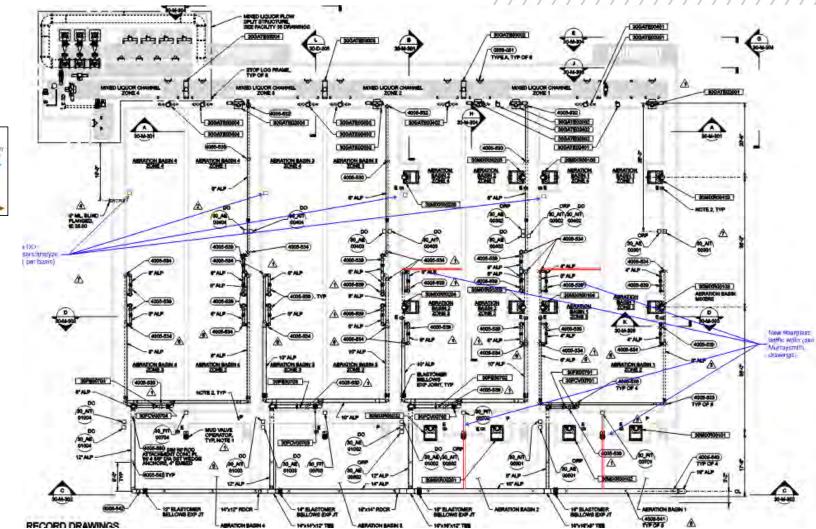
Brown and Caldwell

Thank You

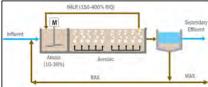
Wastewater Master Plan Wastewater Treatment Plant Draft Facility Plan Workshop

November 30, 2022

Agenda

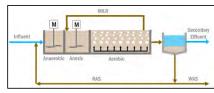

1. Secondary Treatment Alternatives Update

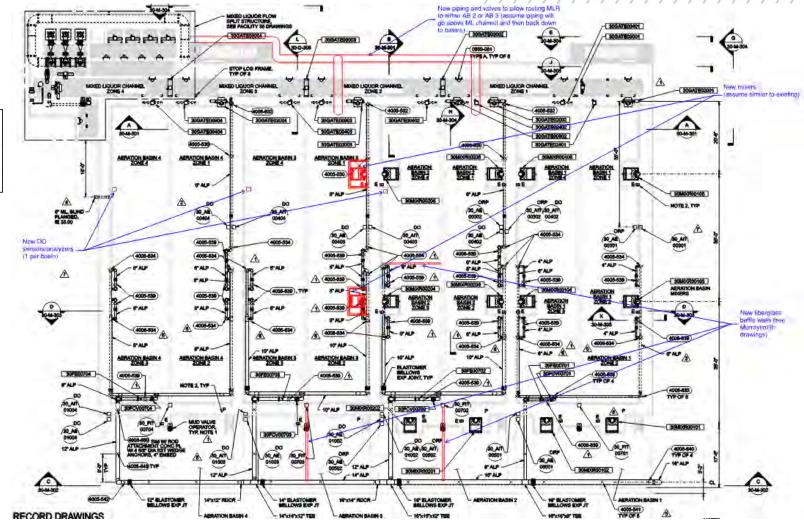
- 2. Solids Handling Alternatives Update
- **3.** CIP Priorities and Costs


Secondary Treatment Alternatives Analysis Update

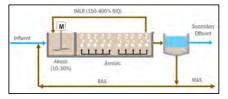
Evaluation and Design Criteria

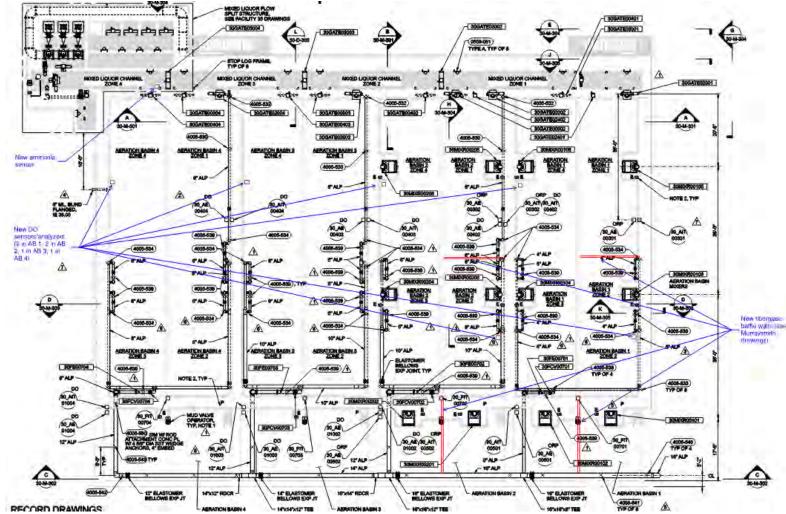
- Design year: 2052, Startup year = 2032
- Existing aeration basins (no expansion or new basins)
- Assumed ammonia limits: 0.5 mg/L (dry weather), 2 mg/L (wet weather)
- Assumed TP limit: 1 to 2 mg/L



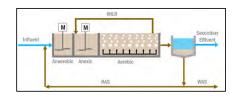

MLE

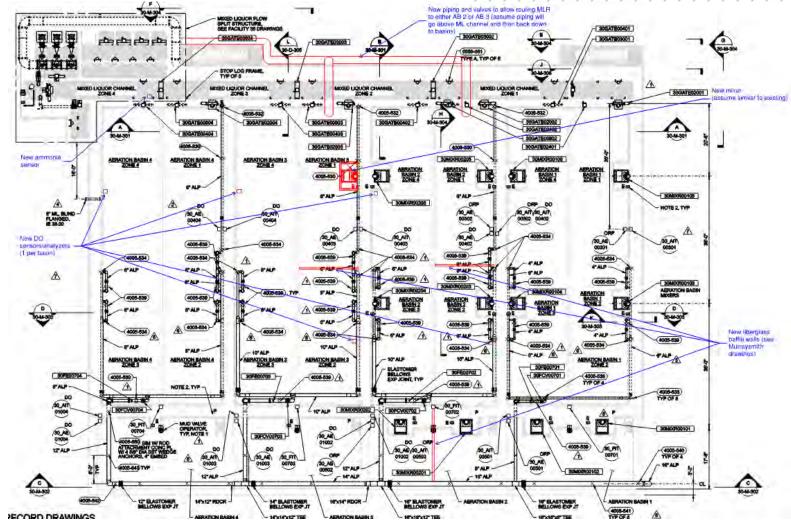
Brown and Caldwell





6





7

SND/A20

Secondary System Alternatives Comparison

Alternatives	MLE	A20	SND	SND/A20
AB modifications	 New baffle walls, DO sensors, air flow meters/control valves, diffusers 	 New baffle walls, DO sensors, air flow meters/control valves, diffusers, mixers Re-route IMLR New IMLR pumps 	 New baffle walls, DO sensors, NH3 sensor, air flow meters/ control valves, diffusers 	 New baffle walls, DO sensors, NH3 sensor, air flow meters/ control valves, diffusers, mixers Re-route IMLR New IMLR pumps
Chemical addition	 Alum for P removal Caustic for pH control (max month) 	 Alum for P removal (if limit < 2 mg/L) Caustic for pH control (max month) 	Alum for P removal	 Alum for P removal (if limit < 1 mg/L)
AB requirements	 2 (dry weather) 3 (wet weather)	 3 (dry weather) 4 (wet weather)	2 (dry weather)3 (wet weather)	 3 (dry weather) 4 (wet weather)
Secondary clarifier requirements	 3 (dry weather) 4 (wet weather)	 3 (dry weather) 4 (wet weather) (≈capacity at max mo) 	 3 (dry weather) 4 (wet weather)	 3 (dry weather) 4 (wet weather) (≈capacity at max mo)
Effluent quality	 Meets NH3-N criterion PO4-P ≥ 2 mg/L 	 Meets NH3-N criterion PO4-P ≤ 2.5 mg/L 	 Meets NH3-N criterion PO4-P ≥ 2 mg/L 	Meets NH3-N criterionMeets TP criterion
Average air flow	• 2300 - 2500 scfm	• 2300 - 2600 scfm	• 1800 - 2000 scfm	• 1900 - 2100 scfm

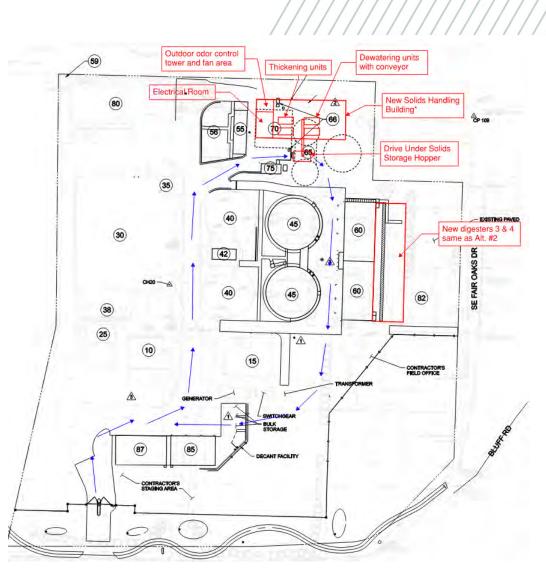
Brown and Caldwell

Secondary System Alternatives Cost Comparison

Alternatives	MLE	A20	SND	SND/A20
Construction Cost ^a (2022\$)	\$1,116,000	\$2,212,000	\$1,047,000	\$1,903.000
Annual Operating Costs ^b (2022\$, for 2032)	Power: \$32,000 Labor: \$200,000 <u>Chemical: \$129,000</u> Total: \$361,000	Power: \$33,000 Labor: \$200,000 <u>Chemical: \$34,000</u> Total: \$267,000	Power: \$26,000 Labor: \$200,000 <u>Chemical: \$120,000</u> Total: \$346,000	Power: \$27,000 Labor: \$133,000 <u>Chemical: -</u> Total: \$160,000
NPV (2022\$)°	\$12,097,000	\$10,668,000	\$11,567,000	\$7,078,000

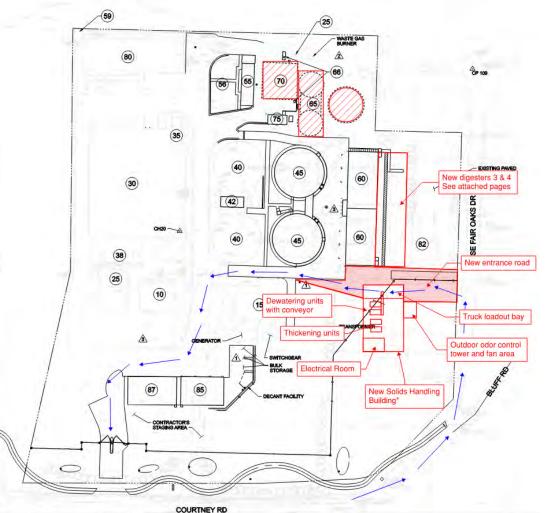
Notes:

- a. Class 5 estimate, with a range from -50% to +100%, unescalated, undiscounted.
- b. Operating costs include power costs for aeration, additional labor costs, and chemical costs (caustic and alum), unescalated, undiscounted. Unit power cost of \$0.045/kWh and labor cost of \$133,133/FTE/yr assumed.
- c. Net present value assuming design and construction in 2029 to 2031, operating costs from 2032 to 2052, 5% escalation rate, and 3.4% discount rate.

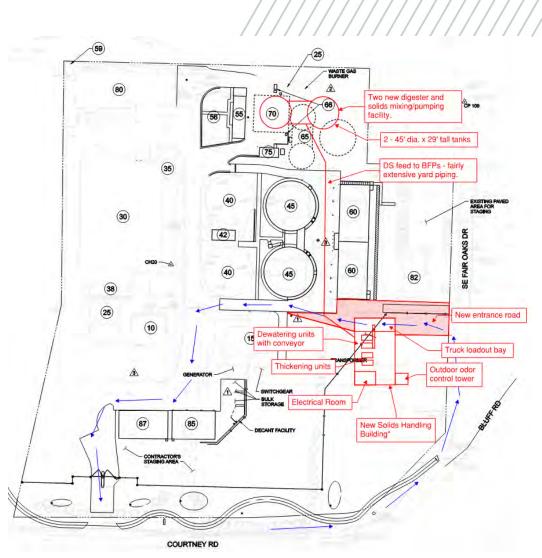

Recommendations for Secondary Treatment

- Implement SND for energy savings and improved alkalinity recovery
- Design diffuser grids and baffles to allow conversion to SND/A20
- Leave space for chemical feed system
- Convert to A20 in the future as needed when nutrient limits are known

Solids Treatment Alternatives Analysis Update


Alternative 1

- New Digesters 3 & 4 east of 1 & 2 and new Solids Handling Building in existing location.
- New building would include redundant thickening and dewatering units and all appurtenant equipment. Layouts and cost estimates assume RDTs and BFPs.
- Odor control fan and scrubber would be located outside the building similar to existing.
- There would be a drive through sludge storage hopper and truck access as shown with blue arrows. (Operations staff indicate this route would not be possible.)
- Temporary dewatering, and possibly thickening facilities would be needed during construction of the new building after Digesters 3 & 4 are constructed.


Alternative 2

- New Digesters 3 & 4 east of 1 & 2 and new Solids Handling Building located south of digesters.
- New building would include redundant thickening and dewatering units and all appurtenant equipment. Layouts and cost estimates assume RDTs and BFPs.
- Odor control fan and scrubber would be located outside the building.
- There would be a drive through truck bay connected to the building with a new entrance road on the east side. Truck traffic would be as shown in blue arrows.

Alternative 3

- New Digesters 3 & 4 would be constructed in the location of the existing Solids Handling Building and digesters. Building between digesters would house digester mixing pumps and DS pumps.
- New Solids Handling Building would be constructed south of Digesters 1 and 2 and include redundant thickening and dewatering units and all appurtenant equipment. Layouts and cost estimates assume RDTs and BFPs.
- Odor control fan and scrubber would be located outside the building.
- There would be a drive through truck bay connected to the building with a new entrance road on the east side. Truck traffic would be as shown in blue arrows.

Solids Treatment Alternatives Comparison

Alternative	Advantages	Disadvantages
Alternative 1	• Would make use of the existing plant site and not require expansion into the current "park" area.	 Plant ops has stated that the truck access as shown would not be possible. Temporary dewatering, and thickening facilities would be needed for ~15 to 18 months during demo of the existing building and construction of new one.
Alternative 2 - Likely preferred alternative	 Truck access to the solids loading bay as part of the new building would seemingly be easier. Provides space for future storage or treatment processes in area of existing building and digesters. 	• Expansion into the "park" area south of Digesters 1 and 2 may require permitting and community acceptance.
Alternative 3	 Truck access to the solids loading bay as part of the new building would seemingly be easier. Provides space for future storage or treatment processes in area of existing building and digesters. 	 Expansion into the "park" area south of Digesters 1 and 2may require permitting and community acceptance Extensive yard piping through a likely congested area to pump digested sludge from new Digesters 3 and 4 to the new building.

Solids Alternatives Estimated Project Costs

	Upper Range (+100%)	Estimated Cost	Lower Range (-50%)
Alternative 1	\$59,402,000	\$29,701,000	\$14,850,500
Alternative 2	\$58,772,000	\$29,386,000	\$14,693,000
Alternative 3	\$58,350,000	\$29,175,000	\$14,587,500

- Estimated costs for all three alternatives are essentially the same.
- It is also assumed O&M costs for all 3 alternatives would be essentially the same.
- Based on this, cost will not be a large factor in the alternative selection.
- Other factors, such as truck access, ability to expand into the current "park" area, constructability, and ease of operation and maintenance will have a much larger impact on alternative selection.
- A more thorough business case evaluation should be performed when it becomes closer to the time to perform the Solids Handling Upgrade.

• • • • • • •

CIP Discussion

MWSC

Appendix K CIP Project Cost Opinions

Wastewater Master Plan Oak Lodge Water Services

Opinion of Probable Construction Cost Project C-1: Lift Station 5 Basin RDII Reduction Pilot Oak Lodge Water Services

MUSC

Bid Item	Bid Item Description Quantity Unit Unit Price							
Pre-Rehat	Bid Item Description Quantity Unit Unit Price Cost Pre-Rehabilitation Work Pre-Rehabilitation Work Cost Cost							
1	Smoke Testing	35,000	LF	\$ 0.71	\$	25,000.00		
2	Pre-Rehabilitation Flow Meters	5	EA	\$ 9,400.00	\$	47,000.00		
3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 29,000.00	\$	29,000.00		
	· · · · · · · · · · · · · · · · · · ·			Subtotal	\$	101,000.00		
Rehabilita	tion Work				•			
4	Mobilization	1	LS	\$ 88,000.00	\$	88,000.00		
5	Insurance	1	LS	\$ 44,000.00	\$	44,000.00		
6	Survey	1	LS	\$ 15,000.00	\$	15,000.00		
7	Site Clearing	1	LS	\$ 15,000.00	\$	15,000.00		
8	Erosion and Sediment Control Plan	1	\$	4,000.00				
9	Traffic Control	1	LS	\$ 26,000.00	\$	26,000.00		
10	Cleaning & Pre-Construction CCTV	8,783	LF	\$ 6.03	\$	53,000.00		
11	6" CIPP	173	LF	\$ 63.58	\$	11,000.00		
12	8" CIPP	5,839	LF	\$ 65.08	\$	380,000.00		
13	10" CIPP	2,556	LF	\$ 70.03	\$	179,000.00		
14	12" CIPP	215	LF	\$ 74.42	\$	16,000.00		
15	Reinstate Service Laterals	138	EA	\$ 115.94	\$	16,000.00		
16	Full Lateral Rehabilitation	138	EA	\$ 5,500.00	\$	759,000.00		
17	Post-Construction CCTV	8,921	LF	\$ 2.91	\$	26,000.00		
18	Manhole Rehabilitation	63	VF	\$ 571.43	\$	36,000.00		
			Constr	uction Subtotal	\$ ·	1,668,000.00		
	\$	501,000.00						
	\$2	2,169,000.00						
	Project D	Developmen	t & Implem	entation (30%)	\$	651,000.00		
		, F	Rehabilitatio	on Project Cost	\$2	2,820,000.00		
Post-Reha	abilitation Work			-		-		
19	Post-Rehabilitation Flow Metering	5	EA	\$ 9,400.00	\$	47,000.00		
20	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 30,000.00	\$	30,000.00		
ι	. ,			Subtotal	\$	77,000.00		
		Constr	uction Con	tingency (30%)	\$	23,000.00		

Construction Total \$ 100,000.00

Total Project Cost \$3,021,000.00

Opinion of Probable Construction Cost Project C-2: Lift Station 2 Basin RDII Reduction Program Oak Lodge Water Services

Bid Item	Description	Quantity	Unit	Unit Price	Cost
Pre-Rehal	bilitation Work			•	
1	Smoke Testing	165,414	LF	\$ 0.71	\$ 117,000.00
2	Pre-Rehabilitation Flow Meters	17	EA	\$ 7,764.71	\$ 132,000.00
3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 39,000.00	\$ 39,000.00
				Subtotal	\$ 288,000.00
		Constru	uction Cont	tingency (30%)	\$ 86,000.00
			Cor	struction Total	\$ 374,000.00
Rehabilita					
4	Mobilization	1	LS	\$136,000.00	\$ 136,000.00
5	Insurance	1	LS	\$ 68,000.00	\$ 68,000.00
6	Survey	1	LS	\$ 23,000.00	\$ 23,000.00
7	Site Clearing	1	LS	\$ 23,000.00	\$ 23,000.00
8	Erosion and Sediment Control Plan	1	LS	\$ 7,000.00	\$ 7,000.00
9	Traffic Control	1	LS	\$ 42,000.00	\$ 42,000.00
10	Cleaning & Pre-Construction CCTV	12,794	LF	\$ 6.02	\$ 77,000.00
11	8" CIPP	11,145	LF	\$ 64.96	\$ 724,000.00
12	12" CIPP	304	LF	\$ 75.63	\$ 23,000.00
13	14" CIPP	4	LF	\$ 263.16	\$ 1,000.00
14	18" CIPP	251	LF	\$ 151.39	\$ 38,000.00
15	20" CIPP	752	LF	\$ 195.48	\$ 147,000.00
16	21" CIPP	338	LF	\$ 195.44	\$ 66,000.00
17	Reinstate Service Laterals	198	EA	\$ 116.16	\$ 23,000.00
18	Full Lateral Rehabilitation	198	EA	\$ 5,500.00	\$ 1,089,000.00
19	Post-Construction CCTV	12,794	LF	\$ 2.97	\$ 38,000.00
20	Manhole Rehabilitation	95	VF	\$ 568.42	\$ 54,000.00
				uction Subtotal	\$ 2,579,000.00
		Constru		tingency (30%)	\$ 774,000.00
				struction Total	\$ 3,353,000.00
	Project D	evelopmen	t & Implem	entation (30%)	\$ 1,006,000.00
		R	Rehabilitatic	on Project Cost	\$ 4,359,000.00
Post-Reha	abilitation Work				
21	Post-Rehabilitation Flow Metering	17	EA	\$ 7,705.88	\$ 131,000.00
22	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 39,000.00	\$ 39,000.00
				Subtotal	\$ 170,000.00
		Constru	uction Cont	tingency (30%)	\$ 51,000.00
			Cor	struction Total	\$ 221,000.00
			Tota	al Project Cost	\$ 4,954,000.00

Opinion of Probable Construction Cost Project C-3: Lift Station 6 Basin RDII Reduction Program Oak Lodge Water Services

Bid Item	Description	Quantity	Unit	Unit Price		Cost
Pre-Rehat	bilitation Work		•	-		
1	Smoke Testing	6,846	LF	\$ 0.73	\$	5,000.00
2	Pre-Rehabilitation Flow Meters	2	EA	\$ 9,500.00	\$	19,000.00
3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 21,000.00	\$	21,000.00
				Subtotal	\$	45,000.00
		Constru	uction Cont	tingency (30%)	\$	14,000.00
			Con	struction Total	\$	59,000.00
Rehabilitat	tion Work				•	
4	Mobilization	1	LS	\$ 12,000.00	\$	12,000.00
5	Insurance	1	LS	\$ 6,000.00	\$	6,000.00
6	Survey	1	LS	\$ 2,000.00	\$	2,000.00
7	Site Clearing	1	LS	\$ 2,000.00	\$	2,000.00
8	Erosion and Sediment Control Plan	1	LS	\$ 500.00	\$	500.00
9	Traffic Control	1	LS	\$ 500.00	\$	500.00
10	Cleaning & Pre-Construction CCTV	171	LF	\$ 5.85	\$	1,000.00
11	8" CIPP	171	LF	\$ 64.33	\$	11,000.00
12	Reinstate Service Laterals	33	EA	\$ 121.21	\$	4,000.00
13	Full Lateral Rehabilitation	33	EA	\$ 5,500.00	\$	181,500.00
14	Post-Construction CCTV	171	LF	\$ 2.92	\$	500.00
15	Manhole Rehabilitation	11	VF	\$ 545.45 uction Subtotal	\$	6,000.00
	\$	227,000.00				
	\$	68,000.00				
			Con	struction Total	\$	295,000.00
	Project D	evelopmen	t & Implem	entation (30%)	\$	89,000.00
		R	Rehabilitatio	on Project Cost	\$	384,000.00
Post-Reha	bilitation Work					
16	Post-Rehabilitation Flow Metering	2	EA	\$ 9,500.00	\$	19,000.00
17	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 21,000.00	\$	21,000.00
				Subtotal	\$	40,000.00
		Constru	uction Cont	tingency (30%)	\$	12,000.00
			Con	struction Total	\$	52,000.00
			Tota	al Project Cost	\$	495,000.00

Opinion of Probable Construction Cost Project C-4: Influent Lift Station Basin RDII Reduction Program

Oak Lodge Water Services

Pre-Rehabilitation Work Image: Construction CCTV 1 LS \$ 201,000.00 \$ 200.00 \$ 200,000.00 \$ 200,000.00 <	Bid Item	Description	Quantity	Unit	Unit Price		Cost
2 Pre-Rehabilitation Flow Meters 21 EA \$ 7,714.29 \$ 162,000.00 3 Pre-Rehabilitation Flow Meter Analysis 1 LS \$ 42,000.00 \$ 352,000.00 Subtotal \$ 352,000.00 Construction Contingency (30%) \$ 106,000.00 \$ 106,000.00 Rehabilitation Work 1 LS \$ 201,000.00 \$ 201,000.00 4 Mobilization 1 LS \$ 101,000.00 \$ 201,000.00 5 Insurance 1 LS \$ 34,000.00 \$ 34,000.00 6 Survey 1 LS \$ 34,000.00 \$ 34,000.00 \$ 34,000.00 7 Site Clearing 1 LS \$ 34,000.00 \$ 34,000.00 \$ 34,000.00 9 Traffic Control 1 LS \$ 74,000.00 \$ 74,000.00 10 Clearing & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6" CIPP 2,724 LF \$ 35,000.00 \$ 34,000.00 13 10" CIPP 247 LF	Pre-Reha	bilitation Work			•		
3 Pre-Rehabilitation Flow Meter Analysis 1 LS \$ 42,000.00 \$ 332,000.00 Subtotal Subtotal \$ 332,000.00 \$ 342,000.00 \$ 342,000.00 Rehabilitation Work Subtotal \$ 458,000.00 \$ 458,000.00 Rehabilitation Work Subtotal \$ 201,000.00 \$ 458,000.00 4 Mobilization 1 LS \$ 201,000.00 \$ 34,000.00 \$ 36,000.00 \$ 35,000.00 \$ 35,000.00	1	Smoke Testing	207,931	LF		\$	148,000.00
Subtotal \$ 352,000.00 Construction Contingency (30%) \$ 106,000.00 Construction Total \$ 106,000.00 Rehabilitation Work \$ 1 LS \$ 201,000.00 \$ 458,000.00 Rehabilitation Work 1 LS \$ 201,000.00 \$ 458,000.00 Survey 1 LS \$ 101,000.00 \$ 201,000.00 \$ 34,000.00 \$ 35,000.00 \$ 35,000.00 <		Pre-Rehabilitation Flow Meters	21	EA	\$ 7,714.29	\$	162,000.00
Construction Contingency (30%) \$ 106,000.00 Construction Total Rehabilitation Work \$ 458,000.00 4 Mobilization 1 LS \$ 201,000.00 \$ 201,000.00 5 Insurance 1 LS \$ 101,000.00 \$ 201,000.00 6 Survey 1 LS \$ 101,000.00 \$ 34,000.00 7 Site Clearing 1 LS \$ 34,000.00 \$ 34,000.00 8 Erosion and Sediment Control Plan 1 LS \$ 74,000.00 \$ 12,000.00 9 Traffic Control 1 LS \$ 74,000.00 \$ 74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6'' CIPP 270 LF \$ 35,000.00 \$ 34,000.00 14 12'' CIPP 503 LF \$ 32,000.00 \$ 34,000.00 14 12'' CIPP 247 LF \$ 278,000.00 \$ 37,000.00 15 15'' CIPP 1,428 LF \$ 3,7,000.00 \$ 34,000.	3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 42,000.00	\$	42,000.00
Construction Total \$ 459,000.00 Rehabilitation 1 LS \$ 201,000.00 \$ 201,000.00 5 Insurance 1 LS \$ 101,000.00 \$ 34,000.00 6 Survey 1 LS \$ 34,000.00 \$ 34,000.00 7 Site Clearing 1 LS \$ 34,000.00 \$ 34,000.00 8 Erosion and Sediment Control Plan 1 LS \$ 74,000.00 \$ 74,000.00 9 Traffic Control 1 LS \$ 77,000.00 \$ 74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 13 10" CIPP 270 LF \$ 35,000.00 \$ 827,000.00 14 12" CIPP 250 LF \$ 19,000.00 \$ 37,000.00 15 15" CIPP 1,428 LF \$ 278,000.00 \$ 37,000.00 16 21" CIPP 1,428 LF \$ 37,000.00 \$ 37,000.00 \$ 37,000.00 \$ 37,000.00 \$ 37,000.00 \$ 38,12,000.00 <td></td> <td></td> <td></td> <td></td> <td>Subtotal</td> <td></td> <td>352,000.00</td>					Subtotal		352,000.00
Rehabilitation Work 1 LS \$201,000.00 \$201,000.00 5 Insurance 1 LS \$101,000.00 \$201,000.00 6 Survey 1 LS \$34,000.00 \$34,000.00 7 Site Clearing 1 LS \$34,000.00 \$34,000.00 8 Erosion and Sediment Control Plan 1 LS \$34,000.00 \$34,000.00 9 Traffic Control 1 LS \$12,000.00 \$74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$877.19 \$150,000.00 12 8" CIPP 270 LF \$18,000.00 \$827,000.00 13 10" CIPP 270 LF \$35,000.00 \$827,000.00 14 12" CIPP 250 LF \$35,000.00 \$37,000.00 15 15" CIPP 247 LF \$23,000.00 \$37,000.00 17 Reinstate Service Laterals 326 EA \$11,793,000.00 \$374,000.00 \$38,12,000.00 \$38,12,			Constru	uction Con	tingency (30%)	\$	106,000.00
4 Mobilization 1 LS \$201,000.00 \$201,000.00 5 Insurance 1 LS \$101,000.00 \$101,000.00 \$34,000.00 \$34,000.00 6 Survey 1 LS \$34,000.00 \$34,000.00 \$34,000.00 7 Site Clearing 1 LS \$34,000.00 \$34,000.00 8 Erosion and Sediment Control Plan 1 LS \$34,000.00 \$34,000.00 9 Traffic Control 1 LS \$34,000.00 \$74,000.00 \$74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$877.19 \$150,000.00 11 6" CIPP 270 LF \$877.000 \$827,000.00 13 10" CIPP 12,724 LF \$65.00 \$827,000.00 14 12" CIPP 247 LF \$23,000.00 \$35,000.00 15 15" CIPP 1,428 LF \$278,000.00 \$37,000.00 17 Reinstate Service Laterals 326				Cor	nstruction Total	\$	458,000.00
5 Insurance 1 LS \$101,000.00 \$101,000.00 6 Survey 1 LS \$34,000.00 \$34,000.00 7 Site Clearing 1 LS \$34,000.00 \$34,000.00 8 Erosion and Sediment Control Plan 1 LS \$34,000.00 \$12,000.00 9 Traffic Control 1 LS \$12,000.00 \$12,000.00 90 Cleaning & Pre-Construction CCTV 171 LF \$877.19 \$150,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$827,000.00 \$827,000.00 13 10" CIPP 12,724 LF \$65.00 \$827,000.00 14 12" CIPP 250 LF \$35,000.00 15 15" CIPP 247 LF \$23,000.00 16 21" CIPP 1,428 LF \$27,000.00 18 Full Lateral Rehabilitation 326 EA \$173,000.00 19 Post-Construction CCTV 24,693 LF	Rehabilita	tion Work					
6 Survey 1 LS \$ 34,000.00 \$ 34,000.00 7 Site Clearing 1 LS \$ 34,000.00 \$ 34,000.00 8 Erosion and Sediment Control Plan 1 LS \$ 34,000.00 \$ 34,000.00 9 Traffic Control 1 LS \$ 74,000.00 \$ 74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 12 8" CIPP 270 LF \$ 18,000.00 13 10" CIPP 270 LF \$ 18,000.00 14 12" CIPP 250 LF \$ 35,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 17,93,000.00 19 Post-Construction CCTV 24,693 LF \$ 3,812,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00	4	Mobilization	1	LS	\$201,000.00	\$	201,000.00
7 Site Clearing 1 LS \$ 34,000.00 \$ 34,000.00 8 Erosion and Sediment Control Plan 1 LS \$ 12,000.00 \$ 12,000.00 9 Traffic Control 1 LS \$ 12,000.00 \$ 12,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6" CIPP 270 LF \$ 18,000.00 12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 16 21" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1.793,000.00 \$ 3,812,000.00 20 Manhole Rehabilitation <t< td=""><td>5</td><td>Insurance</td><td>1</td><td></td><td>\$101,000.00</td><td>\$</td><td>101,000.00</td></t<>	5	Insurance	1		\$101,000.00	\$	101,000.00
8 Erosion and Sediment Control Plan 1 LS \$ 12,000.00 \$ 12,000.00 9 Traffic Control 1 LS \$ 74,000.00 \$ 74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6" CIPP 270 LF \$ 18,000.00 12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 102,000.00 20 Manhole Rehabilitation Flow Metering 2 EA \$	6	Survey	1	LS	\$ 34,000.00	\$	34,000.00
9 Traffic Control 1 LS \$ 74,000.00 \$ 74,000.00 10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6" CIPP 270 LF \$ 18,000.00 12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 113.50 \$ 3,872,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 102,000.00 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.0			1		\$ 34,000.00		34,000.00
10 Cleaning & Pre-Construction CCTV 171 LF \$ 877.19 \$ 150,000.00 11 6" CIPP 270 LF \$ 18,000.00 12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 \$ 1,793,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 21 Post-Rehabilitation Flow Meter Analysis 1 LS <td></td> <td>Erosion and Sediment Control Plan</td> <td>1</td> <td></td> <td>. ,</td> <td></td> <td>12,000.00</td>		Erosion and Sediment Control Plan	1		. ,		12,000.00
11 6" CIPP 270 LF \$ 18,000.00 12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 35,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 \$ 37,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Subtotal \$ 3,812,000.00 \$ 3,812,000.00 \$ 3,812,000.00 \$ 3,812,000.00 Construction Total \$ 4,956,000.00 \$ 1,447,000.00 \$ 6,443,000.00 \$ 6,443,000.00 Post-Rehabilitation Flow Metering 2 EA \$ 9,500							74,000.00
12 8" CIPP 12,724 LF \$ 65.00 \$ 827,000.00 13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3,812,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 1144,000.00 Construction Contingency (30%) \$ 1,144,000.00 \$ 6,443,000.00 \$ 6,443,000.00 \$ 1487,000.00 21 Post-Rehabilitation Flow Metering 2 EA					\$ 877.19		
13 10" CIPP 503 LF \$ 35,000.00 14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Contingency (30%) \$ 1,144,000.00 \$ 3,812,000.00 \$ 4,956,000.00 \$ 1,447,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 \$ 4,956,000.00 \$ 1,487,000.00 \$ 1,487,000.00 \$ 21,000.00 \$ 1,487,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00	11		270				,
14 12" CIPP 250 LF \$ 19,000.00 15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Subtotal \$ 3,812,000.00 \$ 3,812,000.00 \$ 1,144,000.00 \$ 6,443,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 \$ 4,956,000.00 \$ 1,487,000.00 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 21 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00	12		12,724		\$ 65.00	\$	827,000.00
15 15" CIPP 247 LF \$ 23,000.00 16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Contingency (30%) \$ 1,144,000.00 \$ 3,812,000.00 \$ 3,812,000.00 \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 \$ 4,956,000.00 \$ 1,447,000.00 21 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00	13						35,000.00
16 21" CIPP 1,428 LF \$ 278,000.00 17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 113.50 \$ 37,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Contingency (30%) \$ 1,144,000.00 \$ 3,812,000.00 \$ 1,144,000.00 Construction Total Project Development & Implementation (30%) \$ 1,487,000.00 \$ 1,487,000.00 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00			250				19,000.00
17 Reinstate Service Laterals 326 EA \$ 113.50 \$ 37,000.00 18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 1,144,000.00 Construction Contingency (30%) \$ 1,144,000.00 Construction Total \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 Rehabilitation Work 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 Subtotal 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,							
18 Full Lateral Rehabilitation 326 EA \$ 1,793,000.00 19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 20 Construction Subtotal \$ 3,812,000.00 \$ 3,812,000.00 \$ 3,812,000.00 Construction Contingency (30%) Construction Total \$ 4,956,000.00 \$ 1,144,000.00 \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 Post-Rehabilitation Work 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 20,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,00		21" CIPP					278,000.00
19 Post-Construction CCTV 24,693 LF \$ 3.00 \$ 74,000.00 20 20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Subtotal \$ 3,812,000.00 \$ 3,812,000.00 \$ 000.00 Construction Contingency (30%) \$ 1,144,000.00 \$ 1,144,000.00 \$ 4,956,000.00 \$ 1,487,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 20,000.00 \$ 22,000.00 \$ 22,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00					\$ 113.50		
20 Manhole Rehabilitation 179 VF \$ 569.83 \$ 102,000.00 Construction Subtotal \$ 3,812,000.00 Construction Contingency (30%) \$ 1,144,000.00 Construction Contingency (30%) \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 21,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$ 52,000.00 \$							
Construction Subtotal\$ 3,812,000.00Construction Contingency (30%)\$ 1,144,000.00Construction Total\$ 4,956,000.00Project Development & Implementation (30%)\$ 1,487,000.00Post-Rehabilitation Work\$ 6,443,000.0021Post-Rehabilitation Flow Metering222Post-Rehabilitation Flow Meter Analysis1LS\$ 21,000.00\$ 21,000.00Subtotal\$ 40,000.002Construction Contingency (30%)\$ 12,000.00\$ 52,000.00\$ 52,000.00		Post-Construction CCTV					
Construction Contingency (30%) \$ 1,144,000.00 Construction Total \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 Rehabilitation Project Cost \$ 6,443,000.00 Post-Rehabilitation Work \$ 6,443,000.00 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 \$ 40,000.00 \$ 12,000.00 \$ 12,000.00 \$ 52,000.00	20	Manhole Rehabilitation	179				/
Construction Total \$ 4,956,000.00 Project Development & Implementation (30%) \$ 1,487,000.00 Rehabilitation Project Cost \$ 6,443,000.00 Post-Rehabilitation Work \$ 9,500.00 21 Post-Rehabilitation Flow Metering 2 22 Post-Rehabilitation Flow Meter Analysis 1 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 Construction Contingency (30%) \$ 12,000.00 Construction Total \$ 52,000.00							
Project Development & Implementation (30%) 1,487,000.00 Rehabilitation Project Cost 6,443,000.00 Post-Rehabilitation Work 2 EA 9,500.00 19,000.00 22 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 20 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 20 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 20 Construction Contingency (30%) \$ 12,000.00 \$ 52,000.00 \$ 52,000.00			Constru	uction Con	tingency (30%)	•	1,144,000.00
Rehabilitation Project Cost 6,443,000.00 Post-Rehabilitation Work 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 Construction Contingency (30%) \$ 12,000.00 \$ 52,000.00				Cor	nstruction Total	•	4,956,000.00
Post-Rehabilitation Work 21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 Construction Contingency (30%) \$ 12,000.00 \$ 52,000.00		Project D)evelopmen	t & Implem	entation (30%)	\$	1,487,000.00
21 Post-Rehabilitation Flow Metering 2 EA \$ 9,500.00 \$ 19,000.00 22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 Construction Contingency (30%) \$ 12,000.00 Construction Total \$ 52,000.00			F	Rehabilitatio	on Project Cost	\$	6,443,000.00
22 Post-Rehabilitation Flow Meter Analysis 1 LS \$ 21,000.00 \$ 21,000.00 Subtotal \$ 40,000.00 \$ 40,000.00 \$ 12,000.00 \$ 12,000.00 \$ 12,000.00 \$ 52,0	Post-Reha	abilitation Work					
Subtotal \$ 40,000.00 Construction Contingency (30%) \$ 12,000.00 Construction Total \$ 52,000.00	21	Post-Rehabilitation Flow Metering	2	EA	\$ 9,500.00	\$	19,000.00
Construction Contingency (30%) \$ 12,000.00 Construction Total \$ 52,000.00	22	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 21,000.00	\$	21,000.00
Construction Total \$ 52,000.00					Subtotal	\$	40,000.00
Construction Total \$ 52,000.00			Constru	uction Con	tingency (30%)	\$	12,000.00
Total Project Cost \$ 6,953,000.00						\$	52,000.00
				Tota	al Project Cost	\$	6,953,000.00

Opinion of Probable Construction Cost Project C-5: Lift Station 4 Basin RDII Reduction Program Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price	Cost
Pre-Reha	bilitation Work				
1	Smoke Testing	2,335	LF	\$ 0.64	\$ 1,500.00
2	Pre-Rehabilitation Flow Meters	1	EA	\$ 9,000.00	\$ 9,000.00
3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 20,500.00	\$ 20,500.00
				Subtotal	\$ 31,000.00
		Constru	uction Cont	ingency (30%)	\$ 10,000.00
			Con	struction Total	\$ 41,000.00
Rehabilita	tion Work				
4	Mobilization	1	LS	\$ 4,000.00	\$ 4,000.00
5	Insurance	1	LS	\$ 2,000.00	\$ 2,000.00
6	Survey	1	LS	\$ 1,000.00	\$ 1,000.00
7	Site Clearing	1	LS	\$ 1,000.00	\$ 1,000.00
8	Erosion and Sediment Control Plan	1	LS	\$ 500.00	\$ 500.00
9	Traffic Control	1	LS	\$ 1,000.00	\$ 1,000.00
10	Cleaning & Pre-Construction CCTV	491	LF	\$ 6.11	\$ 3,000.00
11	8" CIPP	491	LF	\$ 65.17	\$ 32,000.00
12	Reinstate Service Laterals	4	EA	\$ 125.00	\$ 500.00
13	Full Lateral Rehabilitation	4	EA	\$ 5,500.00	\$ 22,000.00
14	Post-Construction CCTV	491	LF	\$ 2.04	\$ 1,000.00
15	Manhole Rehabilitation	11	VF	\$ 545.45	\$ 6,000.00
	\$ 74,000.00				
	\$ 22,000.00				
			Con	struction Total	\$ 96,000.00
	\$ 29,000.00				
		R	Rehabilitatio	n Project Cost	\$ 125,000.00
Post-Reha	abilitation Work				
16	Post-Rehabilitation Flow Metering	1	EA	\$ 9,000.00	\$ 9,000.00
17	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 21,000.00	\$ 21,000.00
	-			Subtotal	\$ 30,000.00
		Constru	uction Cont	ingency (30%)	\$ 9,000.00
			Con	struction Total	\$ 39,000.00
			Tota	I Project Cost	\$ 205.000.00

Total Project Cost \$ 205,000.00

Opinion of Probable Construction Cost Project C-6: Lift Station 3 Basin RDII Reduction Program Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price	Cost
Pre-Reha	•				
1	Smoke Testing	51,309	LF	\$ 0.70	\$ 36,000.00
2	Pre-Rehabilitation Flow Meters	5	EA	\$ 9,400.00	\$ 47,000.00
3	Pre-Rehabilitation Flow Meter Analysis	1	LS	\$ 24,000.00	\$ 24,000.00
	\$ 107,000.00				
		Constru	uction Cont	tingency (30%)	\$ 32,000.00
			Cor	struction Total	\$ 139,000.00
Rehabilita	tion Work				
4	Mobilization	1	LS	\$256,000.00	\$ 256,000.00
5	Insurance	1	LS	\$128,000.00	\$ 128,000.00
6	Survey	1	LS	\$ 43,000.00	\$ 43,000.00
7	Site Clearing	1	LS	\$ 43,000.00	\$ 43,000.00
8	Erosion and Sediment Control Plan	1	LS	\$ 10,000.00	\$ 10,000.00
9	Traffic Control	1	LS	\$ 59,000.00	\$ 59,000.00
10	Cleaning & Pre-Construction CCTV	23,297	LF	\$ 6.01	\$ 140,000.00
11	8" CIPP	19,504	LF	\$ 65.01	\$ 1,268,000.00
12	10" CIPP	1,009	LF	\$ 70.37	\$ 71,000.00
13	12" CIPP	1,788	LF	\$ 74.94	\$ 134,000.00
14	15" CIPP	996	LF	\$ 94.38	\$ 94,000.00
15	Reinstate Service Laterals	428	EA	\$ 114.49	\$ 49,000.00
16	Full Lateral Rehabilitation	428	EA	\$ 5,500.00	\$ 2,354,000.00
17	Post-Construction CCTV	23,297	LF	\$ 3.00	\$ 70,000.00
18	Manhole Rehabilitation	168	VF	\$ 571.43	\$ 96,000.00
				uction Subtotal	\$ 4,815,000.00
		Constru	uction Cont	tingency (30%)	\$ 1,444,000.00
			Cor	struction Total	\$ 6,259,000.00
	Project D	Developmen	t & Implem	entation (30%)	\$ 1,878,000.00
		F	Rehabilitatio	on Project Cost	\$ 8,137,000.00
Post-Reha	abilitation Work				
19	Post-Rehabilitation Flow Metering	5	EA	\$ 9,400.00	\$ 47,000.00
20	Post-Rehabilitation Flow Meter Analysis	1	LS	\$ 24,000.00	\$ 24,000.00
				Subtotal	\$ 71,000.00
		Constru	uction Cont	tingency (30%)	\$ 21,000.00
			Cor	struction Total	\$ 92,000.00
	\$ 8 368 000 00				

Total Project Cost \$ 8,368,000.00

Opinion of Probable Construction Cost Project C-7: Annual Condition Rehabilitation Oak Lodge Water Services

The following quantities are based off rehabilitation work over a 10-year period	The following	quantities are	e based of	ff rehabilitation	work over a	10-vear period
--	---------------	----------------	------------	-------------------	-------------	----------------

Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	Mobilization	1	LS	\$397,000.00	\$ 397,000.00
2	Insurance	1	LS	\$198,000.00	\$ 198,000.00
3	Survey	1	LS	\$ 66,000.00	\$ 66,000.00
4	Site Clearing	1	LS	\$ 66,000.00	\$ 66,000.00
5	Erosion and Sediment Control Plan	1	LS	\$ 35,000.00	\$ 35,000.00
6	Traffic Control	1	LS	\$213,000.00	\$ 213,000.00
7	Cleaning & Pre-Construction CCTV	70,918	LF	\$ 6.01	\$ 426,000.00
8	CIPP (Size Varies)	70,918	LF	\$ 82.45	\$ 5,847,000.00
9	Reinstate Service Laterals	1127	EA	\$ 115.35	\$ 130,000.00
10	Post-Construction CCTV	70,918	LF	\$ 3.00	\$ 213,000.00
	\$ 7,591,000.00				
	tingency (30%)	\$ 2,277,000.00			
	\$ 9,868,000.00				
	entation (30%)	\$ 2,961,000.00			
	Cost (10-year)	\$12,829,000.00			
		Pr	oject Time	Frame (Years)	10
			Annual C	Cost (Per Year)	\$ 1,282,900.00
			Total Time	Frame (Years)	20
		Tot	al Project (Cost (20-years)	\$25,658,000.00

Opinion of Probable Construction Cost

Project C-8: Trunk A Upsizing

Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	Mobilization	1	LS	\$370,000.00	\$ 370,000.00
2	Insurance	1	LS	\$186,000.00	\$ 186,000.00
3	Survey	1	LS	\$ 62,000.00	\$ 62,000.00
4	Site Clearing	1	LS	\$ 62,000.00	\$ 62,000.00
5	Erosion and Sediment Control Plan	1	LS	\$ 17,000.00	\$ 17,000.00
6	Traffic Control	1	LS	\$124,000.00	\$ 124,000.00
7	24" Sewer Main, <10 ft deep	1,092	LF	\$ 650.18	\$ 710,000.00
8	24" Sewer Main, 10-15 ft deep	2,671	LF	\$ 700.11	\$ 1,870,000.00
	27" Sewer Main, <10 ft deep	721	LF		\$ 505,000.00
9	27" Sewer Main, 10-15 ft deep	240	LF	\$ 750.00	\$ 180,000.00
	27" Sewer Main, 15-20 ft deep	333	LF		\$ 266,000.00
10	30" Sewer Main, <10 ft deep	1,639	LF	\$ 749.85	\$ 1,229,000.00
11	30" Sewer Main, 10-15 ft deep	507	LF	\$ 800.79	\$ 406,000.00
12	30" Sewer Main, 15-20 ft deep	835	LF	\$ 850.30	\$ 710,000.00
13	30" Sewer Main, 25-30 ft deep	220	LF	\$ 900.00	\$ 198,000.00
14	Connect to Lateral	59	EA	\$ 2,000.00	\$ 118,000.00
	•		Constr	uction Subtotal	\$ 7,013,000.00
		_			• • • • • • • • • • • •

Construction Contingency (30%) \$ 2,104,000.00

Construction Total \$ 9,117,000.00

Project Development & Implementation (30%) \$ 2,735,000.00

Total Project Cost \$11,852,000.00

Opinion of Probable Construction Cost

Project C-9: Trunk Main B Upsizing Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	Mobilization	1	LS	\$324,000.00	\$ 324,000.00
2	Insurance	1	LS	\$162,000.00	\$ 162,000.00
3	Survey	1	LS	\$ 54,000.00	\$ 54,000.00
4	Site Clearing	1	LS	\$ 54,000.00	\$ 54,000.00
5	Erosion and Sediment Control Plan	1	LS	\$ 17,000.00	\$ 17,000.00
6	Traffic Control	1	LS	\$130,000.00	\$ 130,000.00
7	15" Sewer Main, <10 ft deep	362	LF	\$ 248.69	\$ 90,000.00
8	18" Sewer Main, <10 ft deep	583	LF	\$ 349.97	\$ 204,000.00
9	18" Sewer Main, 10-15 ft deep	2,773	LF	\$ 450.09	\$ 1,248,000.00
10	18" Sewer Main, 15-20 ft deep	554	LF	\$ 649.58	\$ 360,000.00
11	18" Sewer Main, 20-25 ft deep	690	LF	\$ 750.62	\$ 518,000.00
12	24" Sewer Main, <10 ft deep	823	LF	\$ 649.82	\$ 535,000.00
13	24" Sewer Main, 10-15 ft deep	418	LF	\$ 699.40	\$ 292,000.00
14	24" Sewer Main, 15-20 ft deep	1,521	LF	\$ 750.12	\$ 1,141,000.00
15	24" Sewer Main, 20-25 ft deep	330	LF	\$ 799.03	\$ 264,000.00
16	24" Sewer Main, 25-30 ft deep	637	LF	\$ 849.56	\$ 541,000.00
17	Connect to Lateral	99	EA	\$ 2,000.00	\$ 198,000.00
		-	Constr	uction Subtotal	\$ 6,132,000.00

Construction Contingency (30%) \$ 1,840,000.00

Construction Total \$ 7,972,000.00

Project Development & Implementation (30%) \$ 2,392,000.00

Total Project Cost \$10,364,000.00

Opinion of Probable Construction Cost Project C-10: Trunk Main 2A Upsizing

Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price		Cost
1	Mobilization	1	LS	\$ 61,000.00	\$	61,000.00
2	Insurance	1	LS	\$ 30,000.00	\$	30,000.00
3	Survey	1	LS	\$ 10,000.00	\$	10,000.00
4	Site Clearing	1	LS	\$ 10,000.00	\$	10,000.00
5	Erosion and Sediment Control Plan	1	LS	\$ 4,000.00	\$	4,000.00
6	Traffic Control	1	LS	\$ 30,000.00	\$	30,000.00
7	15" Sewer Main, 10-15 ft deep	322	LF	\$ 350.93	\$	113,000.00
8	18" Sewer Main, 10-15 ft deep	1,099	LF	\$ 449.50	\$	494,000.00
9	18" Sewer Main, 15-20 ft deep	600	LF	\$ 650.00	\$	390,000.00
10	Connect to Lateral	4	EA	\$ 2,000.00	\$	8,000.00
			Constr	uction Subtotal	\$	1,150,000.00
		Constru	uction Cont	tingency (30%)	\$	345,000.00
			Cor	struction Total	\$	1,495,000.00
	Project I	Developmen	t & Implem	entation (30%)	\$	448,000.00
	-	-		al Duala at Oa at	¢.	4 0 4 0 0 0 0 0 0

Total Project Cost \$ 1,943,000.00

Opinion of Probable Construction Cost Project C-11: Trunk Main C Upsizing

Oak Lodge Water Services

Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	Mobilization	1	LS	\$ 4,000.00	\$ 4,000.00
2	Insurance	1	LS	\$ 2,000.00	\$ 2,000.00
3	Survey	1	LS	\$ 1,000.00	\$ 1,000.00
4	Site Clearing	1	LS	\$ 1,000.00	\$ 1,000.00
5	Erosion and Sediment Control Plan	1	LS	\$ 1,000.00	\$ 1,000.00
6	Traffic Control	1	LS	\$ 4,000.00	\$ 4,000.00
7	10" Sewer Main, 10-15 ft deep	289	LF	\$ 249.13	\$ 72,000.00
			Constr	uction Subtotal	\$ 85,000.00
		Constru	uction Con	tingency (30%)	\$ 26,000.00
			Cor	nstruction Total	\$ 111,000.00
	Project	Develonmen	t & Imnlom	entation (30%)	\$ 33 000 00

Project Development & Implementation (30%) \$ 33,000.00

Total Project Cost \$ 144,000.00

Opinion of Probable Construction Cost Project C-19: Lift Station 4 Rehabilitation Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	Mobilization (8%)	1	LS	\$ 11,000.00	\$ 11,000.00
2	Erosion Control	1	LS	\$ 4,000.00	\$ 4,000.00
3	Bypass Pumping	4	WK	\$ 2,000.00	\$ 8,000.00
4	Demolition	1	LS	\$ 15,000.00	\$ 15,000.00
5	Electrical and Control Kiosk	1	LS	\$ 20,000.00	\$ 20,000.00
6	Electrical Service, Main Breaker, and MT	1	LS	\$ 8,000.00	\$ 8,000.00
7	Site Electrical	1	LS	\$ 50,000.00	\$ 50,000.00
8	Lift Station Pipe, Valves, & Fittings	1	LS	\$ 4,000.00	\$ 4,000.00
9	Gravel Borrow Fill	350	CY	\$ 51.43	\$ 18,000.00
10	Gravel Surfacing	160	SY	\$ 12.50	\$ 2,000.00
11	Operations & Maintenance Manual	1	LS	\$ 2,000.00	\$ 2,000.00
			Constr	uction Subtotal	\$ 142,000.00
		Constru	uction Con	tingency (30%)	\$ 42,000.00
			Cor	nstruction Total	\$ 184,000.00
	Project D	evelopmen	t & Implem	entation (30%)	\$ 55,000.00

Project Development & Implementation (30%) \$ 239,000.00

Total Project Cost \$

Opinion of Probable Construction Cost Project C-20: Lift Station 6 Rehabilitation

Oak Lodge Water Services

MUSC

Bid Item	Description	Quantity	Unit	Unit Price		Cost
1	Mobilization (8%)	1	LS	\$ 34,000.00	\$	34,000.00
2	Erosion Control	1	LS	\$ 4,000.00	\$	4,000.00
3	Bypass Pumping	6	WK	\$ 3,500.00	\$	21,000.00
4	Demolition	1	LS	\$ 30,000.00	\$	30,000.00
5	Pump Station Structural Modifications	1	LS	\$ 50,000.00	\$	50,000.00
6	Electrical and Control Kiosk	1	LS	\$ 8,000.00	\$	8,000.00
7	Epoxy Coating Wetwell & Discharge Man	1700	SF	\$ 31.76	\$	54,000.00
8	Lift Station Pipe, Valves, & Fittings	2	EA	\$ 14,000.00	\$	28,000.00
9	Chain Link Fence & Gate	300	LF	\$ 56.67	\$	17,000.00
10	Electrical Service, Main Breaker, and MTS	1	LS	\$ 15,000.00	\$	15,000.00
11	Instruments	1	LS	\$ 10,000.00	\$	10,000.00
12	Pump Control Panel & Starters	1	LS	\$ 80,000.00	\$	80,000.00
13	Pump Disconnection Pane	1	LS	\$ 20,000.00	\$	20,000.00
14	Site Electrical	1	LS	\$ 70,000.00	\$	70,000.00
15	Startup	1	LS	\$ 8,000.00	\$	8,000.00
16	Gravel Surfacing	427	SY	\$ 9.37	\$	4,000.00
17	Operations & Maintenance Manual	1	LS	\$ 2,000.00	\$	2,000.00
			Constr	uction Subtotal	\$	455,000.00
				(200()	•	107 000 00

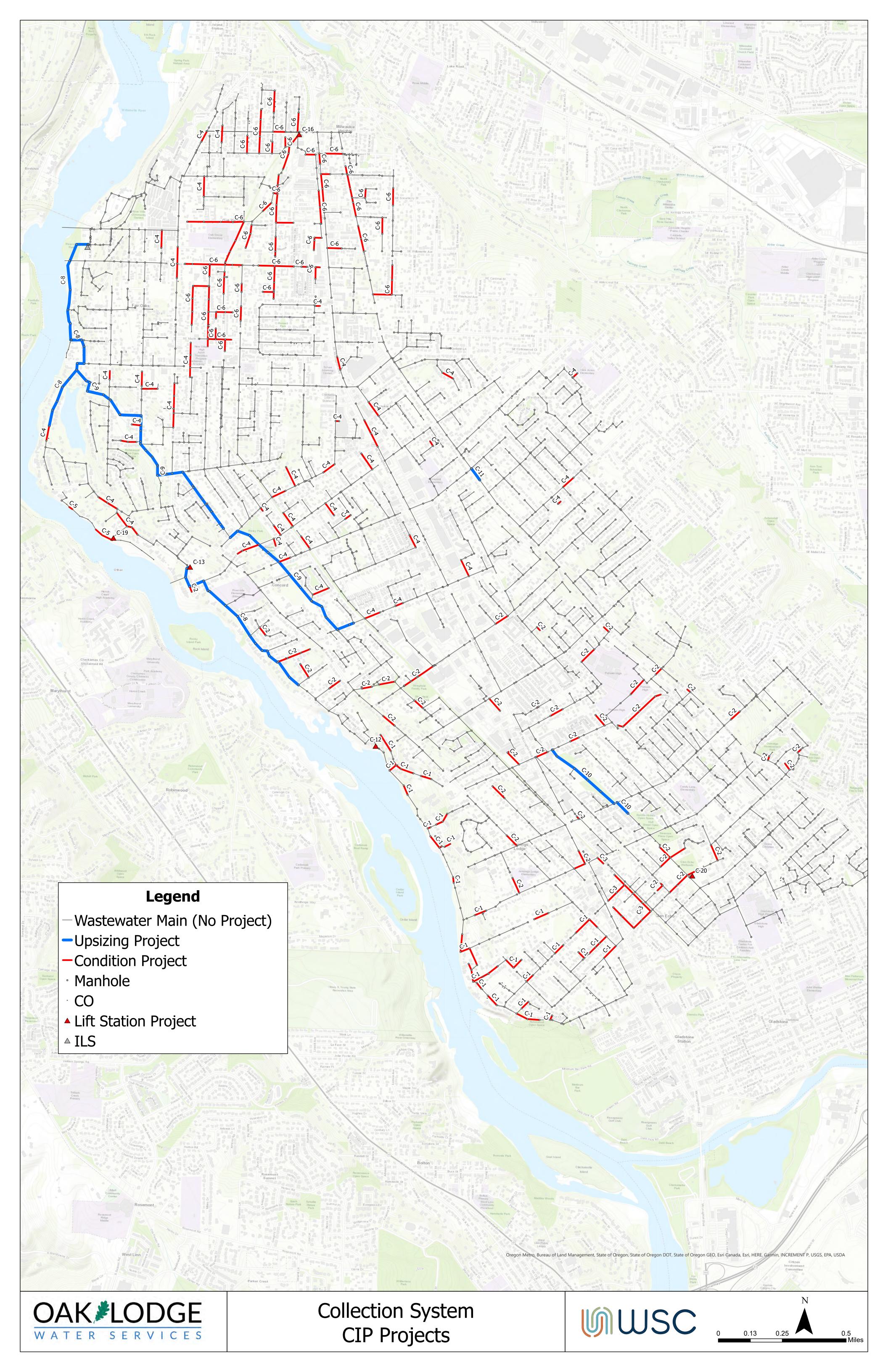
Construction Contingency (30%) \$ 137,000.00

Construction Total \$ 592,000.00

Project Development & Implementation (30%) \$ 177,000.00

Total Project Cost \$ 769,000.00

Opinion of Probable Construction Cost Project P-1: Wastewater Master Plan Update Oak Lodge Water Services


Bid Item	Description	Quantity	Unit	Unit Price	Cost
1	2027 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
2	2032 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
3	2037 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
4	2042 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
5	2047 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
6	2052 Wastewater Master Plan Update	1	LS	\$370,000.00	\$ 370,000.00
				Project Cost	\$ 2,220,000.00

MWSC

Appendix L CIP Project Map

Wastewater Master Plan Oak Lodge Water Services

STAFF REPORT

Board of Directors
Haakon Ogbeide, Civil Engineer
Consideration of Contract Award for Lift Station 2 Construction
4
February 21, 2023

Summary

The Lift Station 2 Project is a capital improvement project that will principally demolish and reconstruct OLWS's largest wastewater lift station outside the wastewater treatment plant.

The reconstruction of Lift Station 2 has been prioritized in the capital plan since the antiquated station has a variety of mechanical issues and is rapidly demanding ever-greater resources to maintain and keep running. There are further concerns around maintenance safety, reliability, noise, and odor that will be resolved through its reconstruction.

Only the portion of the concrete structure below ground and the station's backup generator are set to remain as the rest of this facility gets demolished and rebuilt in a new configuration. All new pumps, piping, electrical equipment, and an above-ground building will produce new and rationalized Lift Station 2. The submersible pump configuration will increase maintenance safety and wetwell storage. New odor control, ventilation, and electrical controls will simplify day-to-day operations and reduce noise and odor nuisance in the neighborhood.

Technical Services Staff put the project out to bid in January, received a low bid of \$1.63 million, and are seeking approval from the Board to initiate a contract with the low bidder.

Background

Wallis Engineering completed their design of the Lift Station 2 Project at the end of 2022. Between January 9th and 31st, 2023, Technical Services staff published the engineering plans to solicit bids from contractors. Orr Inc. submitted the lowest responsive and responsible bid at \$1,628,500 – 8.6% above the engineer's estimate of \$1,500,000. Brad Albert and Haakon Ogbeide were in attendance as bids were opened, along with one representative from each of the four Bidders. The following table gives a summary of bid results:

R. L. Reimers Company	\$1,996,675	
Moore Excavation Inc.	\$1,882,000	
Orr Inc.	\$1,628,500	(low bid)
McClure and Sons, Inc.	\$1,787,941	
Engineer's Estimate	\$1,500,000	

During due diligence review of bids, Technical Services staff contacted Orr Inc., as well as project managers representing the City of Portland and Clean Water Services. Orr Inc. provided an extensive list of successfully completed projects similar to the Lift Station 2 Project, and the municipal project managers provided all around positive feedback from their experiences working with Orr Inc.

Technical Services staff view Orr Inc. to be responsive and responsible and thus recommend the Board award the Contract to this low bidder.

Past Board Actions

July 2021	Approval of the preliminary engineering design of wastewater lift stations numbered 2, 3, 4, and 6
March 2022	Approval of the final engineering design for Lift Station 2
June 2022	Approval of the FY 2022 / 2023 Budget allocating \$1,450,000 for construction of the Lift Station 2 Project over the course of this fiscal year and next

Budget

The Fiscal Year 2022/23 Capital Improvement Plan budgets \$800,000 this year, and \$650,000 next year, for the Lift Station 2 Project – a total of \$1,450,000.

Technical Services staff currently estimate that this project will spend \$600,000 during the current fiscal year. This \$600k estimate consists of \$115k in engineering fees already incurred for final design, \$25k for upcoming engineering support during construction, and \$460k for the construction work itself, pending approval of this Staff Report.

The Capital Improvement Plan (CIP) for next fiscal year will be adjusted to reflect the construction cost coming in 8.6% higher than anticipated.

Funding for this Project comes from the Wastewater Reclamation Capital Fund, specifically line item 72-22-7600, covering Capital Improvement Projects for Wastewater Collections.

Concurrence

Technical Services staff coordinated with the following groups during the development of this project:

OLWS Wastewater Field Collections OLWS Wastewater Treatment Plant Operations Wallis Engineering Oregon Department of Environmental Quality Clackamas County Planning and Zoning Division

Recommendation

Staff recommends the Board move to approve the General Manager to sign a Public Improvement Contract with Orr Inc. for the work of constructing the Lift Station 2 Project for \$1,628,500.

Suggested Board Motion

"I move to approve the General Manager to sign a Public Improvement Contract with Orr Inc. for the work of constructing the Lift Station 2 Project for \$1,628,500."

CONSENT AGENDA

Board of Directors
Sarah Jo Chaplen, General Manager
Consent Agenda
5
February 21, 2023

Summary

The Board of Directors has a standing item on the regular monthly meeting agenda called "Consent Agenda." This subset of the regular agenda provides for the Board to relegate routine business functions not requiring discussion to a consent agenda where all included items can be acted upon by a single act.

The Consent Agenda includes:

- a. December 2022 Financial Report
- b. Approval of January 11, 2023 Board Meeting Minutes
- c. Approval of January 17, 2023 Board Meeting Minutes
- d. Approval of FY 2024 Budget Calendar
- e. Approval of Contract Award for Process Blower Installation

Options for Consideration

- 1. Approve the Consent Agenda as listed on the meeting agenda.
- 2. Request one or more items listed on the Consent Agenda be pulled from the Consent Agenda for discussion.

Recommendation

Staff requests that the Board approve the items listed under the Consent Agenda.

Suggested Board Motion

"I move to approve the Consent Agenda."

Approved By _____

Date _____

MONTHLY FINANCIAL REPORT

Board of Directors
Gail Stevens, Finance Director
December 2022 Financial Reports
5a
February 21, 2023

Reports

- December 2022 Monthly Overview (Including Cash and Investment Balances)
- December 2022 Budget to Actual Report
- December 2022 Budget Account Roll Up Report

Oak Lodge Water Services Monthly Overview December 2022

This report summarizes the revenues and expenditures for December 2022. Also incorporated in this report are account balances, including all cash and investment activity as well as checks and withdrawals.

Cash and Investments

Account Balances As of:		
December 31, 2022	Interest Rate	Balance
Account		
Wells Fargo Bank Checking-3552		\$ 920,350
LGIP	3.04%	\$12,949,210
Total		\$13,869,560

1. The OLWS' checks, electronic withdrawals, and bank drafts total \$956 thousand for December 2022. There were no voided checks.

Below is a table identifying OLWS' three principal sources of service charges in each fund with a comparison between annual budget estimates and year-to-date service charge fees.

		Budget	Period	Y	ear-to-Date	Percentage
GL Account	Service Charge	Estimate	Amount		Amount	of Budget
10-00-4211	Water sales	4,351,000	311,395		2,305,398	53.0%
20-00-4212	Wastewater charges	9,199,000	815,604		4,463,349	48.5%
30-00-4213	Watershed protection	1,592,000	 133,695		783,286	49.2%
	Subtotal	\$ 15,142,000	\$ 1,260,694	\$	7,552,034	49.9%

With respect to revenues, the percentage of budget is affected by seasonal variations. The expectation is that OLWS would recognize a greater percentage of revenue in the first half of the fiscal year than in the second half.

Expenses by Budget Category

The table below provides review of the Budget for the number of months reported to the same number of months of actual expenses. The **Budget YTD** column provides the portion of the Budget for comparison, whereas the financial reports compare actuals to the full annual budget. This view allows for a review at the category level to ensure expenditures remain within the budget within each category.

	FY 2023 Adopted	Budget Year-to-Date	Actuals Year-to-Date	%
Expense Category	Budget	Nov. 2022	Nov. 2022	Spent
Personnel Services	\$ 5,374,000	2,687,000	2,513,501	94%

Materials & Services	\$ 5,372,953	2,686,477		2,225,482	83%
Capital Outlay	\$ 7,282,340	3,641,170	3,641,170		60%
		9,014,647	9,014,647 \$		77%

With respect to expenditures, at the end of December expenditures are overall 40.2% of budget, excluding Contingencies, with 50.0% of the fiscal year completed.

Review of expenditure lines that are above 50% of budget:

- 5130 Overtime is 63.4% of budget. In addition to overtime continuing in Finance and Wastewater Collections, overtime is up for the Drinking Water team and the Wastewater Treatment Plant team due to the seasonality of water main breaks with freezing temperatures and high collection system volumes during the rainy months. However, base on the seasonality, it is anticipated that overtime costs will remain within budget for Drinking Water and Wastewater Treatment Plant teams. Therefore, Budget transfers are proposed only for Finance and Wastewater Collections.
- 2. **6540 Safety Supplies** is 65.0% of budget. Overage is due to replacement of fall restraints and safety harnesses used in confined spaced at the Treatment Plant. The existing items are past the useful and safety life. Harnesses have an expiration date based on the materials used. A budget transfer is proposed for the Wastewater Treatment Plant.
- 3. 6760 Equipment Rental is 153.5% of budget. With the failure of the second of two blowers for digesters 3 & 4, and the continued challenges in rebuilding the first of two that failed early in calendar year 2022, a rental blower has been procured until both new Aerzen blowers are received and installed. Additionally, a forklift that can lift the large aeration basin blower, which is due to be received and installed over the next few months, has also been rented. The current forklift is not rated to lift the weight of these replacement blowers. A budget transfer is proposed for the Wastewater Treatment Plant.

Low Income Rate Relief Program Overview

The Authority allows eligible customers to obtain a discounted rate on a portion of their bill. The Authority budgets resources to fund the revenue losses due to the program at the rate of 0.5% of budgeted service charge revenue. The budgeted amount serves as a cap to the program's cost which can only be exceeded with approval from the OLWS' Board of Directors. The program cap is **\$75,710** for FY 2022-23.

The LIRR Program provides the following discounts:

- Drinking water customers receive a 50% discount on their water base rate. Consumption is billed at full Authority tiered rates.
- Wastewater customers receive a 50% discount on both their base rate and consumption.
- Watershed Protection customers receive a 50% discount on their base rate.

The number of customers for each utility receiving the low-income rates for December 31, 2022 billing are below. The total number of customers enrolled in LIRR are split between the two billing cycles and can vary in total by utility.

		Budget	Budget Year-to-Date Nov. 2022	Actual Year-to-Date Nov. 2022	% Spent
LIRR Program Cap	\$	75,710	37,855	31,319	83%
	# of Customers Current Month		Discount Provided	Fiscal Year To Date	
Drinking Water		69	1,289	7,296	
Wastewater	66		3,494	20,433	
Watershed Protection	66		637	3,590	
			5,420	31,319	

General Ledger Budget to Actual

User: Gail Printed: 2/10/2023 2:51:09 PM Period 06 - 06 Fiscal Year 2023

Account Num	ber Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
05	Administrative Services					
05	NonDivisional					
	Beginning Fund Balance					
05-00-3500	Fund balance	1,168,115.00	0.00	1,493,542.83	0.00	127.86
00 00 0000	Beginning Fund Balance	1,168,115.00	0.00	1,493,542.83	0.00	127.86
	NonDivisional	1,168,115.00	0.00	1,493,542.83	0.00	127.86
	Fund Balance	1,168,115.00	0.00	1,493,542.83	0.00	127.86
	NonDivisional	-,		-,		
	Revenue					
05-00-4227	System	0.00	219.00	1,898.00	0.00	0.00
	Development-Compliance					
05-00-4230	Contracted Services Revenue	57,400.00	4,000.00	29,400.00	0.00	51.22
05-00-4610	Investment revenue	3,000.00	4,629.03	17,385.47	0.00	579.52
05-00-4630	Miscellaneous revenues	10,000.00	1.120.00	8,479.23	0.00	84.79
05 00 1050	Revenue	70,400.00	9,968.03	57,162.70	0.00	81.20
	NonDivisional	70,400.00	9,968.03	57,162.70	0.00	81.20
	Transfers &					
	Contingencies					
	Revenue					
05-29-4910	Transfer in from Fund 10	1,008,000.00	84.000.00	504,000.00	0.00	50.00
05-29-4920	Transfer in from Fund 20	1,920,000.00	160,000.00	960,000.00	0.00	50.00
05-29-4930	Transfer in from Fund 30	1,008,000.00	84,000.00	504,000.00	0.00	50.00
	Revenue	3,936,000.00	328,000.00	1,968,000.00	0.00	50.00
	Transfers & Contingencies	3,936,000.00	328,000.00	1,968,000.00	0.00	50.00
	-	4 005 400 00	227 0.02 02	2 025 1/2 70	0.00	50.55
	Revenue AdminFinance	4,006,400.00	337,968.03	2,025,162.70	0.00	50.55
	Personnel Services					
05-01-5110	Regular employees	705,000.00	70,181.89	360.773.34	0.00	51.17
05-01-5130	Overtime	12,000.00	1,666.68	10,926.47	0.00	91.05
05-01-5150	Healthdental insurance	125,000.00	10,292.91	61,611.69	0.00	49.29
05-01-5230	Social security	55,000.00	4,479.90	25,094.59	0.00	45.63
05-01-5240	Retirement	138.000.00	13,957.91	66,718.27	0.00	48.35
05-01-5250	TrimetWBFPaid Leave OR	6,000.00	633.76	2,997.98	0.00	49.97
05-01-5260	Unemployment	20,000.00	0.00	9,529.00	0.00	47.65
05-01-5270	Workers compensation	1,000.00	24.94	149.64	0.00	14.96
05-01-5290	Other employee benefits	2,000.00	329.04	1,714.33	0.00	85.72
00 01 0200	Personnel Services	1,064,000.00	101,567.03	539,515.31	0.00	50.71
	Materials & Services					
05-01-6110	Legal services	375,000.00	1,058.50	118,188.57	0.00	31.52
05-01-6120	Accounting and audit services	76,000.00	0.00	0.00	0.00	0.00
05-01-6155	Contracted Services	200,000.00	22,912.66	89,597.91	73,921.51	44.80
05-01-6180	Dues and subscriptions	60,000.00	362.27	18,195.46	0.00	30.33
05-01-6220	Electricity	13,000.00	1,001.30	7,786.92	5,213.08	59.90
05-01-6240	Natural gas	4,000.00	881.63	1,915.54	1,980.00	47.89

Account Num	ber Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
05-01-6290	Other utilities	10,000.00	210.39	2,849.99	1,492.19	28.50
05-01-6310	Janitorial services	15,000.00	1,283.57	7,701.42	7,701.42	51.34
05-01-6320	Buildings and grounds	35,000.00	1,331.46	10,910.96	4,473.30	31.17
05-01-6410	maint Mileage	2,700.00	0.00	1,831.34	0.00	67.83
05-01-6420	Staff training	12,000.00	0.00	6,157.46	0.00	51.31
05-01-6440	Board Expense	2,000.00	0.00	0.00	0.00	0.00
05-01-6510	Office supplies	32,000.00	1,361.48	17,629.58	3,331.00	55.09
05-01-6730	Communications	2,000.00	0.00	0.00	0.00	0.00
05-01-6760	Equipment rental	4,000.00	574.80	1,480.73	1,428.30	37.02
05-01-6770	Bank charges	160,000.00	11,728.21	58,974.67	88,145.71	36.86
05-01-6780	Taxes, Fees, Permits	2,000.00	0.00	768.36	0.00	38.42
05-01-6900	Miscellaneous expense	1,000.00	100.00	100.00	0.00	10.00
	Materials & Services	1,005,700.00	42,806.27	344,088.91	187,686.51	34.21
	AdminFinance	2,069,700.00	144,373.30	883,604.22	187,686.51	42.69
	Human Resources Personnel Services					
05-02-5110	Regular employees	278,000.00	27,721.85	138,933.20	0.00	49.98
05-02-5110	Overtime	5,000.00	0.00	271.09	0.00	49.98 5.42
05-02-5210	Healthdental insurance	36.000.00	2,735.39	15,912.09	0.00	44.20
05-02-5230	Social security	22,000.00	2.086.99	10,460.86	0.00	47.55
05-02-5240	Retirement	50,000.00	4,967.76	24,945.48	0.00	49.89
05-02-5250	TrimetWBFPaid Leave OR	3,000.00	244.19	1,134.74	0.00	37.82
05-02-5270	Workers compensation	1,000.00	10.35	62.10	0.00	6.21
05-02-5290	Other employee benefits	1,000.00	584.41	860.17	0.00	86.02
	Personnel Services	396,000.00	38,350.94	192,579.73	0.00	48.63
	Materials & Services					
05-02-6155	Contracted Services	52,000.00	0.00	10,977.27	0.00	21.11
05-02-6175	Records Management	8,500.00	367.11	2,756.18	2,093.22	32.43
05-02-6230	Telephone	63,000.00	3,742.37	22,925.26	31,991.85	36.39
05-02-6410	Mileage	1,000.00	22.87	650.76	0.00	65.08
05-02-6420 05-02-6440	Staff training Board Expense	25,000.00 7,000.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	4,604.02 2,033.37	$\begin{array}{c} 0.00\\ 0.00\end{array}$	18.42 29.05
05-02-6510	Office supplies	2,200.00	0.00	109.99	0.00	5.00
05-02-6540	Safety Supplies	2,000.00	0.00	52.84	0.00	2.64
05-02-6560	Uniforms	38,000.00	1,957.30	16,376.23	14,725.00	43.10
05-02-6610	Board Compensation	2,500.00	0.00	0.00	0.00	0.00
05-02-6720	Insurance-General	300,000.00	15,184.44	89,857.09	0.00	29.95
05-02-6730	Communications	38,100.00	1,189.38	2,761.64	918.56	7.25
05-02-6740	Advertising	6,000.00	1,238.00	2,173.00	0.00	36.22
05-02-6900	Miscellaneous expense	1,000.00	0.00	27.19	0.00	2.72
	Materials & Services	546,300.00	23,701.47	155,304.84	49,728.63	28.43
	Human Resources	942,300.00	62,052.41	347,884.57	49,728.63	36.92
	Technical Services					
05 02 5110	Personnel Services	5 40.000.00	10 (01 04	219 051 01	0.00	20.70
05-03-5110	Regular employees	549,000.00	42,691.24	218,051.91	0.00	39.72
05-03-5130 05-03-5210	Overtime Healthdental Insurance	5,000.00	0.00 6,067.92	0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00 44.32
05-03-5230	Social security	83,000.00 43,000.00	3,217.82	36,782.19 16,379.16	0.00	44.52 38.09
05-03-5240	Retirement	102,000.00	8,047.57	41,104.05	0.00	40.30
05-03-5250	TrimetWBFPaid Leave OR	5,000.00	373.50	1,769.19	0.00	35.38
05-03-5270	Workers compensation	1,000.00	19.42	116.52	0.00	11.65
05-03-5290	Other employee benefits	2,000.00	191.32	279.60	0.00	13.98
05 05 5270	Personnel Services	790,000.00	60,608.79	314,482.62	0.00	39.81
	Materials & Services					
05-03-6155	Contracted Services	90,500.00	2,715.13	21,787.91	35,481.12	24.08
05-03-6180	Dues and subscriptions	0.00	0.00	0.00	0.00	0.00
05-03-6350	Computer maintenance	313,103.00	43,773.72	140,732.15	57,608.63	44.95
05-03-6410	Mileage	1,000.00	0.00	323.87	0.00	32.39
05-03-6420	Staff training	10,500.00	0.00	4,343.59	0.00	41.37
05-03-6430	Certifications	2,000.00	405.00	980.00	0.00	49.00
CI Dudatta A	atual (02/10/2022 02:51 DM)					Daga 2

GL - Budget to Actual (02/10/2023 - 02:51 PM)

Account Numb	per Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
05-03-6530	Small tools and equipment	0.00	0.00	250.00	0.00	0.00
05-03-6540	Safety supplies	5,000.00	128.60	1,473.01	1,800.40	29.46
05-03-6550	Operational Supplies	3,000.00	0.00	0.00	0.00	0.00
05-03-6900	Miscellaneous expense	1,000.00	0.00	0.00	0.00	0.00
	Materials & Services	426,103.00	47,022.45	169,890.53	94,890.15	39.87
	Technical Services	1,216,103.00	107,631.24	484,373.15	94,890.15	39.83
	Vehicle Services Materials & Services					
05-04-6330	Vehicleequipment maintenance	75,000.00	14,797.41	36,181.49	6,905.19	48.24
05-04-6520	Fuels and Oils	51,000.00	3,060.69	21,968.77	0.00	43.08
	Materials & Services	126,000.00	17,858.10	58,150.26	6,905.19	46.15
	Vehicle Services	126,000.00	17,858.10	58,150.26	6,905.19	46.15
	Transfers & Contingencies <i>Transfers & Contingencies</i>					
05-29-9000	Contingency	788,412.00	0.00	0.00	0.00	0.00
	Transfers & Contingencies	788,412.00	0.00	0.00	0.00	0.00
	Transfers & Contingencies	788,412.00	0.00	0.00	0.00	0.00
	Expense	5,142,515.00	331,915.05	1,774,012.20	339,210.48	34.50
05	Administrative Services	32,000.00	6,052.98	1,744,693.33	-339,210.48	5,452.17
10	Drinking Water NonDivisional					
10-00-3500	<i>Beginning Fund Balance</i> Fund balance	1,015,771.00	0.00	895,771.64	0.00	88.19
10 00 0000	Beginning Fund Balance	1,015,771.00	0.00	895,771.64	0.00	88.19
	NonDivisional	1,015,771.00	0.00	895,771.64	0.00	88.19
	Fund Balance NonDivisional	1,015,771.00	0.00	895,771.64	0.00	88.19
	Revenue					
10-00-4210	Water Sales - CRW	30,000.00	2,472.18	24,859.14	0.00	82.86
10-00-4211	Water sales	4,351,000.00	311,395.08	2,305,398.25	0.00	52.99
10-00-4215	Penalties and late charges	15,000.00	1,759.03	8,513.28	0.00	56.76
10-00-4220	System development charges	0.00	0.00	2,181.60	0.00	0.00
10-00-4240	Service installations	10,000.00	513.00	12,395.00	0.00	123.95
10-00-4280	Rents & leases	180,000.00	14,862.85	96,270.65	0.00	53.48
10-00-4290	Other charges for services	10,000.00	200.00	4,840.00	0.00	48.40
10-00-4610	Investment revenue	3,000.00	848.92	3,562.77	0.00	118.76
10-00-4630	Miscellaneous revenues <i>Revenue</i>	25,000.00 4,624,000.00	9,568.00 341,619.06	25,970.97 2,483,991.66	0.00 <i>0.00</i>	103.88 53.72
	NonDivisional	4,624,000.00	341,619.06	2,483,991.66	0.00	53.72
	Revenue	4,624,000.00	341,619.06	2,483,991.66	0.00	53.72
	Drinking Water Personnel Services	, , ,	,	,,		
10-20-5110	Regular employees	723,000.00	70,458.41	353,094.43	0.00	48.84
10-20-5130	Overtime	31,000.00	4,156.79	18,662.85	0.00	60.20
10-20-5210	Healthdental insurance	134,000.00	8,957.64	53,584.17	0.00	39.99
10-20-5230	Social Security	56,000.00	5,647.42	28,040.76	0.00	50.07
10-20-5240	Retirement TrimetWBFPaid Leave OR	133,000.00	14,238.92 655.76	71,046.25	$\begin{array}{c} 0.00\\ 0.00\end{array}$	53.42 50.68
10-20-5250 10-20-5270	Workers compensation	6,000.00 19,000.00	536.90	3,040.55 3,221.40	0.00	16.95
10-20-5290	Other employee benefits	5,000.00	340.54	818.77	0.00	16.38
	Personnel Services	1,107,000.00	104,992.38	531,509.18	0.00	48.01
	· · · · · · · · · · · · · · · · · · ·	,,	. ,. =====			

10-23-6410 Distribution System maint 2200,000,00 114,204,11 113,070,22 40,743,18 56,900 10-23-6410 Mileage 500,000 0,000 19,582,26 0,000 76,666 10-24-6430 Staff training 12,590,000 140,000 55,600 0,000 145,54 10-20-6540 Safety supplies 7,000,000 167,24 10,308,35 0,000 114,54 10-20-6540 Operational Supplies 7,000,000 627,76 5,725,33 0,000 81,79 10-20-6700 Parchaed water 1,170,000,000 624,417 625,778 61,875,74 53,49 10-20-6700 Water quality program 16,000,00 2,649,27 3,921,15 0,00 24,51 10-20-6700 Material & Services 1,680,00,00 20,002,40 902,111,00 76,669,25 54,64 10-24-6815 Zions Bank loan-interest 2,1063,00 0,000 10,000 0,000 10,000 50,000 10-24-6815 Zions Bank loan-interest 2,1063,00 0,000 10,000 50,000 50,400 10-24-6815 Zions Bank l	Account Num	ber Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
10-20-6155 Contracted Services 105.0000 4.408.15 81.042.99 81.002.39 48.07 10-20-6200 Nitural gas 3.500.00 199.59 1.207.32 1.720.53 40.77 10-20-6200 Other unifies 3.600.00 10.33.07 2.270.77 0.00 2.271 10-20-630 Buildings & grounds 10.000.000 1.424.41 11.357.84 4.974.31 56.09 10-20-6420 Staff training 12.200.00 0.00 9.582.26 0.00 176.66 10-20-6430 Staff training 12.000.00 1.500.00 1.0308.36 0.00 177.66 10-20-6540 Staff training 1.000.00 6.372.6 2.733.90 44.62 10-20-6540 Operational Supplies 7.000.00 6.372.6 5.725.33 0.00 17.52 10-20-6710 Water quality program 16.000.00 2.000.01 1.41.53 1.91 1.77 10-20-6700 Materials & Struter 1.000.00 2.01.94.78 1.433.620.27 776.609.25 51.41 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
10-20-6220 Electricity 38,000.00 2-498.93 18,201.65 19.098.35 49.74 10-20-6240 Other utilities 3,000.00 10.386.37 2,017.22 1,728.58 56.08 10-20-6320 Other utilities 3,000.00 14.244.11 11.3770.22 49.743.18 55.09 10-20-6430 Mileage 50.00 0.00 10.337.4 0.00 21.75 10-20-6430 Small tools & equipment 2000.00 140.00 55.00 0.00 27.80 10-20-6540 Small tools & equipment 900.00.0 62.77 5.725.33 0.00 81.79 10-20-6540 Safery supplies 1.000.00 63.48.17 62.578.86 0.00 64.27 10-20-6760 Equipment Rental 8.000.00 2.19.00 5.318.00 0.00 64.44.02 10-20-6760 Equipment Rental 8.000.00 2.00.31.55 0.00 5.04 10-20-6780 Material & Services 1.68.000.00 0.00 1.03.53.00 0.00 1.00 1	10 20 6155		166 500 00	4 400 15	81 042 50	01 000 42	49.67
10:20:6240 Natural gis 3500.00 199.59 1.207.32 1.200.00 3449 10:20:6240 Other unifies 3.600.00 366.37 2.077.72 1.728.58 566.00 10:20:6320 Buildings & grounds 10.000.00 1.4204.11 11.370.22 49.743.18 559.90 10:20:6420 Staff training 1.2300.00 1.4204.11 11.370.22 49.743.18 559.90 10:20:6420 Staff training 1.2300.00 1.400.9 556.00 0.00 77.60 10:20:6420 Centifications 2.000.00 1.600.75 10.620.64 2.073.30 1.442 10:20:6700 Operational Supplies 7.000.00 63.765 5.725.53 0.00 44.51 10:20:6700 Operational Supplies 7.000.00 2.649.27 3.921.15 0.00 2.451 10:20:6700 Traxes, Fees. Permits 1.000.00 2.949.27 3.921.15 0.00 2.645 10:20:6700 Traxes, Fees. Permits 1.000.00 2.049.02 1.61.31.30 0.00			,	,	,	,	
10-20-6200 Other utilities 3,600.00 368.37 2,217.22 17.228.58 56.08 10-20-6320 Distifuines grounds 10,000.00 14.324.11 113.970.32 49.974.51.88 550.99 10-20-6410 Maleage 500.00 0.00 9.582.26 0.00 76.66 10-20-6420 Staff training 2,000.00 140.00 9.582.26 0.00 77.66 10-20-6420 Staff training 2,000.00 140.00 5.660.00 0.00 27.83.00 14.67 10-20-6540 Staffy supplies 15000.00 160.07.5 5.063.26 2.73.39.00 44.67 10-20-6710 Purchnased water 1.170.000.00 62.47.87.88 61.879.57.4 53.49 10-20-6700 Faujment Renal 8,000.00 2.19.00 5.318.00 0.00 24.65 10-20-6700 Faujment Renal 8,000.00 2.90.01 5.41.19 77.66.09.25 5.1.41 10-20-6700 Faujment Renal 8,000.00 2.00.01 3.0.00 0.00 1.00.1.51.35 <td></td> <td>5</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td></td>		5	,	,	,	,	
10-20-6320 Buildings & grounds 10.000.000 14.033.07 2.270.77 0.00 22.71 10-20-6440 Mickage 500.00 0.00 108.74 0.00 21.75 10-20-6440 Mickage 500.00 0.00 188.74 0.00 21.75 10-20-6430 Certifications 2.000.00 140.00 556.00 0.00 27.80 10-20-6430 Smalt tools & equipment 9.000.00 175.24 10.38.35 0.00 144.54 10-20-6730 Smalt tools & equipment 15.000.00 cs.492.37 6.293.35 6.18.73.50 44.62 10-20-6700 Operational Septise 1.000.00 2.049.27 3.921.15 0.00 0.00 24.51 10-20-6700 Taxes, Fees, Permits 19.000.00 2.949.27 3.921.15 0.00 24.51 10-20-6700 Taxes, Fees, Permits 19.000.00 2.949.27 3.921.15 0.00 2.00 10-20-6700 Materiak & Sorriter 1.008.000.00 9.00.21.11.09 776.609.25 53.65			,		,	,	
10-20-6340 Distribution system main 200,000.00 14,204.11 113,970.22 49,743.18 56.90 10-20-6420 Staff training 12,500.00 0.00 18374 0.00 77.66 10-20-6420 Staff training 12,500.00 0.00 105374 10.308.36 0.00 77.60 10-20-6540 Sardey simples 7,000.00 167.75 5,727.33 0.00 144.53 10-20-6540 Operational Surplics 7,000.00 627.76 5,727.88 618,757.14 51.77 10-20-6740 Parchased water am 1770,000.00 210.00 14,412.50 1.01.07 75.86 10-20-6740 Faginpment Renal 8,000.00 200.00 14,412.50 1.01.07 75.86 10-20-6740 Faginpment Renal 19,000.00 200.00 14,412.50 1.01.07 75.86 10-20-6780 Materials & Services 1,681,600.60 90,012.40 902,111.00 76.669.25 53.66 10-24-6815 Zions Bank foam-interest 2,108.300 0.00 10.031.35 0.00 50.41 10-24-6815 Zions Bank foam-inter			,		,	· · · · · · · · · · · · · · · · · · ·	22.71
$ \begin{array}{c} 102-0.6410 \\ 102-0.6420 \\ 102-0.6430 \\ \text{Cartifications} \\ 21,000.00 \\ 102-0.6430 \\ \text{Cartifications} \\ 21,000.00 \\ 15,24 \\ 102-0.6430 \\ \text{Staff training} \\ 102-0.6710 \\ \text{Furdised water} \\ 1.170,000.00 \\ 62,148,17 \\ 102-0.776 \\ 102-0.778 \\ \text{Karerides Staff training} \\ 102-0.6710 \\ \text{Furdised water} \\ 1.100,000 \\ 102-0.710 \\ \text{Furdised water} \\ 1.020,000 \\ 102-0.710 \\ \text{Furdised water} \\ 1.020,000 \\ 102-0.710 \\ \text{Furdised water} \\ 1.080,000 \\ 102-0.710 \\ \text{Karerides Services} \\ 1.081,0000 \\ 1000 \\ 102-0.713 \\ \text{Karerides Services} \\ 1.090,000 \\ 1000 \\ 102-0.713 \\ \text{Karerides Services} \\ 1.000,000 \\ 1000$,	,		49,743.18	56.99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-20-6410		500.00	0.00	108.74	0.00	21.75
10-20-6530 Small tools & capingment 9,000.00 175,24 10,308.36 0.00 114,54 10-20-6530 Operational Supplies 7,000.00 6,609.36 2,733.90 44,62 10-20-6710 Purchased water 1,170,000.00 68,144.17 62,5778.88 618,795.74 53,49 10-20-6710 Purchased water 1,170,000.00 62,449.27 3,921.15 0.00 24,51 10-20-6780 Taxes, Fees, Permis 19,000.00 20,000 14,412.50 0.00 24,56 10-20-6780 Macerlances expense 1,081,600.00 99.99 296.84 0.00 296.68 10-24-6815 Zions Bank loan-principal 188,000.00 0.00 10.03 1,000 0.00 10-24-6815 Zions Bank loan-principal 188,000.00 0.00 10.531.35 0.00 50.40 10-24-6815 Zions Bank loan-principal 188,000.00 0.00 10.531.35 0.00 50.40 10-24-6815 Zions Bank loan-principal 180.000.00 77.333.00 44.602.00 0.00 50.40 10-24-6815 Transfers out to Fund 71 92			,		,		76.66
10-20-6530 Sufey supplies			,				
$ \begin{array}{c cl} 0-20-650 \\ 0-20-6710 \\ 0-20-6710 \\ 0-20-6715 \\ Water quality program \\ 110,000,00 \\ 0-20,4700 \\ Equipment Rental \\ 8,000,00 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-670 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 10-20-6815 \\ 2000 \\ 10-20-6815 \\ 10-20-680 \\ 10-20-7815 \\ 10-20-680 $,		,		
$ \begin{array}{c cl} 0-20-6710 & \operatorname{Pirchased water} & 1.170,000.00 & 68,148,17 & 625,778,88 & 618,795.74 & 53.49 & 54.92,18 & 0.00 & 24.51 \\ 10-20-6780 & Equipment Rental & 8,000.00 & 2.19.00 & 5.318.00 & 0.00 & 66.48 & 51.05.00 & 0.00 & 16.24.51 & 10.20.6780 & Materials & Services & 1.000.00 & 79.99 & 20.68 & 0.00 & 29.68 & 0.00 & 0$,	,	,	· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c cl} 0.206715 & Water quality program 16.000,00 2.049,27 3.92.115 0.00 24.51 \\ 10-206780 & Equipment Rental 8.000,00 200,00 14.412.53 1.911,07 75.86 \\ 10-206780 & Taxes, Fee, Permits 9.000,00 79.99 200,00 14.412.50 1.911,07 75.86 \\ Materials & Services 1,000,00 79.99 902,111.09 776,609.25 35.45 \\ \hline Drinking Water 2,788,600,00 201,004.78 1.433,620.27 776,609.25 51.41 \\ \hline Materials & Services 18.000,00 0.00 0.00 0.00 0.00 0.00 0.00 10.531.35 0.00 50.00 \\ Materials & Services 209,063.00 0.00 10.531.35 0.00 50.00 \\ Materials & Services 209,063.00 0.00 10.531.35 0.00 50.00 \\ \hline Debt Service 209,063.00 0.00 10.531.35 0.00 50.00 \\ Materials & Services 209,063.00 0.00 0.00 0.00 50.00 50.00 \\ Transfers & Contingencies 70,000 0.00 0.00 0.00 50.00 \\ \hline D-29-8105 \\ Transfers & Contingencies 70,000 84,000,00 504,000,00 0.00 50.00 \\ \hline D-29-8171 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 36.64 \\ \hline Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 0.00 \\ Transfers & Contingencies 2,642,108.00 161,333.00 968,002.00 0.00 111.21 \\ Revenue 1,207,862.00 0.00 1,343,226.59 0.00 111.21 \\ Revenue 1,200,000 81,563.09,564 4,463,349,26 0.00 56.76 \\ 20.00-4212 Realises Relatere Reclams 1,207,862.00 0.00 1,544,226.59 0.00 111.21 \\ $,				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$,	,		
$ \begin{array}{c c} 10-20.6780 \\ 10-20.6780 \\ 10-20.6780 \\ Miscilances expense 1.000.00 79.99 \\ 200.00 \\ 10.21.40 \\ 902.111.09 \\ 776,609.25 \\ 10.20.690 \\ 10.21.40 \\ 902.111.09 \\ 776,609.25 \\ 10.20 \\ 10.24 \\ 6815 \\ 10.25 \\ 10.2$,	,	,		
			,		,		75.86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-20-6900		1,000.00	79.99	296.84	0.00	29.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Materials & Services	1,681,600.00	96,012.40	902,111.09	776,609.25	53.65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Drinking Water	2,788,600.00	201,004.78	1,433,620.27	776,609.25	51.41
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
	10-24-6815		188.000.00	0.00	0.00	0.00	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10-24-6825		,	0.00	10,531.35	0.00	50.00
$ \begin{array}{c} \begin{array}{c} \mbox{Transfers \& Contingencies} \\ \mbox{Transfers & Contingencies} \\ \mbox{Transfers out to Fund 05} & 1.008,000.00 & 84,000.00 & 504,000.00 & 0.00 & 50.00 \\ \mbox{10-29-8107} & \mbox{Transfers out to Fund 71} & 928,000.00 & 77,333.00 & 464,002.00 & 0.00 & 50.00 \\ \mbox{Transfers & Contingencies} & 2.642,108.00 & 161,333.00 & 968,002.00 & 0.00 & 36.64 \\ \mbox{Transfers & Contingencies} & 2.642,108.00 & 161,333.00 & 968,002.00 & 0.00 & 36.64 \\ \mbox{Transfers & Contingencies} & 5,639,771.00 & 362,337.78 & 2,412,153.62 & 776,609.25 & 42.77 \\ \mbox{10} & \mbox{Expense} & 5,639,771.00 & 362,337.78 & 2,412,153.62 & 776,609.25 & 42.77 \\ \mbox{10} & \mbox{Drinking Water} & 0.00 & -20,718.72 & 967,609.68 & -776,609.25 & 40.00 \\ \mbox{20} & \mbox{Wastewater Reclam.} \\ \mbox{NonDivisional} & \mbox{Beginning Fund Balance} & 1,207,862.00 & 0.00 & 1,343,226.59 & 0.00 & 111.21 \\ \mbox{NonDivisional} & \mbox{1,207,862.00} & 0.00 & 1,343,226.59 & 0.00 & 111.21 \\ \mbox{NonDivisional} & \mbox{1,207,862.00} & 0.00 & 1,343,226.59 & 0.00 & 111.21 \\ \mbox{NonDivisional} & \mbox{Revenue} & \mbox{2,000.00} & 51,650 & 30,9000 & 0.00 & 30.99 \\ \mbox{2,000-4212} & \mbox{Wastewater charges} & 9,199,000.00 & 815,603.96 & 4,463,349.26 & 0.00 & 48.52 \\ \mbox{2,000-4213} & \mbox{Pranilies & larges} & 9,199,000.00 & 51,650 & 30,990.00 & 0.00 & 30.99 \\ \mbox{charges} & \mbox{2,00000} & 51,650 & 30,990.00 & 0.00 & 30.99 \\ \mbox{charges} & \mbox{2,00000} & 0.00 & 55,41,00 & 0.00 & 60.76 \\ \mbox{2,000-4220} & \mbox{System development} & 100,000.00 & 51,650 & 30,990.00 & 0.00 & 62.60 \\ \mbox{2,000-4630} & \mbox{Miscellaneous revenue} & 2,000.00 & 141.86 & 626.01 & 0.00 & 62.60 \\ \mbox{2,000-4630} & \mbox{Miscellaneous revenue} & 2,000.00 & 821,661.28 & 4,505,562.33 & 0.00 & 48.52 \\ \mbox{2,000-4630} & \mbox{Miscellaneous revenue} & 2,000.00 & 821,661.28 & 4,505,562.33 & 0.00 & 48.52 \\ \mbox{2,000-4630} & \mbox{Miscellaneous revenue} & 2,319,000.00 & 821,661.28 & 4,505,562.33 & 0.00 \\ \mbox{2,000} & \mbox{2,000} & \mbox{2,000} & 0.00 &$		Materials & Services	209,063.00	0.00	10,531.35	0.00	5.04
		Debt Service	209,063.00	0.00	10,531.35	0.00	5.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10-29-8105	Transfers out to Fund 05	1,008,000.00	84,000.00	,		50.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		-)		50.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10-29-9000	6.	,				
Contingencies International and the state of the state o		Transfers & Contingencies	2,642,108.00	161,333.00	968,002.00	0.00	36.64
10 Drinking Water 0.00 -20,718.72 967,609.68 -776,609.25 0.00 20 Wastewater Reclam. NonDivisional Beginning Fund Balance			2,642,108.00	161,333.00	968,002.00	0.00	36.64
20 Wastewater Reclam. NonDivisional 20-00-3500 Fund Balance 20-00-3500 Fund Balance 20-00-3500 Fund balance 1,207,862.00 0.00 0.00 1,343,226.59 0.00 1,343,226.59 0.00 1,343,226.59 0.00 1,121 NonDivisional 1,207,862.00 0.00 NonDivisional 1,207,862.00 0.00 1,343,226.59 NonDivisional 1,207,862.00 0.00 1,343,226.59 0.00 NonDivisional 1,207,862.00 0.00 1,343,226.59 0.00 111.21 Revenue 1,207,862.00 0.00 1,343,226.59 0.00 111.21 20-00-4212 Wastewater charges 9,199,000.00		Expense	5,639,771.00	362,337.78	2,412,153.62	776,609.25	42.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Drinking Water	0.00	-20,718.72	967,609.68	-776,609.25	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20						
Beginning Fund Balance $1,207,862.00$ 0.00 $1,343,226.59$ 0.00 111.21 NonDivisional $1,207,862.00$ 0.00 $1,343,226.59$ 0.00 111.21 Fund Balance $1,207,862.00$ 0.00 $1,343,226.59$ 0.00 111.21 NonDivisional Revenue $20-00-4212$ Wastewater charges $9,199,000.00$ $815,603.96$ $4,463,349.26$ 0.00 48.52 $20-00-4212$ Wastewater charges $7,000.00$ 750.46 $4,253.06$ 0.00 60.76 $20-00-4215$ Penalties & late charges $7,000.00$ $5,165.00$ $30,990.00$ 0.00 30.99 $20-00-4220$ System development $100,000.00$ $5,165.00$ $30,990.00$ 0.00 55.41 $20-00-4290$ Other charges for services $10,000.00$ 41.86 626.01 0.00 62.60 $20-00-4610$ Investment revenue $1,000.00$ $821,661.28$ $4,505,562.33$ 0.00 48.52 $20-00-4630$ Miscellaneous revenues $2,000.00$ $821,661.28$ $4,505,562.33$ 0.00 48.52							
NonDivisional 1,207,862.00 0.00 1,343,226.59 0.00 111.21 Fund Balance 1,207,862.00 0.00 1,343,226.59 0.00 111.21 NonDivisional Revenue 1,207,862.00 0.00 1,343,226.59 0.00 111.21 20-00-4212 Wastewater charges 9,199,000.00 815,603.96 4,463,349.26 0.00 48.52 20-00-4215 Penalties & late charges 7,000.00 750.46 4,253.06 0.00 60.76 20-00-4220 System development 100,000.00 5,165.00 30,990.00 0.00 80.99 20-00-4290 Other charges for services 10,000.00 0.00 5,541.00 0.00 55.41 20-00-4610 Investment revenue 1,000.00 141.86 626.01 0.00 62.60 20-00-4630 Miscellaneous revenues 2,000.00 821,661.28 4,505,562.33 0.00 48.35	20-00-3500						111.21
Fund Balance 1,207,862.00 0.00 1,343,226.59 0.00 111.21 NonDivisional Revenue 1,207,862.00 0.00 1,343,226.59 0.00 111.21 20-00-4212 Wastewater charges 9,199,000.00 815,603.96 4,463,349.26 0.00 48.52 20-00-4215 Penalties & late charges 7,000.00 750.46 4,253.06 0.00 60.76 20-00-4220 System development 100,000.00 5,165.00 30,990.00 0.00 30.99 20-00-4220 Other charges for services 10,000.00 0.00 5,541.00 0.00 55.41 20-00-4200 Other charges for services 10,000.00 0.00 5,541.00 0.00 55.41 20-00-4610 Investment revenue 1,000.00 141.86 626.01 0.00 62.60 20-00-4630 Miscellaneous revenues 2,000.00 821,661.28 4,505,562.33 0.00 48.35		Beginning Fund Balance	1,207,862.00	0.00	1,343,226.59	0.00	111.21
NonDivisional Revenue20-00-4212Wastewater charges $9,199,000.00$ $815,603.96$ $4,463,349.26$ 0.00 48.52 20-00-4215Penalties & late charges $7,000.00$ 750.46 $4,253.06$ 0.00 60.76 20-00-4220System development $100,000.00$ $5,165.00$ $30,990.00$ 0.00 30.99 charges $20-00-4290$ Other charges for services $10,000.00$ 0.00 $5,541.00$ 0.00 55.41 20-00-4610Investment revenue $1,000.00$ 141.86 626.01 0.00 62.60 20-00-4630Miscellaneous revenues $2,000.00$ 0.00 803.00 0.00 40.15 Revenue $9,319,000.00$ $821,661.28$ $4,505,562.33$ 0.00 48.35		NonDivisional	1,207,862.00	0.00	1,343,226.59	0.00	111.21
20-00-4212 Wastewater charges 9,199,000.00 815,603.96 4,463,349.26 0.00 48.52 20-00-4215 Penalties & late charges 7,000.00 750.46 4,253.06 0.00 60.76 20-00-4220 System development 100,000.00 5,165.00 30,990.00 0.00 30.99 charges		NonDivisional	1,207,862.00	0.00	1,343,226.59	0.00	111.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.00.4212		0 100 000 00	015 (02.05	4 4 60 0 40 0 6	0.00	10.55
20-00-4220 System development 100,000.00 5,165.00 30,990.00 0.00 30.99 20-00-4290 Other charges for services 10,000.00 0.00 5,541.00 0.00 55.41 20-00-4610 Investment revenue 1,000.00 141.86 626.01 0.00 62.60 20-00-4630 Miscellaneous revenues 2,000.00 0.00 803.00 0.00 40.15 <i>Revenue</i> 9,319,000.00 821,661.28 4,505,562.33 0.00 48.35							
charges20-00-4290Other charges for services10,000.000.005,541.000.0055.4120-00-4610Investment revenue1,000.00141.86626.010.0062.6020-00-4630Miscellaneous revenues2,000.000.00803.000.0040.15 <i>Revenue</i> 9,319,000.00821,661.284,505,562.330.0048.35							
20-00-4290 Other charges for services 10,000.00 0.00 5,541.00 0.00 55.41 20-00-4610 Investment revenue 1,000.00 141.86 626.01 0.00 62.60 20-00-4630 Miscellaneous revenues 2,000.00 0.00 803.00 0.00 40.15 <i>Revenue</i> 9,319,000.00 821,661.28 4,505,562.33 0.00 48.35	20-00-4220		100,000.00	5,105.00	50,790.00	0.00	50.79
20-00-4610 Investment revenue 1,000.00 141.86 626.01 0.00 62.60 20-00-4630 Miscellaneous revenues 2,000.00 0.00 803.00 0.00 40.15 <i>Revenue</i> 9,319,000.00 821,661.28 4,505,562.33 0.00 48.35	20-00-4290		10.000.00	0.00	5,541.00	0.00	55.41
20-00-4630Miscellaneous revenues2,000.000.00803.000.0040.15Revenue9,319,000.00821,661.284,505,562.330.0048.35			· ·		,		62.60
			2,000.00	0.00	803.00	0.00	40.15
NonDivisional 9,319,000.00 821,661.28 4,505,562.33 0.00 48.35		Revenue	9,319,000.00	821,661.28	4,505,562.33	0.00	48.35
		NonDivisional	9,319,000.00	821,661.28	4,505,562.33	0.00	48.35

Account Numb	er Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
	Revenue Wastewater-Plant	9,319,000.00	821,661.28	4,505,562.33	0.00	48.35
	Personnel Services		<i></i>		0.00	
20-21-5110	Regular employees	681,000.00	64,337.39	310,074.73	0.00	45.53
20-21-5130 20-21-5210	Overtime Healthdental insurance	40,000.00 185,000.00	5,924.13 14,130.54	22,603.98 80,913.28	$\begin{array}{c} 0.00\\ 0.00\end{array}$	56.51 43.74
20-21-5230	Social security	53.000.00	5,312.12	25,008.33	0.00	47.19
20-21-5240	Retirement	123,000.00	12,590.88	59,616.12	0.00	48.47
20-21-5250	TrimetWBFPaid Leave OR	6,000.00	629.07	2,734.65	0.00	45.58
20-21-5270	Workers compensation	12,000.00	542.98	3,257.88	0.00	27.15
20-21-5290	Other employee benefits	5,000.00	485.59	839.32	0.00	16.79
	Personnel Services	1,105,000.00	103,952.70	505,048.29	0.00	45.71
	Materials & Services					
20-21-6155	Contracted Services	253,750.00	6,050.53	84,193.23	192,769.92	33.18
20-21-6180	Dues and subscriptions	0.00	0.00	112.21	0.00 180,255.77	0.00
20-21-6220 20-21-6240	Electricity Netural gas	307,000.00 2,000.00	21,916.48 28.16	126,744.23 162.88	180,255.77 180.00	41.28 8.14
20-21-6250	Natural gas Solid waste disposal	52,000.00	9,079.58	15,049.33	24,104.31	28.94
20-21-6290	Other utilities	0.00	180.00	720.00	0.00	0.00
20-21-6310	Janitorial services	11,000.00	907.48	5,444.88	5,444.88	49.50
20-21-6320	Buildings & grounds	58,000.00	5,327.11	24,743.21	26,244.24	42.66
20-21-6342	WRF system maintenance	200,000.00	12,476.64	77,654.38	66,155.24	38.83
20-21-6410	Mileage	1,000.00	0.00	378.75	0.00	37.88
20-21-6420	Staff training	9,000.00	0.00	5,230.09	0.00	58.11
20-21-6430 20-21-6525	Certifications Chemicals	2,000.00 65,000.00	0.00 5,137.97	510.00 33,079.32	0.00 31,920.68	25.50 50.89
20-21-6530	Small tools & equipment	10,000.00	182.26	850.25	0.00	8.50
20-21-6540	Safety supplies	23,500.00	11,076.24	22,861.57	8,400.00	97.28
20-21-6550	Operational Supplies	17,500.00	64.35	5,589.04	0.00	31.94
20-21-6560	Uniforms	0.00	111.99	111.99	0.00	0.00
20-21-6590	Other supplies	5,000.00	114.95	474.66	0.00	9.49
20-21-6740	Advertising	500.00	0.00	0.00	0.00	0.00
20-21-6760	Equipment rental	0.00	11,620.00	11,620.00	23,400.00	0.00
20-21-6780 20-21-6900	Taxes, Fees, Permits Miscellaneous expense	100,700.00 1,000.00	2,878.69 0.00	46,833.32 0.00	28,318.38 0.00	46.51 0.00
20-21-0900	Materials & Services	1,118,950.00	87,152.43	462,363.34	587,193.42	41.32
	Wastewater-Plant	2,223,950.00	191,105.13	967,411.63	587,193.42	43.50
	Wastewater-Collections Personnel Services					
20-22-5110	Regular employees	507,000.00	50,166.22	229,904.24	0.00	45.35
20-22-5130	Overtime	11,000.00	2,679.49	16,676.47	0.00	151.60
20-22-5210	Healthdental insurance	109,000.00	8,173.71	47,994.81	0.00	44.03
20-22-5230	Social security	40,000.00	4,014.10	18,706.48	0.00	46.77
20-22-5240 20-22-5250	Retirement	65,000.00	8,029.58	34,657.91	0.00	53.32
20-22-5250	TrimetWBFPaid Leave OR Workers compensation	4,000.00 11,000.00	467.73 404.25	2,033.11 2,425.50	0.00 0.00	50.83 22.05
20-22-5290	Other employee benefits	5,000.00	159.43	470.21	0.00	9.40
20 22 3290	Personnel Services	752,000.00	74,094.51	352,868.73	0.00	46.92
	Materials & Services					
20-22-6155	Contracted Services	12,500.00	0.00	2,535.08	14.92	20.28
20-22-6220	Electricity	50,000.00	5,868.91	21,703.02	28,296.98	43.41
20-22-6290	Other utilities	2,000.00	226.91	620.46	249.06	31.02
20-22-6320	Buildings & grounds	1,000.00	0.00	0.00	0.00	0.00
20-22-6342 20-22-6410	Collection system maint.	45,000.00 1,000.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	2,209.04 56.40	0.00 0.00	4.91 5.64
20-22-6410	Mileage Staff training	18,000.00	840.50	56.40 11,038.17	0.00	5.64 61.32
20-22-6430	Certifications	2,000.00	0.00	977.00	0.00	48.85
20-22-6530	Small tools & equipment	15,000.00	2,824.67	6,172.25	298.50	41.15
20-22-6540	Safety supplies	9,000.00	2,024.46	4,962.85	14.22	55.14
20-22-6550	Operational Supplies	5,000.00	0.00	679.63	0.00	13.59
20-22-6560	Uniforms	0.00	0.00	833.44	0.00	0.00
20-22-6780	Taxes, Fees, Permits	25,000.00	748.80	6,382.43	5,927.01	25.53
GL - Budget to Ad	ctual (02/10/2023 - 02:51 PM)					Page 5

GL - Budget to Actual (02/10/2023 - 02:51 PM)

Account Num	ber Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
20-22-6900	Miscellaneous expense Materials & Services	1,000.00 186,500.00	0.00 12,534.25	34.32 58,204.09	0.00 <i>34,800.69</i>	3.43 <i>31.21</i>
	Wastewater-Collections	938,500.00	86,628.76	411,072.82	34,800.69	43.80
	Transfers & Contingencies <i>Transfers & Contingencies</i>					
20-29-8105	Transfers out to Fund 05	1,920,000.00	160,000.00	960,000.00	0.00	50.00
20-29-8150	Transfers out to Fund 50	3,435,000.00	479,000.00	1,219,000.00	0.00	35.49
20-29-8172	Transfers out to Fund 72	1,500,000.00	125,000.00	750,000.00	0.00	50.00
20-29-9000	Contingency Transfers & Contingencies	509,412.00 7, <i>364,412.00</i>	0.00 764,000.00	0.00 2,929,000.00	0.00 <i>0.00</i>	0.00 <i>39</i> .77
	Transfers & Contingencies	7,364,412.00	764,000.00	2,929,000.00	0.00	39.77
	_	10.50 (0.60 00	1 0 41 522 00		621 00 4 11	10.00
20	Expense Wastewater Reclam.	10,526,862.00 0.00	1,041,733.89 -220,072.61	4,307,484.45 1,541,304.47	621,994.11 -621,994.11	40.92 0.00
30	Watershed Protection NonDivisional Beginning Fund Balance					
30-00-3500	Fund balance	467,895.00	0.00	118,912.28	0.00	25.41
	Beginning Fund Balance	467,895.00	0.00	118,912.28	0.00	25.41
	NonDivisional	467,895.00	0.00	118,912.28	0.00	25.41
	Fund Balance NonDivisional <i>Revenue</i>	467,895.00	0.00	118,912.28	0.00	25.41
30-00-4213	Watershed protection fees	1,592,000.00	133,694.86	783,286.15	0.00	49.20
30-00-4215	Penalties & late charges	1,000.00	190.24	1,232.66	0.00	123.27
30-00-4290	Other charges for services	25,000.00	1,530.00	9,257.50	0.00	37.03
30-00-4610	Investment revenue <i>Revenue</i>	2,000.00 1,620,000.00	374.03 <i>135,789.13</i>	2,363.47 <i>796,139.7</i> 8	0.00 <i>0.00</i>	118.17 <i>49.14</i>
	NonDivisional	1,620,000.00	135,789.13	796,139.78	0.00	49.14
	Revenue	1,620,000.00	135,789.13	796,139.78	0.00	49.14
	Watershed Protection Personnel Services					
30-23-5110	Regular employees	96,000.00	9,524.76	48,302.99	0.00	50.32
30-23-5130	Overtime	5,000.00	0.00	0.00	0.00	0.00
30-23-5210	Healthdental insurance	30,000.00	2,664.44	15,955.34	0.00	53.18
30-23-5230	Social Security	8,000.00	715.52	3,611.20	0.00	45.14
30-23-5240	Retirement	18,000.00	1,706.85	8,655.85	0.00	48.09
30-23-5250 30-23-5270	TrimetWBFPaid Leave OR Workers compensation	1,000.00	83.86 76.54	392.05 459.24	$\begin{array}{c} 0.00\\ 0.00\end{array}$	39.21 45.92
30-23-5290	Other employee benefits	1,000.00 1,000.00	31.90	439.24 120.15	0.00	43.92
50-25-5270	Personnel Services	160,000.00	14,803.87	77,496.82	0.00	48.44
	Materials & Services					
30-23-6155	Contracted Services	147,000.00	3,596.60	59,039.10	88,653.90	40.16
30-23-6340	System maintenance	25,000.00	0.00	4,470.00	0.00	17.88
30-23-6420	Staff training	6,000.00	0.00	61.50	0.00	1.03
30-23-6530	Small tools & equipment	6,000.00	0.00	3,543.74	0.00	59.06
30-23-6540 30-23-6550	Safety supplies Operational Supplies	1,000.00 1,500.00	0.00 0.00	$\begin{array}{c} 0.00\\925.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00 61.67
30-23-6550	Communications	58,000.00	3,056.45	925.00 7,329.95	11,670.05	12.64
30-23-6780	Taxes, Fees, Permits	4,300.00	0.00	0.00	0.00	0.00
30-23-6900	Miscellaneous expense	1,000.00	0.00	0.00	0.00	0.00
••	Materials & Services	249,800.00	6,653.05	75,369.29	100,323.95	30.17
	Watershed Protection	409,800.00	21,456.92	152,866.11	100,323.95	37.30

Account Numb	er Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
	Debt Service					
30-24-6814	Materials & Services Principal Payment-KS Statebank	115,741.00	0.00	115,740.74	0.00	100.00
30-24-6824	Interest Paid-KS Statebank	4,259.00	0.00	4,259.26	0.00	100.01
	Materials & Services	120,000.00	0.00	120,000.00	0.00	100.00
	Debt Service	120,000.00	0.00	120,000.00	0.00	100.00
	Transfers & Contingencies					
20.20.0105	Transfers & Contingencies	1 000 000 00	04.000.00	5 04,000,00	0.00	50.00
30-29-8105 30-29-8173	Transfers out to Fund 05 Transfers out to Fund 73	1,008,000.00 250,000.00	84,000.00 20,833.00	504,000.00 125,002.00	$0.00 \\ 0.00$	50.00 50.00
30-29-9000	Contingency	300,095.00	20,855.00	0.00	0.00	0.00
	Transfers & Contingencies	1,558,095.00	104,833.00	629,002.00	0.00	40.37
	Transfers & Contingencies	1,558,095.00	104,833.00	629,002.00	0.00	40.37
	Expense	2,087,895.00	126,289.92	901,868.11	100,323.95	43.20
30	Watershed Protection	0.00	9,499.21	13,183.95	-100,323.95	0.00
50	WW Revenue Bond Debt Service NonDivisional					
50.00.2500	Beginning Fund Balance Fund balance	502 (((00	0.00	520 121 20	0.00	87.76
50-00-3500	Beginning Fund Balance	592,666.00 592,666.00	$0.00 \\ 0.00$	520,121.80 520,121.80	$0.00 \\ 0.00$	87.76 87.76
	NonDivisional	592,666.00	0.00	520,121.80	0.00	87.76
	Fund Balance NonDivisional	592,666.00	0.00	520,121.80	0.00	87.76
50-00-4610	<i>Revenue</i> Investment revenue	1,000.00	981.23	3,965.30	0.00	396.53
	Revenue	1,000.00	981.23	3,965.30	0.00	396.53
	NonDivisional	1,000.00	981.23	3,965.30	0.00	396.53
	Transfers & Contingencies <i>Revenue</i>					
50-29-4920	Transfer in from Fund 20	3,435,000.00	479,000.00	1,219,000.00	0.00	35.49
	Revenue	3,435,000.00	479,000.00	1,219,000.00	0.00	35.49
	Transfers & Contingencies	3,435,000.00	479,000.00	1,219,000.00	0.00	35.49
	Revenue Debt Service Materials & Services	3,436,000.00	479,981.23	1,222,965.30	0.00	35.59
50-24-6810	2010 SRF Loan Principal	946,261.00	0.00	470,839.00	0.00	49.76
50-24-6811	2021 IFA Loan Principal	310,030.00	310,029.66	310,029.66	0.00	100.00
50-24-6813	JPM Bank Loan Principal	1,420,000.00	0.00	0.00	0.00	0.00
50-24-6820	2010 SRF Loan Interest	282,964.00	0.00	116,159.00	0.00	41.05
50-24-6822	2021 IFA Loan Interest	168,839.00	168,839.41	168,839.41	0.00	100.00
50-24-6823	JPM Bank Loan Interest Materials & Services	306,050.00 <i>3,434,144.00</i>	0.00 478,869.07	153,025.00 1,218,892.07	0.00 <i>0.00</i>	50.00 <i>35.49</i>
	Debt Service	3,434,144.00	478,869.07	1,218,892.07	0.00	35.49
	Expense	3,434,144.00	478,869.07	1,218,892.07	0.00	35.49
50	WW Revenue Bond Debt Service	594,522.00	1,112.16	524,195.03	0.00	88.17

Account Numb	per Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
71	Drinking Water Capital NonDivisional Beginning Fund Balance					
71-00-3500	Fund balance Beginning Fund Balance	3,911,900.00 <i>3,911,900.00</i>	0.00 <i>0.00</i>	4,539,370.77 <i>4,539,370.77</i>	0.00 <i>0.00</i>	116.04 <i>116.04</i>
	NonDivisional	3,911,900.00	0.00	4,539,370.77	0.00	116.04
	Fund Balance NonDivisional	3,911,900.00	0.00	4,539,370.77	0.00	116.04
71-00-4221	<i>Revenue</i> System	50,000.00	8,696.00	75,369.00	0.00	150.74
71-00-4225	Development-Reimburse System	50,000.00	8,079.00	70,018.00	0.00	140.04
71-00-4610 71-00-4640	Development-Improvement Investment revenue Proceeds from sale of	30,000.00 0.00	10,864.31 13,600.00	46,044.13 13,600.00	$0.00 \\ 0.00$	153.48 0.00
	capital <i>Revenue</i>	130,000.00	41,239.31	205,031.13	0.00	157.72
	NonDivisional	130,000.00	41,239.31	205,031.13	0.00	157.72
	Transfers & Contingencies <i>Revenue</i>					
71-29-4910	<i>Revenue</i> Transfer in from Fund 10 <i>Revenue</i>	928,000.00 928,000.00	77,333.00 <i>77,333.00</i>	464,002.00 464,002.00	0.00 <i>0.00</i>	50.00 <i>50.00</i>
	Transfers & Contingencies	928,000.00	77,333.00	464,002.00	0.00	50.00
	Revenue Drinking Water Capital Outlay	1,058,000.00	118,572.31	669,033.13	0.00	63.24
71-20-7200 71-20-7520	Infrastructure Equipment	470,000.00 64,000.00	20,134.92 0.00	178,087.74 26,017.50	164,176.77 0.00	37.89 40.65
71-20-7530 71-20-7600	Information Technology Capital Improvement Projects	30,000.00 2,275,000.00	0.00 0.00 219,127.64	15,587.07 1,254,475.07	3,838.49 618,173.83	51.96 55.14
	Capital Outlay	2,839,000.00	239,262.56	1,474,167.38	786,189.09	51.93
	Drinking Water	2,839,000.00	239,262.56	1,474,167.38	786,189.09	51.93
	Transfers & Contingencies <i>Transfers & Contingencies</i>					
71-29-9000	Contingency Transfers & Contingencies	288,000.00 288,000.00	0.00 <i>0.00</i>	0.00 <i>0.00</i>	0.00 <i>0.00</i>	0.00 <i>0.00</i>
	Transfers & Contingencies	288,000.00	0.00	0.00	0.00	0.00
71	Expense Drinking Water Capital	3,127,000.00 1,842,900.00	239,262.56 - 120,690.25	1,474,167.38 3,734,236.52	786,189.09 -786,189.09	47.14 202.63
72	Wastewater Reclamation Capital NonDivisional Regiming Fund Release					
72-00-3500	Beginning Fund Balance Fund balance Beginning Fund Balance	4,006,108.00 <i>4,006,108.00</i>	0.00 0.00	4,164,089.13 <i>4,164,089.13</i>	0.00 <i>0.00</i>	103.94 <i>103.94</i>
	NonDivisional	4,006,108.00	0.00	4,164,089.13	0.00	103.94
	Fund Balance NonDivisional	4,006,108.00	0.00	4,164,089.13	0.00	103.94

Account Num	ber Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
	Revenue					
72-00-4610	Investment revenue	30,000.00	11,017.62	44,656.18	0.00	148.85
72-00-4640	Proceeds from sale of	0.00	33,900.00	33,900.00	0.00	0.00
	capital <i>Revenue</i>	30,000.00	44,917.62	78,556.18	0.00	261.85
	NonDivisional	30,000.00	44,917.62	78,556.18	0.00	261.85
	Transfers & Contingencies					
72-29-4920	<i>Revenue</i> Transfer in from Fund 20	1,500,000.00	125,000.00	750.000.00	0.00	50.00
72-29-4920	Revenue	1,500,000.00	125,000.00	750,000.00	0.00	50.00
	Transfers & Contingencies	1,500,000.00	125,000.00	750,000.00	0.00	50.00
	Revenue Wastewater-Plant	1,530,000.00	169,917.62	828,556.18	0.00	54.15
72-21-7400	Capital Outlay Improvement other than	75,000.00	41,190.00	41,190.00	3,810.00	54.92
72-21-7520	Bldgs Equipment	345,000.00	0.00	170,431.20	163,262.00	49.40
72-21-7530	Information Technology	127,849.00	0.00	20,531.07	103,608.59	16.06
72-21-7600	Capital Improvement Projects	1,136,151.00	43,566.41	139,882.83	110,729.50	12.31
	Capital Outlay	1,684,000.00	84,756.41	372,035.10	381,410.09	22.09
	Wastewater-Plant	1,684,000.00	84,756.41	372,035.10	381,410.09	22.09
	Wastewater-Collections <i>Capital Outlay</i>					
72-22-7200	Infrastructure	74,340.00	0.00	34,915.28	25,200.00	46.97
72-22-7520	Equipment	37,478.00	0.00	37,478.00	0.00	100.00
72-22-7530 72-22-7600	Information Technology Capital Improvement	201,424.00 2,146,098.00	0.00 74,306.50	9,023.57 248,259.20	188,240.09 291,679.82	4.48 11.57
12-22-1000	Projects		74,306.50	329.676.05		13.41
	Capital Outlay	2,459,340.00	,	· · · , · · · · · · ·	505,119.91	
	Wastewater-Collections	2,459,340.00	74,306.50	329,676.05	505,119.91	13.41
	Transfers & Contingencies					
72-29-9000	Transfers & Contingencies Contingency	361,834.00	0.00	0.00	0.00	0.00
12 29 9000	Transfers & Contingencies	361,834.00	0.00	0.00	0.00	0.00
	Transfers & Contingencies	361,834.00	0.00	0.00	0.00	0.00
72	Expense Wastewater Reclamation Capital	4,505,174.00 1,030,934.00	159,062.91 10,854.71	701,711.15 4,290,934.16	886,530.00 -886,530.00	15.58 416.22
73	Watershed Protection Capital NonDivisional					
73-00-3500	Beginning Fund Balance Fund balance Beginning Fund Balance	2,173,058.00 2,173,058.00	0.00 0.00	2,501,104.54 2,501,104.54	$0.00 \\ 0.00$	115.10 <i>115.10</i>
	NonDivisional	2,173,058.00	0.00	2,501,104.54	0.00	115.10
	Fund Balance NonDivisional <i>Revenue</i>	2,173,058.00	0.00	2,501,104.54	0.00	115.10

Account Numb	er Description	Budget	Period Amt	End Bal	Encumbered	% of Budget
73-00-4610	Investment revenue	10,000.00	4,529.52	16,937.46	0.00	169.37
	Revenue	10,000.00	4,529.52	16,937.46	0.00	169.37
	NonDivisional	10,000.00	4,529.52	16,937.46	0.00	169.37
	Transfers &					
	Contingencies <i>Revenue</i>					
73-29-4930	<i>Revenue</i> Transfer in from Fund 30	250.000.00	20.833.00	125.002.00	0.00	50.00
75 27 4750	Revenue	250,000.00	20,833.00	125,002.00	0.00	50.00
	Transfers &	250,000.00	20,833.00	125,002.00	0.00	50.00
	Contingencies					
	Revenue	260,000.00	25,362.52	141,939.46	0.00	54.59
	Watershed Protection					
	Capital Outlay					
73-23-7520	Equipment	18,647.00	0.00	0.00	18,647.00	0.00
73-23-7600	Capital Improvement Projects	281,353.00	0.00	2,729.50	21,864.21	0.97
	Capital Outlay	300,000.00	0.00	2,729.50	40,511.21	0.91
	Watershed Protection	300,000.00	0.00	2,729.50	40,511.21	0.91
	Transfers &					
	Contingencies					
	Transfers & Contingencies					
73-29-9000	Contingency	50,000.00	0.00	0.00	0.00	0.00
	Transfers & Contingencies	50,000.00	0.00	0.00	0.00	0.00
	Transfers &	50,000.00	0.00	0.00	0.00	0.00
	Contingencies					
	Expense	350.000.00	0.00	2,729.50	40.511.21	0.78
73	Watershed Protection	2,083,058.00	25,362.52	2,640,314.50	-40,511.21	126.75
	Capital					
Revenue Total		25,853,400.00	2,430,871.18	12,673,350.54	0.00	0.4902
Expense Total		34,813,361.00	2,739,471.18	12,793,018.48	3,551,368.08	0.3675

General Ledger Account Roll up

User: Gail Printed: 2/6/2023 6:21:47 PM Period 06 - 06 Fiscal Year 2023

OAK LODGE WATER SERVICES

Sort Level	Description	Budget]	Period Amt	End Bal	% Expend /Collect
Revenue	Revenue					
4210	Water Sales - CRW	\$ 30,000.00	\$	2,472.18	\$ 24,859.14	82.9%
4211	Water sales	\$ 4,351,000.00	\$	311,395.08	\$ 2,305,398.25	53.0%
4212	Wastewater Charges	\$ 9,199,000.00	\$	815,603.96	\$ 4,463,349.26	48.5%
4213	Watershed protection fees	\$ 1,592,000.00	\$	133,694.86	\$ 783,286.15	49.2%
4215	Penalties & late charges	\$ 23,000.00	\$	2,699.73	\$ 13,999.00	60.9%
4220	System Development Charges	\$ 100,000.00	\$	5,165.00	\$ 33,171.60	33.2%
4221	System Development-Reimburse	\$ 50,000.00	\$	8,696.00	\$ 75,369.00	150.7%
4225	System Development-Improvement	\$ 50,000.00	\$	8,079.00	\$ 70,018.00	140.0%
4227	System Development-Compliance	\$ -	\$	219.00	\$ 1,898.00	0.0%
4230	Contract services	\$ 57,400.00	\$	4,000.00	\$ 29,400.00	51.2%
4240	Service installations	\$ 10,000.00	\$	513.00	\$ 12,395.00	124.0%
4280	Rents & leases	\$ 180,000.00	\$	14,862.85	\$ 96,270.65	53.5%
4290	Other charges for services	\$ 45,000.00	\$	1,730.00	\$ 19,638.50	43.6%
4610	Investment revenue	\$ 80,000.00	\$	33,386.52	\$ 135,540.79	169.4%
4630	Miscellaneous revenues	\$ 37,000.00	\$	10,688.00	\$ 35,253.20	95.3%
4640	Proceeds from sale of capital	\$ -	\$	47,500.00	\$ 47,500.00	0.0%
	·	\$ 15,804,400.00	\$	1,400,705.18	\$ 8,147,346.54	51.6%
4910	Transfer in from Fund 10	\$ 1,936,000.00	\$	161,333.00	\$ 968,002.00	50.0%
4920	Transfer in from Fund 20	\$ 6,855,000.00	\$	764,000.00	\$ 2,929,000.00	42.7%
4930	Transfer in from Fund 30	\$ 1,258,000.00	\$	104,833.00	\$ 629,002.00	50.0%
Revenue	Revenue	\$ 25,853,400.00	\$	2,430,871.18	\$ 12,673,350.54	49.0%
Expense	Expense					
Personnel Sei	<u>vices</u>					
5110	Regular employees	\$ 3,539,000.00	\$	335,081.76	\$ 1,659,134.84	46.9%
5130	Overtime	\$ 109,000.00	\$	14,427.09	\$ 69,140.86	63.4%
5210	Employee Ins	\$ 702,000.00	\$	53,022.55	\$ 312,753.57	44.6%
5230	Social Security	\$ 277,000.00	\$	25,473.87	\$ 127,301.38	46.0%
5240	Retirement	\$ 629,000.00	\$	63,539.47	\$ 306,743.93	48.8%
5250	Trimet/WBF/Paid Leave OR	\$ 31,000.00	\$	3,087.87	\$ 14,102.27	45.5%
5260	Unemployment	\$ 20,000.00	\$	-	\$ 9,529.00	47.7%
5270	Workers compensation	\$ 46,000.00	\$	1,615.38	\$ 9,692.28	21.1%
5290	Other employee benefits	\$ 21,000.00	\$	2,122.23	\$ 5,102.55	24.3%
		\$ 5,374,000.00	\$	498,370.22	\$ 2,513,500.68	46.8%
Materials & S	Services					
6110	Legal services	\$ 375,000.00	\$	1,058.50	\$ 118,188.57	31.5%
5120	Accounting & audit services	\$ 76,000.00	\$	-	\$ -	0.0%
6155	Contracted Services	\$ 922,250.00	\$	39,683.07	\$ 349,173.09	37.9%
6175	Records Management	\$ 8,500.00	\$	367.11	\$ 2,756.18	32.4%

Sort Level	Description		Budget	1	Period Amt		End Bal	% Expend /Collect
6220	Electricity	\$	408,000.00	\$	31,285.62	\$	175,135.82	42.9%
6230	Telephone	\$	63,000.00	\$	3,742.37	\$	22,925.26	36.4%
6240	Natual gas	\$	9,500.00	\$	1,109.38	\$	3,285.74	34.6%
6250	Solid waste disposal	\$	52,000.00	\$	9,079.58	\$	15,049.33	28.9%
6290	Other utilities	\$	15,600.00	\$	985.67	\$	6,207.67	39.8%
6310	Janitorial services	\$	26,000.00	\$	2,191.05	\$	13,146.30	50.6%
6320	Buildings & grounds	\$	104,000.00	\$	7,691.64	\$	37,924.94	36.5%
6330	Vehicle & equipment maint.	\$	75,000.00	\$	14,797.41	\$	36,181.49	48.2%
6340	Distribution system maint	\$	225,000.00	\$	14,204.11	\$	118,440.22	52.6%
6342	Collection system maint.	\$	245,000.00	\$	12,476.64	\$	79,863.42	32.6%
6350	Computer maintenance	\$	313,103.00	\$	43,773.72	\$	140,732.15	45.0%
6410	Mileage	\$	7,200.00	\$	22.87	\$	3,349.86	46.5%
6420	Staff training	\$	93,000.00	\$	840.50	\$	41,017.09	44.1%
6430	Certifications	\$	8,000.00	\$	545.00	\$	3,023.00	37.8%
6440	Board travel & training	\$	9,000.00	\$	-	\$	2,033.37	22.6%
6510	Office supplies	\$	34,200.00	\$	1,361.48	\$	17,739.57	51.9%
6520	Fuel & oils	\$	51,000.00	\$	3,060.69	\$	21,968.77	43.1%
6525	Chemicals	\$	65,000.00	\$	5,137.97	\$	33,079.32	50.9%
6530	Small tools & equipment	\$	40,000.00	\$	3,182.17	\$	21,124.60	52.8%
6540	Safety supplies	\$	55,500.00	\$	14,290.05	\$	36,043.53	64.9%
6550	Operational Supplies	\$	34,000.00	\$	692.11	\$	12,919.00	38.0%
6560	Uniforms	\$	38,000.00	\$	2,069.29	\$	17,321.66	45.6%
5590	Other supplies	\$	5,000.00	\$	114.95	\$	474.66	9.5%
6610	Board compensation	\$	2,500.00	\$	-	\$	-	0.0%
6620	Election Costs	\$	32,000.00	\$	-	\$	-	0.0%
6710	Purchased water	\$	1,170,000.00	\$	68,148.17	\$	625,778.88	53.5%
6715	Water quality program	\$	16,000.00	\$	2,649.27	\$	3,921.15	24.5%
6720	Insurance	\$	300,000.00	\$	15,184.44	\$	89,857.09	30.0%
6730	Communications	\$	98,100.00	\$	4,245.83	\$	10,091.59	10.3%
6740	Advertising	\$	6,500.00	\$	1,238.00	\$	2,173.00	33.4%
6760	Equipment Rental	\$	12,000.00	\$	12,413.80	\$	18,418.73	153.5%
6770	Bank charges	\$	160,000.00	\$	11,728.21	\$	58,974.67	36.9%
6780	Taxes, Fees & Permits	\$	151,000.00	\$	3,827.49	\$	68,396.61	45.3%
6900	Miscellaneous expense	\$	7,000.00	\$	179.99	\$	458.35	6.6%
		\$	5,372,953.00	\$	333,740.42	\$	2,225,482.35	41.4%
	and Special Payments							
5810	2010 SRF Loan Principal	\$	946,261.00	\$	-	\$	470,839.00	49.8%
5811	2010 IFA Loan Principal	\$	310,030.00	\$	310,029.66	\$	310,029.66	100.0%
5813	JPM Bank Loan Principal	\$	1,420,000.00	\$	-	\$	-	0.0%
5814	Principal Payment-KS Statebank	\$	115,741.00	\$	-	\$	115,740.74	100.0%
6815	Zions Bank loan-principal	\$	188,000.00	\$	-	\$	-	0.0%
6820	2010 SRF Loan Interest	\$	282,964.00	\$	-	\$	116,159.00	41.1%
6822	2010 IFA Loan Interest	\$	168,839.00	\$	168,839.41	\$	168,839.41	100.0%
5823	JPM Bank Loan Interest	\$	306,050.00	\$	-	\$	153,025.00	50.0%
6824	Interest Paid-KS Statebank	\$	4,259.00	\$	-	\$	4,259.26	100.0%
6825	Zions Bank loan-interest	\$	21,063.00	\$	-	\$	10,531.35	50.0%
Conital O-1		\$	3,763,207.00	\$	478,869.07	\$	1,349,423.42	35.9%
<u>Capital Outlay</u> 7200	<u>v</u> Infrastructure	¢	544 240 00	¢	20 124 02	¢	212 002 02	20 10/
		\$ ¢	544,340.00	\$ ¢	20,134.92	\$ ¢	213,003.02	39.1%
7400	Improvement other than Bldgs	\$ ¢	75,000.00	\$ ¢	41,190.00	\$ ¢	41,190.00	54.9%
7520	Equipment	\$	465,125.00	\$ ¢	-	\$ ¢	233,926.70	50.3%
7530	Information Technology	\$	359,273.00	\$	-	\$	45,141.71	12.6%

Sort Level	Description	Budget]	Period Amt	End Bal	% Expend /Collect
7600	Capital Improvement Projects	\$ 5,838,602.00	\$	337,000.55	\$ 1,645,346.60	28.2%
		\$ 7,282,340.00	\$	398,325.47	\$ 2,178,608.03	29.9%
Transfers						
8105	Transfers out to Fund 05	\$ 3,936,000.00	\$	328,000.00	\$ 1,968,000.00	50.0%
8150	Transfers out to Fund 50	\$ 3,435,000.00	\$	479,000.00	\$ 1,219,000.00	35.5%
8171	Transfers out to Fund 71	\$ 928,000.00	\$	77,333.00	\$ 464,002.00	50.0%
8172	Transfers out to Fund 72	\$ 1,500,000.00	\$	125,000.00	\$ 750,000.00	50.0%
8173	Transfers out to Fund 73	\$ 250,000.00	\$	20,833.00	\$ 125,002.00	50.0%
		\$ 10,049,000.00	\$	1,030,166.00	\$ 4,526,004.00	45.0%
		\$ 31,841,500.00	\$	2,739,471.18	\$ 12,793,018.48	40.2%
9000	Contingency	\$ 3,003,861.00	\$	-	\$ -	0.0%
Expense	Expense	\$ 34,845,361.00	\$	2,739,471.18	\$ 12,793,018.48	36.7%
Revenue Tota	1	\$ 25,853,400.00	\$	2,430,871.18	\$ 12,673,350.54	49.0%
Expense Total	l	\$ 34,845,361.00	\$	2,739,471.18	\$ 12,793,018.48	36.7%
Grand Total		\$ (8,991,961.00)	\$	(308,600.00)	\$ (119,667.94)	1.3%

AGENDA ITEM

То	Board of Directors
From	Laural Casey, District Recorder
Title	Approval of Meeting Minutes
Item No.	5b & c
Date	February 21, 2023

Summary of Minutes for Approval

The Board of Directors reviews and approves the minutes of the Body's prior public meetings.

Attachments

- 1. January 11, 2023 Board Meeting Minutes
- 2. January 17, 2023 Board Meeting Minutes

OAK LODGE WATER SERVICES BOARD OF DIRECTORS SPECIAL MEETING MINUTES JANUARY 11, 2023

Board of Directors	
Susan Keil	Chair
Kevin Williams	Vice Chair
Paul Gornick	Treasurer
Ginny Van Loo	Director
Heidi Bullock	Director
Oak Lodge Water Services	<u>s Staff</u>
Sarah Jo Chaplen	General Manager
Laural Casey	District Recorder
Consultants & Organizatio	nal Representatives

Tommy Brooks Cable Huston

1. Call to Order & Hybrid Meeting Facilitation Protocols

Chair Keil called the meeting to order at 2:02 p.m.

General Manager Chaplen overviewed the general protocols of a hybrid meeting.

2. Recess to Executive Session

Chair Keil recessed to executive session at 2:04 p.m. under ORS 192.660(2)(i) to review and evaluate the employment-related performance of the chief executive officer of any public body, a public officer, employee or staff member who does not request an open hearing.

Raymond Rendleman, news media representative for Pamplin Communications, attended the executive session. As part of the introduction for the executive session, a statement was read directing the media to not report or disclose matters discussed at the session.

The Board of Directors conducted a work session to review General Manager Chaplen's performance for the period of December 31, 2021 to December 31, 2022.

3. Adjourn Executive Session

Chair Keil adjourned the Executive Session at 3:01 p.m.

No decisions were made as a result of the Executive Session.

OAK LODGE WATER SERVICES Board of Directors Special Meeting Minutes for January 11, 2023 Page 2 of 2

Legal Counsel Brooks advised the Board on future executive session procedures.

4. Adjourn Meeting

Chair Keil adjourned the meeting at 3:03 p.m.

Respectfully submitted,

Susan Keil Chair, Board of Directors Kevin Williams Vice Chair, Board of Directors

Date: _____

Date: _____

OAK LODGE WATER SERVICES BOARD OF DIRECTORS REGULAR MEETING MINUTES JANUARY 17, 2023

Board of Directors	
Kevin Williams	Vice Chair
Paul Gornick	Treasurer
Ginny Van Loo	Director

Oak Lodge Water Services Staff

Sarah Jo Chaplen	General Manager
Brad Albert	District Engineer
Aleah Binkowski-Burk	Human Resources/Payroll Manager
Gail Stevens	Finance Director
David Hawkins	Plant Superintendent
Brad Lyon	Water Operations Supervisor
Chad Martinez	Collection Operations Supervisor
Laural Casey	District Recorder
Alexa Morris	Outreach and Communications Specialist

Consultants & Organizational Representatives Tommy Brooks Cable Huston

1. Call to Order & Hybrid Meeting Facilitation Protocols

Vice Chair Williams called the meeting to order at 6:00 p.m.

General Manager Chaplen overviewed the general protocols of a hybrid meeting.

2. Call for Public Comment

There was no public comment.

3. Presentation of Oak Lodge Governance Project Update

There were no Oak Lodge Governance Project representatives present.

4. Consent Agenda

Items on the Consent Agenda Included:

• The November 2022 Financial Report

• Approval of December 20, 2022 Board Meeting Minutes

Treasurer Gornick moved to approve the Consent Agenda. Director Van Loo seconded.

The Board asked clarifying questions regarding the Financial Report.

District Recorder Casey conducted a roll call vote. Voting Aye: Directors Williams, Gornick, and Van Loo.

MOTION CARRIED

5. Consideration of Agreement with Cascadia Backflow for Backflow Services

District Engineer Albert overviewed the procurement, quote, and proposed agreement with Cascadia Backflow.

The Board asked clarifying questions related to service rates.

Treasurer Gornick moved to approve the General Manager to sign a backflow assembly testing, repair and replacement Personal Services Agreement with Cascadia Backflow. Director Van Loo seconded. District Recorder Casey conducted a roll call vote. Voting Aye: Directors Williams, Gornick, and Van Loo.

MOTION CARRIED

6. Appointment of FY 2024 Budget Officer

Finance Director Stevens was recommended as Budget Officer for fiscal year 2024.

Director Van Loo moved approve the Finance Director as the Budget Officer for Oak Lodge Water Services Authority for the fiscal year 2023-2024 budget. Treasurer Gornick seconded. District Recorder Casey conducted a roll call vote. Voting Aye: Directors Williams, Gornick, and Van Loo.

MOTION CARRIED

7. Business from the Board

Director Van Loo reported on the SDAO Legislative Day.

Vice Chair Williams reported on the Clackamas River Water meeting.

8. Department Reports

The Management Team provided monthly highlights including:

- An upcoming community event on February 11, 2023 at Awakening Coffee,
- The 2023 Insurance renewal and liability coverage for OLWSD,
- Receipt and data analysis of smoke testing data,

OAK LODGE WATER SERVICES Board of Directors Regular Meeting Minutes for January 17, 2023 Page 3 of 3

- Finalization of the Aldercrest & Oatfield water main replacement project,
- Storm overflow diversions and sinkholes,
- TV Van electrical wiring work,
- Oatfield Road hotspots and main breaks, and
- Plant compliance during the December storm.

The Board asked clarifying questions related to Board liability insurance coverage, County-required paving limits, and beaver and nutria mitigation.

9. Adjourn Meeting

Vice Chair Williams adjourned the meeting at 6:30 p.m.

Respectfully submitted,

Susan Keil Chair, Board of Directors Kevin Williams Vice Chair, Board of Directors

Date: _____

Date: _____

STAFF REPORT

Board of Directors
Gail Stevens, Finance Director
Consideration of Fiscal Year 2023-2024 Budget Calendar
5d
February 21, 2023

Summary

Approval of the budget calendar for Oak Lodge Water Services Authority Budget Committee meetings for the preparation of the fiscal year 2023-2024 budget.

Background

Oregon Budget Law suggests the approval of a budget schedule to allow for public notice and participation. The proposed budget schedule allows opportunity for public participation. It also provides adequate time for the Budget Committee meeting.

Recommendation

Staff recommends the Board approves the proposed budget calendar for the fiscal year 2023-2024 budget.

Suggested Board Motion

"I move to approve the proposed budget calendar for the fiscal year 2023-2024 budget."

Attachments

1. Fiscal Year 2023-2024 Budget Calendar

FISCAL YEAR 2023-2024 BUDGET CALENDAR

Tuesday, April 11, 2023	Budget Committee Meeting
	Administrative Tasks
	Capital Improvement Plan
	 Presentation of Proposed Budget
Thursday, April 20, 2023	Budget Committee Meeting
	Presentation of Proposed Budget
	Public Hearing
	Committee Deliberations
Tuesday, April 25, 2023	Budget Committee Meeting
Tuesuay, April 23, 2025	
	Committee Deliberations
	Budget Approval
Thursday, April 27, 2023	Budget Committee Meeting – if needed
Tuesday, May 16, 2023	Regular Board of Directors Meeting
	Budget Adoption
All meetings will be hyb	orid, in-person and online, beginning at 6:00 p.m. unless otherwise stated.

In-person at Oak Lodge Water Services 14496 SE River Rd, Oak Grove, OR 97267

Online link will be published one week prior to the meeting.

STAFF REPORT

Board of Directors
Haakon Ogbeide, Civil Engineer
Approval of Contract Award for Process Blower Installation
5e
February 21, 2023

Summary

Staff is seeking approval for the General Manager to enter a Public Improvement Contract with the Contractor, R. L. Reimers Company. The work of the \$87,650 contract would be for the labor of demolishing two failed Neuros process blowers and replacing them with two recently ordered Aerzen D19S process blowers, along with four air valve replacements.

Background

The two existing Neuros-brand process blowers at the Wastewater Treatment Plant are plagued with costly failures and long repair lead times. Two new Aerzen brand blowers have been purchased to replace the failing ones. The first of the replacements has already arrived at the Plant.

The Public Improvement Contract for which approval is being sought will primarily provide the labor for installing the new blowers and connecting them to the rest of the plant. The Scope of Work also includes the replacement of four air valves and actuators of unknown brand located on the blower's air header. These four valves are defective at sealing air.

Technical Services Staff solicited this installation work as an Intermediate Procurement. On January 25, 2023, an informal written Request for Quotes (RFQ) was sent to four contractors responsible to perform the work. One contractor, R. L. Reimers Company, responded to the solicitation by the deadline of 2:00pm on February 7, 2023.

The following table gives a summary of responses to the RFQ:

Company	Response
Slayden Constructors, Inc.	Responded by declining to submit a quote
McClure and Sons, Inc.	Did not respond
R.L. Reimers Company	Submitted quote for \$87,650 before Deadline
Stettler Supply & Construction	Did not respond

R. L. Reimers Company has successfully completed work for OLWS in the past, as the prime contractor on the Belt Filter Press Installation Project in 2020 and 2021. Technical Services Staff were pleased with the work they delivered on that project, view them as a responsible contractor, and recommend they be awarded the Contract for their quoted amount of \$87,650.00.

Past Board Actions

December 2022 Approval of the purchase of two Aerzen D19S blowers

Budget

Funding for this Contract comes from the Wastewater Reclamation Capital Fund, specifically line item 72-21-7600, covering Capital Improvement Projects for Wastewater Treatment.

Concurrence

Technical Services staff coordinated with Plant Operations on this Process Blowers installation.

Recommendation

Staff recommends the Board move to approve the General Manager to sign a Public Improvement Contract with R. L. Reimers Company for the work of Process Blowers Installation for the price quoted of \$87,650.00.

Suggested Board Motion

"I move to approve the General Manager to sign a Public Improvement Contract with R. L. Reimers Company for the work of Process Blowers Installation for the price quoted of \$87,650.00."

Attachments

1. Invitation to Submit Quotes for Process Blower Installation

Section I - Invitation to Submit Quote

Request for Quotes for Oak Lodge Water Services'

Process Blower Installation

CIP 2023-WW04

Electronic price quotes for the work of replacing two existing 30hp process blowers with two 40 hp owner-furnished blowers will be received via e-mail. Quotes will be received by Oak Lodge Water Services (OLWS) Representative for this project, Haakon Ogbeide, at his e-mail <u>haakon@olwsd.org</u>, by the Deadline of 2:00pm on Tuesday, February 7th, 2023. Submitted quotes will remain firm, irrevocable, valid, and binding for 30 calendar days following the Deadline.

The project generally consists of demolishing two old blowers and installing two ownerfurnished process blowers. Contractor is to supply mechanical and electrical components to form the new connections to existing facilities and replace the two reinforced concrete blower pads and four air isolation valves. The blowers are located within Oak Lodge Wastewater Treatment Plant (WWTP) in zip code 97222. There is no engineer's estimate for this work.

Prospective Proposers are encouraged to contract OLWS Representative for a site visit.

Oak Lodge Water Services (OLWS) is anticipating this procurement to be an Intermediate Procurement, as defined by OLWS Contracting and Purchasing Rules (November, 2018). This Request for Quotes (RFQ) is an informal written solicitation and will be sent to no fewer than three prospective contractors.

The Contract will be initiated under the terms and conditions of the Public Improvement Contract provided in Section V. Quotes are to be submitted in the form and format provided in Section IV.

OLWS Representative for this Process Blower Installation Project is:

Haakon Ogbeide Oak Lodge Water Services 14496 SE River Road Oak Grove, OR 97267 <u>haakon@olwsd.org</u> (503) 353-4209

Dated this day, Tuesday, January 24th, 2023.

STAFF REPORT

То	Board of Directors
From	Brad Albert, District Engineer
	Gail Stevens, Finance Director
Title	Presentation of Quarterly Capital Project Status Report
ltem No.	6
Date	February 21, 2023
Title Item No.	Gail Stevens, Finance Director Presentation of Quarterly Capital Project Status Report 6

Summary

The Board has requested quarterly updates on the status of the Capital Improvement Plan (CIP). This report provides high level status of the projects and the budget spent to date. This is to inform the Board whether the projects are progressing on time and budget, or if adjustments have been made to accommodate unforeseen issues.

Capital Improvement Projects Status

Capital Outlay Reporting FY2023 Q2 - July 2022 through December 2022

				Projected		
				Spend FY	% of	
	Budget	Actuals	Projections	2023	Budget	Variance
Drinking Water Capital	2,839,000	1,474,167	753,052	2,227,219	78%	611,781
Wastewater Capital						
Wastewater Treatment Plant	1,684,000	372,035	861,938	1,233,974	73%	450,027
Wastewater Collections System	2,459,340	329,676	698,369	1,028,045	42%	1,431,295
Watershed Protection Capital	300,000	2,730	40,511	43,241	14%	256,759
Totals	7,282,340	2,178,608	2,353,870	4,532,478	62%	2,749,861
Combined Contingency	699 <i>,</i> 834					
Appropriation	7,982,174					

Drinking Water

Aldercrest Water Main Replacement

- Project is complete excluding final paving
- Final paving to take place in April / May weather dependent (planned construction timeline)

28th Avenue Loop Water Main

- Initial design complete
- o Complications of pipe routing through the apartment complex are being discussed
- Expect design completion in June 2023
- Anticipate construction to occur in FY 2023-2024.

Milwaukie-OLWS Intertie Pump Station

- Awaiting final initial report from WSC
- Preliminary feasibility is complete in conjunction with Milwaukie for the three sites to make a determination on preference

OLWS Water Pump Station Generator

- o Received a technical memorandum from Wallis Engineering on high level needs
- Discussing upgrades with agency partners for next steps and timeline

Wastewater Projects

Wastewater Master Plan 2022

- o Provided Inflow and Infiltration presentation to the Board in September 2022
- Presenting Tertiary Treatment Options to the Board in November 2022
- Presenting Wastewater Capital Improvement Plan to the Board in December 2022
- o Presented Wastewater Master Plan Draft to the Board in February 2023
- Presenting Wastewater Master Plan Final to the Board in March 2023 for adoption

Lift Station 5 Rebuild

- o All components of the project complete except for backup generator
- Received notice backup generator will now ship in February 2023, instead of November 2022
- Project should be complete barring any additional supply chain delay issues in March 2023

Lift Station 2 Rebuild

• Received 90% design plans for review

- Advertise construction bid in January 2023.
- o Open bids and Award project at the February 2023 Board meeting
- o Construction to commence in April 2023
- o Forecast to be completed in FY 2023-2024

Infiltration and Inflow Reduction Lift Station 5 Basin

- o Smoke testing completed in the Lift Station 5 basin area
- o Reviewing smoke testing data and compile deficiencies into a project
- o Flow monitoring to commence in December 2022 through February 2023
- Preliminary Engineering to start in March 2023

Hillside Sewer Line Replacement

- Design 100% complete
- All regulatory permits acquired
- Advertised construction bid in February 2023, with award in March 2023
- Start construction July 2023

Attachments

1. Financial Spreadsheet Tracker

Drinking Water Capital Fund

Fund 71

FY2023 Q2 - July 2022 through December 2022

									Estimated
		Current				Adjusted	Projected FY		Phase
Drinking Wat	er	Phase	Staff	CIP Budget	Re-assign	Budget	2023	Variance	Completion
71-20-7200	Infrastructure			470,000	20,000	490,000	313,508	176,492	
71-20-7520	Equipment			64,000	(20,000)	44,000	26,018	17,983	
71-20-7530	Information Technology			30,000	-	30,000	23,134	6,866	
71-20-7600	Capital Improvement Projects			2,275,000	-	2,275,000	1,864,559	410,441	
2020-W05	Aldercrest Rd. Water Main Replacement	Construction	Brad A	1,195,000	505,491	1,700,491	1,700,491	0	May-23
2020-W06	28th Ave Loop Water Main	Design	Brad A	600,000	(505,491)	94,509	63,064	31,445	Jun-23
2020-W02	Milwaukie-OLWS Intertie Pump Station	Design	Brad A	180,000	-	180,000	83,728	96,272	FY 2024
2021-W01	OLWS Water Pump Station @ CRW Generator	Design	Haakon	100,000	-	100,000	17,277	82,724	Jun-23
2023-DW01	Seismic Study 24-inch DW Supply Main		TBD	200,000	-	200,000	-	200,000	TBD
	Total Drinking Water			2,839,000	-	2,839,000	2,227,219	611,781	
	Contingency			288,000	-	288,000		288,000	
	Total Appropriation			3,127,000	-	3,127,000	2,227,219	899,781	

Wastewater Capital Fund Fund 72 FY2023 Q2 - July 2022 through December 2022

									Estimated
						Adjusted	Projected		Phase
Waterwater Treatment Cu			e Staff	CIP Budget	Re-assign	Budget	FY 2023	Variance	Completion
72-21-7400	Improvement other than Bldgs			75,000	-	75,000	45,000	30,000	
72-21-7520	Equipment			205,000	285,365	490,365	439,696	50,669	
72-21-7530	Information Technology			115,000	12,849	127,849	127,849	-	
72-21-7600	Capital Improvement Projects			1,169,000	(178,213)	990,787	621,429	369,358	
2020-SS06	Wastewater Master Plan 2022 (50%)	In progress	Brad A	155,000	55,116	210,116	210,116	(0)	Mar-23
2020-5500 2020-5504	Aeration Basin Blower Rehab	In progress	Haakon	135,000	49,976	63,976	63,976	(0)	Jun-23
2020-3304	Tertiary Filtration	Planning	Brad A	1,000,000	(283,305)	,	347,337	369,358	Jun-23
		Tianing	Didd A	1,000,000	(205,505)	710,055	547,557	303,330	Jun 25
	Total Treatment			1,564,000	120,000	1,684,000	1,233,974	450,027	
Wastewater (Collections								
72-22-7200	Infrastructure			50,000	36,045	86,045	107,525	(21,480)	
	For the second			40.000	(2 522)	27.470	27.470		
72-22-7520	Equipment			40,000	(2,522)	37,478	37,478	-	
72-22-7530	Information Technology			154,340	46,633	200,973	200,973	-	
72-22-7600	Capital Improvement Projects			2,215,000	(80,156)	2,134,844	682,069	1,452,775	
2020-SS06	Wastewater Master Plan 2022 (50%)	In Progress	Brad A	155,000	55,116	210,116	210,116	0	Mar-23
2020-SS08	Lift Station #5 Rebuild	Out to Bid	Haakon	160,000	(35,000)	125,000	119,841	5,159	Apr-23
2022-SS01	Lift Station #2 Rebuild	Design-Final	Haakon	800,000	-	800,000	167,539	632,461	FY 2024
2022-SS02	Trunk Main Capacity (River Forest SSO)	Completed	Haakon	1,100,000	(1,100,000)	-	-	-	Cancelled
2023-WW03	Infiltration and Inflow Reduction Lift Station 5 Basin	Planning	Brad A	-	916,095	916,095	100,940	815,155	Complete
2020-SS05	Hillside Sewer Line Replacement	Design-Final	Brad A	-	83,633	83,633	83,633	(0)	Mar-23
	Total Collections			2,459,340	(0)	2,459,340	1,028,045	1,431,295	
	Total Capital Outlay			4,023,340	120,000	4,143,340	2,262,018	1,881,321	
	Contingency			481,834	(120,000)			361,834	
	Total Appropriation			4,505,174		4,505,174	2,262,018	2,243,156	

Watershed Protection Capital Fund Fund 73 FY2023 Q2 - July 2022 through December 2022

								Estimated
					Adjusted	Projected FY		Phase
Drinking Wat	er	Current Phase Staff	CIP Budget	Re-assign	Budget	2023	Variance	Completion
73-23-7520	Equipment		-		18,647	18,647	-	
73-23-7600	Capital Improvement Projects		300,000		281,353	24,594	256,759	
	Boardman & Arista Flooding	Design-Prelim Brad A	300,000	(18,647)	281,353	24,594	256,759	FY 2024
	Total Drinking Water		300,000	-	300,000	43,241	256,759	
	Contingency		50,000	-	50,000		50,000	
	Total Appropriation		350,000	-	350,000	43,241	306,759	

STAFF REPORT

То	Board of Directors
From	Gail Stevens, Finance Director
Title	Consideration of Resolution No. 2023-0014 Approving a FY 2023 Budget Transfer
ltem No.	7
Date	February 21, 2023

Summary

A budget transfer is necessary to transfer appropriations within the fiscal year 2022-2023 adopted budget and provide for compliance with Oregon Local Budget Law. The budget amendment resolution is proposed to address variances within budget line items. Appropriations will only be transferred from continency, where noted below, within the respective funds to offset identified additional costs.

Fiscal year to date expenditures have been reviewed to determine accounts that are projected higher than the current budget. For accounts projected higher, either:

- 1. Funds will be redistributed between budget lines within the Fund and Division, with no impact to Contingency.
- 2. Funds will be transferred from Contingency within the same Fund. This is only for underbudgeted accounts, unanticipated cost increases or unplanned costs.

The following amended line items included in this request are:

				Requested	Current	Transfer	
Fund	Account	Account Name	Description	Budget	Budget	Amount	Source
			Administrative Services Fund				
05.01.	5130	Overtime	Finance / Accounting staff overtime	17,000	12,000	5 <i>,</i> 000	Transfer
05.02.	5130	Overtime	Transfer 50% to Finance	2,500	5,000	(2 <i>,</i> 500)	Transfer
05.03.	5130	Overtime	Transfer 50% to Finance	2,500	5,000	(2,500)	Transfer
	Wastewater Reclamation Fund						
20.21.	6540	Safety Supplies	Replace expired confined space safety equipment	36,500	23,500	13,000	Contingency
20.21.	6760	Equipment rental	Digester blower & fork lift rentals	45,000	-	45,000	Contingency
20.22.	5130	Overtime	Collection team actual overtime	31,000	11,000	20,000	Transfer
20.22.	5110	Regular Salaries	Transfer savings to overtime	487,000	507,000	(20,000)	Transfer
			Waterwater Capital Fund - Treatment Plant				
72.21.	7520	Equipment	Install Aeration Blower & second Digester Blower	490,365	345,000	145,365	Transfer
72.21.	7600	Capital Improvement Projects	Transfer available funds due to project timings	990,786	1,136,151	(145,365)	Transfer
			Waterwater Capital Fund - Collections				
72.22.	7200	Infrastructure	Sewer main capital repairs	86,045	74,340	11,705	Transfer
72.22.	7600	Capital Improvement Projects	Transfer available funds due to project timings	2,134,393	2,146,098	(11,705)	Transfer

Background

Total appropriations within the OLWS' adopted budget will remain the same; however, to comply with Oregon Local Budget Law, a resolution is needed to transfer between categories (ORS294.463(1)). The attached resolution will transfer appropriations between contingency, personnel services, materials and services and capital outlay within the identified funds.

Recommendation

It is recommended the Board approve Resolution No. 2023-0014 Amending Fiscal Year 2022-2023 Adopted Budget.

Suggested Board Motion

"I move to adopt Resolution No. 2023-0014 amending the Fiscal Year 2022-2023 Adopted Budget as presented."

Attachments

1. Resolution No. 2023-0014

OAK LODGE WATER SERVICES

RESOLUTION NO. 2023-0014

A RESOLUTION AUTHORIZING A BUDGET TRANSFER IN THE FISCAL YEAR 2022-2023 ADOPTED BUDGET.

WHEREAS, the Oak Lodge Water Services Authority (the "Authority") Board of Directors (the "Board") serves as the governing body of the Authority;

WHEREAS, the Authority Board of Directors adopted and made appropriations for the Fiscal Year 2022-2023 Budget; and

WHEREAS, subsequent to budget adoption, either costs exceeded budget, or the account was missing necessary and appropriate budget on the lines within the fund; and

WHEREAS, budgeted contingency in OLWS' Administrative Services, Drinking Water, Wastewater Reclamation, Watershed Protection, Wastewater Capital, and Watershed Protection Capital funds exists in amounts sufficient to cover the additional costs; and

WHEREAS, ORS 294.463 allows the Board of Directors to authorize a transfer of appropriations within funds by resolution, so long as the contingency appropriation transfers in aggregate are less than 15% of the total appropriations of the fund containing the original adopted budget.

NOW, THEREFORE, BE IT RESOLVED BY THE OAK LODGE WATER SERVICES BOARD OF DIRECTORS:

Section 1. The Board of Directors of the Oak Lodge Water Services Authority authorizes the following budget transfers and revisions to the Fiscal Year 2022-2023 Adopted Budget as follows:

FUN	D	Adopted Budget	Resolution 2022-0011	Amended Budget 09/2022	Resolution 2023-0014	Amended Budget 12/2022
05	Administrative Services Fund					
	Personnel Services	2,228,000	22,000	2,250,000	-	2,250,000
	Materials & Services	2,112,403	23,700	2,136,103	-	2,136,103
	Contingency	834,112	(45,700)	788,412	-	788,412
	Total Appropriation	5,174,515	-	5,174,515	-	5,174,515

FUND		Adopted Budget	Resolution 2022-0011	Amended Budget 09/2022	Resolution 2023-0014	Amended Budget 12/2022
10	Drinking Water Fund					
	Personnel Services	1,107,000	-	1,107,000	-	1,107,000
	Materials & Services	1,676,600	5,000	1,681,600	-	1,681,600
	Debt Service	209,063	-	209,063	-	209,063
	Transfers	1,936,000	-	1,936,000	-	1,936,000
	Contingency	711,108	(5,000)	706,108	-	706,108
	Total Appropriation	5,639,771	-	5,639,771	-	5,639,771
20	Wastewater Reclamation Fund					
	Personnel Services- Treatment	1,105,000	-	1,105,000	-	1,105,000
	Personnel Services- Collections	752,000	-	752,000	-	752,000
	Materials & Services-Treatment	1,085,250	33,700	1,118,950	58,000	1,176,950
	Materials & Services-Collections	186,500	-	186,500	-	186,500
	Transfers	6,855,000	-	6,855,000	-	6,855,000
	Contingency	543,112	(33,700)	509,412	(58,000)	451,412
	Total Appropriation	10,526,862	-	10,526,862	-	10,526,862
30	Watershed Protection Fund					
	Personnel Services	160,000	-	160,000	-	160,000
	Material & Services	243,800	6,000	249,800	-	249,800
	Debt Service	120,000	-	120,000	-	120,000
	Transfers	1,258,000	-	1,258,000	-	1,258,000
	Contingency	306,095	(6 <i>,</i> 000)	300,095	-	300,095
	Total Appropriation	2,087,895	-	2,087,895	-	2,087,895
71	Drinking Water Capital Fund					
	Capital Outlay	2,839,000	-	2,839,000	-	2,839,000
	Contingency	288,000	-	288,000	-	288,000
	Total Appropriation	3,127,000	-	3,127,000	-	3,127,000
72	Wastewater Reclamation Capital Fund					
	Capital Outlay - Treatment	1,564,000	120,000	1,684,000	-	1,684,000
	Contingency	481,834	(120,000)	361,834	-	361,834
	Total Appropriation	2,045,834	-	2,045,834	-	2,045,834
73	Watershed Protection Capital Fund					
	Capital Outlay	300,000	-	300,000	-	300,000
	Contingency	50,000		50,000		50,000
	Total Appropriation	350,000	-	350,000	-	350,000

INTRODUCED AND ADOPTED THIS 21st DAY OF FEBRUARY 2023.

OAK LODGE WATER SERVICES

Title	Business from the Board
ltem No.	8
Date	February 21, 2023

Summary

The Board of Directors appoints representatives to serve as OLWS liaisons or representatives to committees or community groups.

Directors assigned specific roles as OLWS representatives are placed on the agenda to report to the Board on the activities, issues, and policy matters related to their assignment.

Business from the Board may include:

- a. Individual Director Reports
- b. Tabled Agenda Items

OAK LODGE WATER SERVICES 2023 BOARD LIAISON ASSIGNMENTS

Board/Committee	Primary Liaison	Alternate Liaison	Meeting Cadence
American Water Works Association (AWWA)	All Directors	N/A	Varies
Chamber of Commerce	Ginny Van Loo	Susan Keil	Monthly, Third Wednesday 11:45 a.m. – 1:15 p.m.
Clackamas River Water	Kevin Williams	Paul Gornick	Monthly, Second Thursday 6 p.m.
Clackamas County Coordinating Committee (C-4)	Paul Gornick	Susan Keil	Monthly, First Thursday 6:45 p.m.
Healthy Watersheds	Kevin Williams	OPEN	
Jennings Lodge CPO	Kevin Williams	Paul Gornick	Quarterly, Fourth Tuesday 6 p.m.
North Clackamas County Water Commission (NCCWC)	1: Paul Gornick 2: Kevin Williams	Susan Keil	Quarterly, Fourth Thursday (Jan, Mar, June, Sept) 5:30 p.m.
Oak Grove Community Council	Heidi Bullock	Susan Keil	Monthly, Fourth Wednesday 7 p.m.
Regional Water Providers Consortium (RWPC)	Kevin Williams	Paul Gornick	3x Annually, First Wednesday 6:30 p.m.
Special Districts Association of Oregon (SDAO)	All Directors	N/A	Varies
Sunrise Water Authority (SWA)	Paul Gornick	Kevin Williams	Monthly, Fourth Wednesday 6 p.m.

Business from the Board Report Heidi Bullock January 2022

NOTE: I had planned to attend this meeting and had it on my calendar, but sometime between leaving the office and getting home that evening I completely forgot about it. My apologies.

Below is the agenda for your reference.

Oak Grove Community Council Meeting January 25, 2023

AGENDA

6:50 - 7:00 Connect to Zoom

- 7:00 Welcome, Introductions, and Officer reports
 - Dec 7th, 2022 regular meeting attendance
 - Secretary's update draft minutes from Dec 7,2022
 - Treasurer's update
 - Officer Election update

7:10 Program:

- Wildlife and Conservation Priorities in Urban Clackamas County
 - Susan Barnes, Regional Wildlife Conservation Biologist, Oregon Department of Fish and Wildlife
- Land Use Application Review Team
- 8:00 ABC (committee) updates and open recruitments
- 8:10 Announcements
- 8:15 Schedule review:
 - Future OGCC Meetings 7 pm at Zoom: Feb 22, Mar 22
 - Future OGCC Board Meetings 6:45 pm at Zoom: Feb 6, Mar 6
- 8:20 Adjourn/Social time

Business from the Board Paul Gornick's Liaison Report – February 2023

January 25, 2023 - Sunrise Water Board Meeting (hybrid meeting)

- Board approved new Systems Development Charge, reflecting a 10.47% increase in the ENR Construction Cost Index. The new SDC is \$11.775, or with meter installation included, \$12,075.
- Board appointed Jamey Pietzold as budget officer and adopted the formal budget calendar.
- In April 2021, board adopted a 3-year rate plan by resolution, which allowed the board to adjust rates each year between 0-5%. Acknowledging the CPI is well above the upper limit of the range, the board adopted by resolution the full <u>5% increase</u>, to be applied to both the monthly service charge and water rates.
- Board acknowledged receipt of the 2021-2022 Annual Comprehensive Financial Report (ACFR) and communication letter from the auditors Grove, Mueller, and Swank LLP.
- Finance Director Jamey Pietzold presented for discussion of the Paid Leave Oregon plan, with information about State allowing equivalent plans to be offered by commercial insurance carriers (only currently approved carrier is Standard Insurance). Jamey will monitor developments for commercial insurance. (Note: Board members are included in employee count for PLO if they receive a W-2 for stipend payments.)
- General Manager's report Wade Hathhorn noted that flows on the lower Clackamas are now around their historic median levels. The new admin/operations shop building now has sides and a roof, and the administration building walls and steel framing are in place in anticipation of roof work next week. Cold weather damage to some steel to concrete connections are under repair. Building completion is expected in June.
- A new website is available to view progress photos of the facility here: <u>New Facility Sunrise</u> <u>Water Authority</u> Wade also noted that SWA has two new hires, an accounting specialist and a senior regulatory specialist.

January 26, 2023 – North Clackamas County Water Commission Board Meeting (hybrid meeting)

- Board appointed budget officer and approved budget calendar.
- Board approved resolution waiving the true-up for FY2021-2022
- Board, acting as the Local Contract Review Board, approved the Notice of Intent to Award contract for the Sand Replacement Project to Tapani, LLC. Bid amount was \$1.5 million versus the estimate of \$1.3 million. Replacement is for two of the four sand filter basins.

February 02, 2023 – Clackamas County Coordinating Committee (C4) Meeting

- Chris Lyons (ClackCo Government Affairs) gave a legislative update. There are more than 2,000 bills introduced, but at this time most are placeholders without language. He expects a more detailed update for the March C4 meeting.
- Metro has issued a "call for projects" to update the near-term and long-term priorities for the 2023 Regional Transportation Plan. Karen Buerhig went over the priorities and

schedule for the Clackamas Transportation Advisory Committee over the next few months.

- With several new elected officials replacing prior members of C4, appointments were made to the Joint Policy Advisory Committee on Transportation and the Metro Policy Advisory Committee. Appointments to the Region 1 Area Commission on Transportation and the Regional Toll Advisory Committee were deferred to the February meeting of the C4 Metro Subcommittee. (Note: For the most part, these positions are specifically allocated to representatives of urban cities, rural cities, etc.)
- Jamie Stasny (ClackCo Transportation and Land Use Policy Coordinator), gave an update on I-205 tolling and upcoming project milestones. A video of her presentation can be seen on the YouTube video of the C4 meeting, see link below.
- There was a discussion of having an in-person C4 retreat in early summer. The past two COVID-impacted years has caused cancellation of in-person events, which made it difficult to have a robust discussion of priorities of C4 for the coming year.
- A draft of the Clackamas County Climate Action Plan was presented, see link here: <u>48536ca2-ccea-460d-ab75-0a6290cf90a9 (clackamas.us)</u>
- The C4 meeting packet can be found here: <u>88c8b2f5-95c3-49e4-a03c-f5cef42c9867</u> (clackamas.us)
- A video of the C4 meeting can be found on YouTube, here: (1) Clackamas County Coordinating Committee (C4) - February 2023 - YouTube

STAFF REPORT

То	Board of Directors
From	Aleah Binkowski, Human Resources Manager
Title	Human Resources Monthly Report
Item No.	9b
Date	February 21, 2023

Summary

The Board has requested updates at regular meetings on the status of OLWS operations.

Communications and Outreach

Below is an overview of planned customer outreach and communication by the numbers between January 2023 – July 2023 as of February 2, 2023. The numbers below are subject to increase as more community outreach events/meetings are scheduled:

- 4 Customer Newsletters by mail
- 4 Customer Newsletters by email
- 4 planned community events
- 4 postcard mailings
- 2 all customer mailings about upcoming capital projects
- 1 dedicated webpage for Active Projects
- 1 community pop-up event

OLWS continues to look for new ways to connect with customers:

We hosted a National Latte Day Pop-up Event on Saturday, February 11, 2023. You can't have coffee without water! We gave away free lattes at Awakening Coffee (2144 SE Oak Grove Blvd, Oak Grove, OR 97267) from 7:30 AM – 2:00 PM. OLWS had a table at Awakening Coffee and were available to answer customer questions, comments, or concerns. We also handed out emergency water bags and leak detection kits. We were able to connect with 130 members of the community and were able to have multiple meaningful conversations with the rate payers of OLWS. A huge thank you to Alexa Morris and Antonio Canisales for representing OLWS at the event. The event was so successful Awakening Coffee had to shut down 30 minutes early because they were running low on stock. During the event Historic Downtown Oak Grove posted the following to their Facebook feed:

 "Investing in Your Community" Yard Signs have been created to place next to active projects to communicate the investments OLWS is making in their system. Anytime staff will be working on a site for more than one business day, a sign will be put up. Then if neighbors walk by and are curious as to what's going on, they can scan the QR code, which will take them to an "Active Projects" webpage that will feature information about the project.

• The Board does routine updates for community groups in the OLWS service area, including and not limited to the following:

- 1. Oak Grove Community Council
- 2. Jennings Lodge Community Planning Organization
- 3. Rotary Club of Milwaukie
- 4. Gladstone Kiwanis
- Potential groups for future engagement and presentations include:
 - 1. Historic Downtown of Oak Grove
 - 2. Rotary Club of Gladstone/Oak Grove
 - 3. Friends of the Trolley Trail
 - 4. Oak Grove Garden Club
 - 5. Willamette View
 - 6. Rose Villa
 - 7. Oak Lodge History Detectives
 - 8. Friends of the Oak Lodge Public Library
 - 9. Oak Grove United Methodist Church
 - 10. Kings of King Lutheran Church
 - 11. Good Roots Community Church
 - 12. Two Rivers Church
 - 13. Life Journey Church
 - 14. Faith on Hill Church
 - 15. Oak Hills Presbyterian Church
 - Girls Scouts Troop 45035 (Grades 11th, 12th) Association is Clackamas Fire District 1 – Station 3
 - 17. Girl Scouts Troop 31080 (Grade 9) Association is Somerset Assisted Living
 - Girl Scouts Troop 45075 (Grades 4th, 9th) Association Clackamas County Library – Oak Lodge
 - 19. Girl Scouts Troop 45708 (Grades 6th, 11th) Association North Clackamas Park
 - 20. Scouts Troop 5376. Meet at Oak Hills Presbyterian Church
 - 21. Scouts Troop 0376. Meet at Oak Hills Presbyterian Church
 - 22. Scouts Troop 0259. Meet at Milwaukie Lutheran Church
 - 23. Scouts Troop 5259. Meet at Milwaukie Lutheran Church

Outreach and Communication Specialist, Alexa Morris has been incredibly active in professional associations related to the work we do at OLWS. She continues to look for ways to engage at the regional level with other water communicators and with local businesses and customers. Morris participates in the following:

- 1. Pacific Northwest Section of the American Water Works Association (PNWS-AWWA)
 - a. Public Information Committee Member, 2021 Present
 - b. Morris presented on a panel at the PNWS-AWWA Conference in Tacoma, WA in April 2022 about emergency communications.

- c. Morris will be presenting on a panel at the PNWS-AWWA Conference in Kennewick, WA in April 2023 titled, Communications Then and Now In An Everchanging COVID Environment.
- 2. Oregon Association of Clean Water Agencies (OR-ACWA)
 - a. Education Committee, Vice Chair (July 2022- June 2023)
 - i. Morris will be installed as the Chair of the Education Committee in July 2023 and will serve for one year in this position.
- 3. Rotary Club of Milwaukie
 - a. Morris has been active in the Rotary Club of Milwaukie since 2019. Morris will become President of the Club beginning July 2023 and will serve for one year in this position. Members of this Club have their businesses in the OLWS service area or are residential customers. For example, Olson Bros and Milwaukie Floors & More.
 - b. The Club meets every Tuesday at noon at the Milwaukie-Portland Elks Lodge (13121 SE McLoughlin Blvd, Oak Grove, OR 97222).

Collaboration with other agencies is a key to the success of OLWS. Morris collaborates with other water communicators to ensure OLWS is doing everything we can to communicate what's happening at OLWS.

- In 2022, Morris started a quarterly network event, where communicators from other entities providing water and wastewater services to the community are invited to attend and share ideas.
- The water industry needs communications now more than ever. Stephanie Corso is the CEO/Cofounder of the Rogue Water Lab which was established three years ago. Rogue Water Lab https://twitter.com/RogueWaterLab is revolutionizing the way the water industry communicates. It is a nonprofit hub for all things water communications that are digital, dynamic, and accessible with tools, resources, inspiration, tribal collaboration, podcasts, video, workshops, and more. All geared towards behavior change through the lens of communication. As part of this movement, Catalyst was created. Catalyst is a master mind summit with a maximum of 100 water communicators attendees who are ready to collaborate and bring new ideas to the water industry. Morris was awarded a scholarship to attend Catalyst in San Antonio, Texas in 2022 which is where the event was founded. 18 states were represented at Catalyst 2022. Morris is working with TVWD to bring Catalyst to Portland, OR in September 20 22, 2023 in increase collaboration amongst water communicators in the Pacific Northwest.

STAFF REPORT

То	Board of Directors
From	Gail Stevens, Finance Director
Title	Finance Department Monthly Report
Item No.	9c
Date	February 21, 2023

Summary

The Board has requested updates at the Regular Meetings of the Board on the status of the OLWS Operations.

Highlights of the Month

- Transition to the Authority financial software with Springbrook is on timeline.
- The Low-Income Household Water Assistance program began in July 2022, and we have received 14 approvals from Clackamas County as of February 7, 2023.
- The Accounts Receivable balance decreased by (1.58%), the average delinquent balance decreased by \$5.90, and the number of delinquent accounts decreased by 12.
- Utility bill payments in January were less than the December 31st billed amounts.

Authority Implementation

The Authority bank account and services with Wells Fargo have been established. All existing services are prepared for transition once the financial software database is live.

Implementation of the Springbrook database for the Authority is currently anticipated to go live in March 2023. Current project activities include completing all accounting activities in the test environment for accuracy and verification of supporting tables. This has been completed for Accounts Payable, Payroll, Human Resources, and Clearing House modules. Activities for February include testing the Utility Billing, Cash Receipts, Purchase Orders and Bank Reconciliation Modules.

Low Income Household Water Assistance (LIHWA)

In 2022, Clackamas County Board of Commissioners partnered with Oak Lodge Water Services to provide water utility customers assistance through the Low-Income Household Water Assistance (LIHWA) program. Clackamas County continues to provide customers from Oak Lodge Water

Services assistance and will continue while funds are still available. As of February 07, 2023, fourteen (14) customers have been approved for assistance totaling \$10,135.

Accounts Receivable Review

The Accounts Receivable (A/R) balances as of January 31, 2023, compared to December 31, 2022, decreased by (1.58%). These are the findings:

1. A/R Balance owed to OLWS has decreased by \$23,869, after accounting for the delta between billing cycles.

A/R Balance	11/30/2022	12/31/2022	1/31/2023
Bi-Monthly Residential	\$ 901,836	\$ 1,020,697	\$ 841,526
Large Meters	503,084	493,504	544,576
Total	1,404,920	1,514,201	1,386,102
Variance	(226,024)	109,281	(128,099)
Billing Cycle Variance	242,307	(117,893)	104,229
	16,283	(8,613)	(23,869)
	1.00%	-0.61%	-1.58%

The total number of delinquent accounts decreased by 12 accounts as of January 31, 2023, compared to December 31, 2022. The average balance per account decreased by (1.8%) or (\$5.90).

Delinquent Accounts	_	11/30/2022	12/31/2022	01/31/2023
Over 60 Days	\$	182,806	\$ 178,215	\$ 171,133
Number of Accounts		528	542	530
Average Balance per Acct.	\$	346	\$ 329	\$ 323
		8.6%	-5.0%	-1.8%

3. The percentage of accounts that are current, accounts paid in full within 30 days, has increased by 0.34% compared to prior month. The shift is from current to all other categories.

Account %	11/30/2022	12/31/2022	01/31/2023
Current	85.82%	85.36%	85.70%
30-60 Day Grace	5.59%	5.62%	5.41%
Delinquent	5.85%	6.00%	5.86%
Credit Balance	2.75%	3.01%	3.03%

Each month, the District hangs red tags for accounts in delinquent status, over 60 days past due, and with a balance over \$250. The red tag process allows 7 days for the customer to provide payment. If payment is not received, water is then shut off.

	October	November	December	January
	2022	2022	2022	2023
Cycle	Cycle 2	Cycle 1	Cycle 2	Cycle 1
# Red Tags	96	85	88	88
Minimum Delinquent Balance	\$ 250	\$ 250	\$ 250	\$ 250
# Shut off Service Requests	4	13	9	4

Billing Payment Rate

In January 2023, the District received \$25,300 more in payments than was billed on December 31, 2022.

	October 2022	November 2022	December 2022	January 2023
Utility Billing Sales	\$ 1,276,715	\$ 1,387,523	\$ 1,145,216	\$ 1,263,108
Cash Receipts	1,263,587	1,378,532	1,166,110	1,288,409
% Collected	99.0%	99.4%	101.8%	102.0%

Attachments

1. Checks by Date Report for January 2023

eck No. (Check Date	Name	Comment	Module Void Clear Date	Amount
0	1/4/2023	Internal Revenue Service		AP	1,236.70
0	1/4/2023	Oregon Department Of Revenue		AP	416.25
0	1/4/2023	State of Oregon Savings Growth Plan		AP	100.00
0	1/10/2023	TSYS		AP	11,043.09
0	1/11/2023	Wells Fargo Bank		AP	427.93
0	1/13/2023	Internal Revenue Service		AP	33,131.23
0	1/13/2023	Nationwide Retirement Solutions		AP	860.00
0	1/13/2023	Oregon Department Of Revenue		AP	10,824.79
0	1/13/2023	State of Oregon Savings Growth Plan		AP	3,536.00
0	1/13/2023	VALIC c/o JP Morgan Chase		AP	1,707.59
0	1/13/2023	Payroll Direct Deposit	DD 00001.01.2023	PR	83,138.21
0	1/27/2023	Internal Revenue Service		AP	31,745.02
0	1/27/2023	Nationwide Retirement Solutions		AP	860.00
0	1/27/2023	Oregon Department Of Revenue		AP	10,114.30
0	1/27/2023	State of Oregon Savings Growth Plan		AP	3,536.00
0	1/27/2023	VALIC c/o JP Morgan Chase		AP	1,705.21
0	1/27/2023	Payroll Direct Deposit	DD 00002.01.2023	PR	76,875.75
0	1/31/2023	Portland General Electric		AP	31,285.62
H Disbur	sement Act	ivity Subtotal			302,543.6
ded ACH	Activity				0.00
usted AC	H Disburse	ment Activity Subtotal			302,543.69

Paper Check Disbursement Activity

•	Check Date	Name	Comment	Modu	Ile Void Clear Date	Amount
		Customer Refund	Comment	AP	Void	12.23
48664		Employee Paycheck		PR		2,436.47
48665		Alexin Analytical Laboratories, Inc.		AP		7,520.00
48666		Apex Labs		AP		3,825.00
48667	1/6/2023	Brown and Caldwell		AP		8,680.50
48668	1/6/2023	BTL Northwest		AP		223.72
48669	1/6/2023	Byrne Software Technologies, Inc		AP		781.25
48670	1/6/2023	Cable Huston LLP		AP		29,599.00
48671	1/6/2023	Cintas Corporation - 463		AP		82.66
48672	1/6/2023	City Of Gladstone		AP		255.28
48673	1/6/2023	City Of Milwaukie		AP		1,826.32
48674	1/6/2023	Consolidated Supply Co.		AP		2,700.48
48675	1/6/2023	Convergence Networks		AP		8,005.00
48676	1/6/2023	D&H Flagging, Inc.		AP		4,266.53
48677	1/6/2023	H.D. Fowler Company		AP		4,972.23
48678	1/6/2023	Horner Enterprises, Inc.		AP		7,703.64
48679	1/6/2023	Industrial Software Solutions		AP		13,875.00
48680	1/6/2023	J. Thayer Company		AP		658.65
48681	1/6/2023	Net Assets Corporation		AP		427.00
48682	1/6/2023	OCCMA		AP		414.61
48683	1/6/2023	One Call Concepts, Inc.		AP		417.96
48684	1/6/2023	Portland Engineering Inc		AP		300.00
48685	1/6/2023	Employee Reimbursement		AP		61.49
48686	1/6/2023	Relay Resources		AP		7,032.75
48687	1/6/2023	Robert HalfTalent Solutions		AP		13,919.42
48688	1/6/2023	Seattle Ace Hardware		AP		36.37
48689		Springbrook Holding Company LLC		AP		12,190.50
48690		Stein Oil Co Inc		AP		900.87
48691		Streamline		AP		480.00
48692	1/6/2023	Tice Electric Company		AP		41,190.00
48693		Top Industrial Supply		AP		290.66
48694	1/6/2023	Trench Line Excavation, Inc.		AP		200,966.25
48695	1/6/2023	Watershed, LLC		AP		2,024.46
48696		Employee Paycheck		PR		2,088.06
48697		BMS Technologies		AP		4,158.64
48698		Les Schwab		AP	Void	747.00
48699	1/13/2023			AP		2,266.17
48700		Northwest Natural		AP		561.42
48701	1/13/2023	Oregon DEQ		AP		5,340.00

48702	1/13/2023 Quality Control Services	AP	200.00
48703 48704	1/13/2023 Trench Line Excavation, Inc. 1/13/2023 Wallis Engineering PLLC	AP AP	4,457.98 492.80
48705	1/13/2023 Waste Management Of Oregon	AP	280.39
48706	1/20/2023 AFSCME Council 75	AP	841.80
48707	1/20/2023 Airgas, Inc	AP	134.62
48708	1/20/2023 Cintas Corporation	AP	616.99
48709	1/20/2023 Cintas Corporation - 463	AP	98.01
48710 48711	1/20/2023 City Of Milwaukie 1/20/2023 Coastal Farm & Home Supply	AP AP	333.60 269.99
48712	1/20/2023 Comcast	AP	527.36
48713	1/20/2023 Consolidated Supply Co.	AP	66.72
48714	1/20/2023 Contractor Supply, Inc.	AP	307.50
48715	1/20/2023 Dr. Lance F. Harris D.C.	AP	100.00
48716	1/20/2023 FLO-Analytics	AP	2,282.50
48717	1/20/2023 GT Excavating, LLC	AP	11,705.00
48718 48719	1/20/2023 J. Thayer Company	AP AP	69.76 2.71
48719	1/20/2023 Customer Refund 1/20/2023 Northstar Chemical, Inc.	AP	883.55
48721	1/20/2023 Pacific Power Group, LLC	AP	275.60
48722	1/20/2023 Pamplin Media Group	AP	42.47
48723	1/20/2023 Portland Engineering Inc	AP	180.00
48724	1/20/2023 Relay Resources	AP	7,032.75
48725	1/20/2023 Seattle Ace Hardware	AP	132.71
48726	1/20/2023 Secure Pacific Corporation	AP	359.36
48727	1/20/2023 Stein Oil Co Inc	AP	568.07
48728 48729	1/20/2023 Unifirst Corporation 1/20/2023 Waste Management Of Oregon	AP AP	888.94 150.94
48730	1/20/2023 Xylem Water Solutions USA Inc	AP	4,167.75
48731	1/27/2023 Employee Paycheck	PR	2,088.07
48732	1/30/2023 Customer Refund	AP	1.24
48733	1/30/2023 Aerzen Rental USA LLC	AP	3,340.00
48734	1/30/2023 AFLAC	AP	1,652.80
48735	1/30/2023 AFSCME Council 75	AP	841.80
48736	1/30/2023 Aks Engineering & Forestry	AP	4,266.39
48737 48738	1/30/2023 Employee Reimbursement 1/30/2023 ALFA Laval Inc.	AP AP	67.94 21,656.71
48739	1/30/2023 ALFA Laval IIIC.	AP	838.22
48740	1/30/2023 Applied Industrial Technologies	AP	1,770.23
48741	1/30/2023 Brown and Caldwell	AP	1,074.50
48742	1/30/2023 Cavanaugh & Associates. PA	AP	225.00
48743	1/30/2023 City of Woodland	AP	170.27
48744	1/30/2023 Clackamas County	AP	11,641.68
48745	1/30/2023 Columbia Land Trust	AP	3,056.45
48746 48747	1/30/2023 Contractor Supply, Inc. 1/30/2023 Convergence Networks	AP AP	63.50 495.00
48748	1/30/2023 Cuers, Inc	AP	2,824.67
48749	1/30/2023 Daily Journal Of Commerce	AP	254.20
48750	1/30/2023 Delta Industries, Inc	AP	287.69
48751	1/30/2023 Detemple Company, Inc.	AP	2,183.98
48752	1/30/2023 Eurofins Environment Testing Northwest, LLC	AP	10,907.50
48753	1/30/2023 GT Excavating, LLC	AP	34,556.60
48754	1/30/2023 Hach Company	AP	605.60
48755	1/30/2023 Jim Fisher Roofing + Constr, Inc 1/30/2023 Customer Refund	AP AP	3,870.00
48756 48757	1/30/2023 Customer Returns	AP	9.96 1,365.00
48758	1/30/2023 Lou's Gloves	AP	540.20
48759	1/30/2023 Madison Biosolids, Inc.	AP	2,373.03
48760	1/30/2023 McFarlane's Bark, Inc.	AP	74.75
48761	1/30/2023 Merina & Company, LLP	AP	2,581.25
48762	1/30/2023 Customer Refund	AP	133.59
48763	1/30/2023 Employee Reimbursement	AP	94.94
48764	1/30/2023 NCCWC 1/20/2023 Customer Refund	AP	68,148.17
48765 48766	1/30/2023 Customer Refund 1/30/2023 North Clackamas Urban Watershed Council	AP AP	4,548.42 13,875.00
48767	1/30/2023 Olson Bros. Service, Inc.	AP	2,492.62
48768	1/30/2023 Oregon Association of Clean Water Agencies	AP	1,750.00
. 5. 60		,	.,. 55.66

48769	1/30/2023 Oregon DEQ	AP Void	4,260.00
48709	1/30/2023 O'Reilly Auto Parts	AP	4,200.00
48771	1/30/2023 Pacific Northwest Pollution Prevention Resource Ce	AP	2,585.00
48772	1/30/2023 Pamplin Media Group	AP	42.47
48773	1/30/2023 Polydyne, Inc.	AP	4,142.07
48774	1/30/2023 Portland Engineering Inc	AP	3,158.25
48775	1/30/2023 Precision Locksmith Service	AP	135.00
48776	1/30/2023 RH2 Engineering, Inc.	AP	8,252.50
48777	1/30/2023 Seattle Ace Hardware	AP	609.47
48778	1/30/2023 Customer Refund	AP	12.23
48779	1/30/2023 Stark Street Lawn and Garden	AP	2.00
48780	1/30/2023 Stein Oil Co Inc	AP	284.48
48781	1/30/2023 Streamline	AP	480.00
48782	1/30/2023 Customer Refund	AP	123.88
48783	1/30/2023 Technology Integration Group	AP	600.00
48784	1/30/2023 Top Industrial Supply	AP	282.4
48785	1/30/2023 United Fire, Health, & Safety	AP	293.6
48786	1/30/2023 USABlueBook	AP	374.8
48787	1/30/2023 Wallis Engineering PLLC	AP	27,241.20
48788	1/30/2023 Water Systems Consulting, Inc.	AP	101,107.8
48789	1/30/2023 Watershed, LLC	AP	387.5
48790	1/30/2023 Customer Refund	AP	1.2
48791	1/30/2023 William H. Reilly & Co	AP	4,395.0
48792	1/30/2023 Customer Refund	AP	97.4
48793	1/30/2023 Zoro	AP	211.50
per Checl	k Disbursement Activity Subtotal		796,555.2
ided Pape	er Check Disbursement Activity		5,019.23
justed Pa	per Check Disbursement Activity Subtotal		791,536.04
	Total Void Check Count:		
	Total Void Check Amount:		5,019.2
	Total Valid Check Count:		5,019.2
	Total Valid Check Amount:		1,094,079.73
	Total Check Count:		1,094,079.75
			143

Total Check Amount:

STAFF REPORT

То	Board of Directors
From	Brad Albert, District Engineer
Title	Technical Services Monthly Report
Item No.	9d
Date	February 21, 2023

Summary

The Board has requested updates at regular meetings on the status of the OLWS operations.

Highlights

- Smoke testing completed and data review in progress for Lift Station 5 basin area.
- Flow Monitors set in manholes in Lift Station 5 basin area and should be complete this month.
- Aldercrest Water Main Replacement project complete excluding final paving.
- Lift Station 2 construction bids finalized and award consideration before the Board Feb 2023.

Watershed Protection

After the ice event, the beginning of 2023 has brought with it some calmer weather. OLWS staff have been monitoring beavers in the area and removing debris from dams to make sure creek water levels remain manageable. Several customers have been connected with USDA staff to mitigate beaver and nutria on private property. OLWS staff keep track of the FTE required to provide this work on an ongoing basis.

Regular stormwater monitoring continues for the permit year. Staff take regular samples of runoff from historical sampling points during rain events of a certain size and capture that data to be submitted to the Department of Environmental Quality at the end of each permit year. For the new MS4 Permit, OLWS was required to create a stormwater monitoring plan in partnership with other Clackamas County co-permittees. The updated *Clackamas County Comprehensive Stormwater Monitoring Plan* is out for public comment through the end of February. The new CCCSMP includes pesticide monitoring requirements as part of the updates to the NPDES 2021-2026 MS4 Permit.

Erosion Control inspections have continued through the wet season, with new permits coming in for planned projects as the season changes. Staff work with individual contractors on a one-

to-one basis, providing education about how to keep sediment out of local waterways. One reason to keep soil firmly contained on the ground is because soil contains high amounts of Mercury. When Mercury gets into the water it has deleterious effects on fish and other aquatic life. Contractors typically are very positive about making sure Best Management Practices (BMPs) are put into place to capture and contain sediment before it leaves a project site.

This winter the field operations staff have been working with stormwater staff to respond to customer concerns around stormwater. When a customer contacts OLWS about stormwater, they speak with Lara Christensen, Water Quality Coordinator. Lara works with the customer to assess the issue and decide on appropriate response measures. She may follow up with an inspection, assign a work team to clean out a local catch basin, or possibly forward the problem to the Clackamas County Department of Transportation and Development (CCDTD) for follow up. After each customer contact, the issue is logged into Lucity with time, materials, and vehicle use attached to the concern. If customers have follow up questions, OLWS staff works hard to make sure their concerns are addressed.

Permit Activity

	January 2023 Development Activity				
FY2022-2023	This Month	Last Month	Fiscal Year-to-Date	This Month Last Year	Last Year-to- Date
Pre-applications Conferences	1	1	13	2	9
New Erosion Control Permits	0	1	15	2	16
New Development Permits	0	0	6	2	14
New Utility Permits	6	4	42	0	26
Wastewater Connections	0	1	5	1	10
Sanitary SDC Fees Received	\$0	\$5,165	\$25,825.00	\$5,165.00	\$51,650
Water SDC Fees Received	\$11,330	\$16,994	\$141,621.00	\$0.00	\$123,145
Plan Review Fees Received	\$400	\$800	\$11,451.00	\$5,119.26	\$19,403
Inspection Fees Received	\$0	\$930	\$8,177.50	\$2,039.63	\$15,013

Attachments

1. Development Tracker

Project Status	Address	Type of Development	Notes	Last Updated
Warranty Period	13505 SE River Rd.	Residential: Rose Villa Phase 4 Medical Building and Replace Dwelling Units	Final Inspections Completed. Next step: asbuilt review and bond release.	2/1/23
Warranty Period	1901 SE Oak Grove Blvd.	Redevelopment: Replace a portion of existing New Urban School	Final Inspections Completed. Next step: asbuilt review and bond release.	2/1/23
Under Construction	4410 SE Pinehurst Ave.	Residential: 17-lot Subdivision	Final Inspections Pending. Next step: asbuilt review and bond release.	2/1/23
Under Construction	15603 SE Ruby Dr.	Residential: 3-lot Partition	OLWSD Inspections Occuring	2/1/23
Under Construction	6364 SE McNary Rd.	Residential: 15-lot Partition	Final Inspections Pending. Next step: asbuilt review and bond release.	2/1/23
Under Construction	2316 SE Courtney Ave.	Residential: 14 rowhomes and 6 single family dwellings	OLWSD Inspections Occuring	2/1/23
Under Construction	4322 SE Pinehurst Ave.	Residential: 7-lot subdivision	OLWSD Inspections Occuring	2/1/23
Under Construction	15515 SE Wallace Rd.	Residential: 2-lot Partition	OLWSD Inspections Occuring	2/1/23
Under Construction	21E11AB01100 (SE River Rd. @ SE Maple St)	Residential: 7-lot subdivision	OLWSD Inspections Occuring	2/1/23
Under Construction	5901 SE Hull Ave.	Redevelopment: Candy Lane School	Current OLWSD Review	2/1/23
Plan Review	3870 SE Hillside Dr.	Residential: Modification of previously approved 13-lot subdivision	Current OLWSD Review	2/1/23
Plan Review	3421 SE Vineyard Rd.	Residential: Two tri-plexes and one duplex	Current OLWSD Review	2/1/23
Plan Review	16103 SE Southview Ave	Residential: 7-lot subdivision	Current OLWSD Review	2/1/23
Plan Review	13822 SE Oatfield Rd	Residential: 10-lot subdivision	Current OLWSD Review	2/1/23
Land Use Application	3811 SE Concord Rd	Tenant Improvement: Concord School	Land Use conditions sent to CC DTD. County land use expiration timeline.	2/1/23
Land Use Application	15510 SE Wallace Rd	Residential: 15-lot Partition	Land Use conditions sent to CC DTD. County land use expiration timeline.	2/1/23
Pre-Application	15014 SE Woodland Way	Residential: 2-lot Partition	Pre-app Comments sent to CCDTD. County land use expiration timeline.	2/1/23
Pre-Application	5314 SE Jennings Ave	Residential: 4-lot partition	Pre-app Comments sent to CCDTD. County land use expiration timeline.	2/1/23
Pre-Application	14018 SE Linden Ln	Residential: TriPlex	Pre-app Comments sent to CCDTD. County land use expiration timeline.	2/1/23
Pre-Application	6300 SE Roethe Rd	Residential: 2-lot Partition	Pre-app Comments sent to CCDTD. County land use expiration timeline.	2/1/23
Pre-Application	15315 SE Woodland Way	Residential: 2-lot Partition	Pre-app Comments sent to CCDTD. County land use expiration timeline.	2/1/23

STAFF REPORT

То	Board of Directors
From	Brad Albert, District Engineer
Title	Utility Operations Monthly Report
Item No.	9e
Date	February 21, 2023

Summary

The Board has requested updates at regular meetings on the status of the OLWS operations.

Highlights of the Month

- Collection System Work
- Watershed Protection Work
- Water Distribution System Work
- Non-Revenue Water

Collection Work

Troubles with the camera truck continued into the month of January, our transporter feed started to cut out during operation, the transporter was taken in for repair and service for the first time in six years. Once repairs are finished, we will have a backup camera and transporter to include with the retrofit. The vehicle maintenance requirements will be logged into Lucity to set scheduled reminders in the future.

The loaner transporter was also under repair for a couple days during this time, while the two transporters were in the shop, we took the time to have the truck serviced by Clackamas County and the check engine lights addressed.

During the camera truck downtime, we utilized the push camera to inspect warranted lateral lines, review repairs, and check for root intrusions.

Line cleaning continued as normal, the newly purchased pole camera was utilized in assisting with line cleaning by visually inspecting lines before cleaning to determine if cleaning is necessary and avoid over cleaning of the lines. The pole camera can clearly view up to 300' of straight pipe segment.

During the end of January, we had the camera van and the line cleaning program running

smoothly. Vactor refresher training was done by Owen for the Water and Wastewater departments. Collections workers completed their recertification for the NASSCO Pipeline Assessment Certification Program and lift station maintenance training for collections was started.

Watershed Protection Work

The collections crew met with Brad Albert (District Engineer) and Elaine Murray (IT) to come up with a streamlined inspection form that will be applied to catch basin inspections, storm line inspections, and sewer system manhole structure inspections.

Training and testing of this new form and way of inspecting will be done in the coming weeks.

OLWS is reviewing the workload of removing beaver dams. OLWS has asked North Clackamas Parks for assistance in removing the beaver dams through Stringfield Park. The Parks Department is reviewing this request for assistance.


Water Distribution System Work

During the month of January, the crew continued work replacing or repairing hydrants, and continued flowing hydrants. They continued replacing water meters and worked on replacing broken meter boxes or raising them to proper grade. Brad Lyon and Brad Albert with Tory Wagoner of Cavanaugh & Associates, P.A. to assess different methods of doing the annual master meter testing required by the Non-Revenue Water Audit OLWS does every year to better track our non-revenue water. OLWS will be installing taps on the 24" and 16" water main in order to do volumetric testing of the two master meters. This method of testing is most accurate and least invasive on the water system.

Non-Revenue Water

The total water purchased in January was 63.1 MG. Non-revenue water totaled -12.3 MG with 1.49 million gallons in apparent losses, -14.1 million gallons in real losses, and 346,000 gallons for unbilled authorized consumption. The trailing twelve-month non-revenue water trend indicates the average non-revenue water over the past 12 months is 9.39 million gallons.

Wastewater

TV Van Video transporter electrical issue Deployment of the Pole Camera System

Live Viewing of the Pole Camera Feed

Pump Station Maintenance Training

Water

New hydrant install on Oak Grove Blvd

New sample station

New hydrant install Roethe Road

STAFF REPORT

Board of Directors
David Hawkins, Plant Superintendent
Plant Operations Monthly Report
9f
February 21, 2023

Summary

The Board has requested updates at regular meetings on the status of the OLWS operations.

Highlights of the Month

- Plant Process Update
- Plant Lighting Update
- Neuros Replacement Blower Delivered
- UV PLC Upgrade

Wastewater Treatment Plant

One of the lesser-known impacts of Inflow and Infiltration (I&I) on a Wastewater Treatment Plant (WWTP) is its effect on a permit parameter called Efficiency in Removal. As most know, we have a 30/30 winter BOD and TSS permit. However, every month the WWTP at OLWS must hit 15 other parameters, not including the biosolids side, to stay in compliance. These 15 parameters are comprised of dozens of tests that are performed monthly in the laboratory.

Two of our monthly parameters are Efficiency in Removal in both Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS). Every month the WWTP must remove 85% of all BOD and TSS that enters the plant. In the summer, when the wastewater flows are more concentrated, OLWS gets a fairly good idea of what comes in and what goes out to the river, making the efficiency in removal representative of what happens inside the plant. However, when the I&I comes in, the flows dilute the concentration of BOD and TSS, causing the concentration numbers to plummet as the flows go up, this is especially problematic on the influent side.

The lower the concentration on the influent side, the more difficult it is to meet the 85% Removal across the WWTP. Typically, in the summer our influent concentrations with respect to BOD and TSS are in the neighborhood of 200 to 300 mg/L. In the winter when flows come up, that number drops to under 150, and sometimes as low as 50. As an example, lets assume that

we averaged 50 mg/L BOD and TSS for the month of January. Even though we have a 30/30 BOD and TSS permit, we still must meet the 85% removal efficiency, meaning that we would have to remove 42.5 mg/L of both BOD and TSS, essentially turning our 30/30 winter permit into 7.5/7.5 for the month. Despite the I&I flows that January brought, we were still able to maintain permit all month and finish with a removal efficiency above 86%.

In early January, Tice Electric completed a major Capital Improvement Project, the Plant Lighting Upgrade. This was the first time since the upgrade of the WWTP back in 2012, that the lighting had been revamped. The old lighting, which was a mixture of metal halide and sodium vapor, had two major issues: first, they use a lot of power; second, they were on switches that were scattered around the 7-acre campus and had to be turned off and on manually. When everything was said and done, over 90 high powered, inefficient bulbs were replaced with highefficiency LED bulbs, as well as photocells, that automatically turn the lighting on and off throughout the WWTP. This project will not only save money by reducing power used by plant lighting by approximately half, but also increase safety and security at night.

The first of the Neuros replacement blowers was delivered in the last week of January. These new blowers were approved for purchase by the Board of Directors at the December 20th, 2022 meeting. District Engineer Haakon Ogbeide has been tirelessly working on drafting both a scope of work and a Request For Proposal for the installation of these blowers. Staff are hopeful the installation of both blowers will be completed by the end of fiscal year 2023. A huge thanks to Haakon for all his time and effort in getting the construction of this project going.

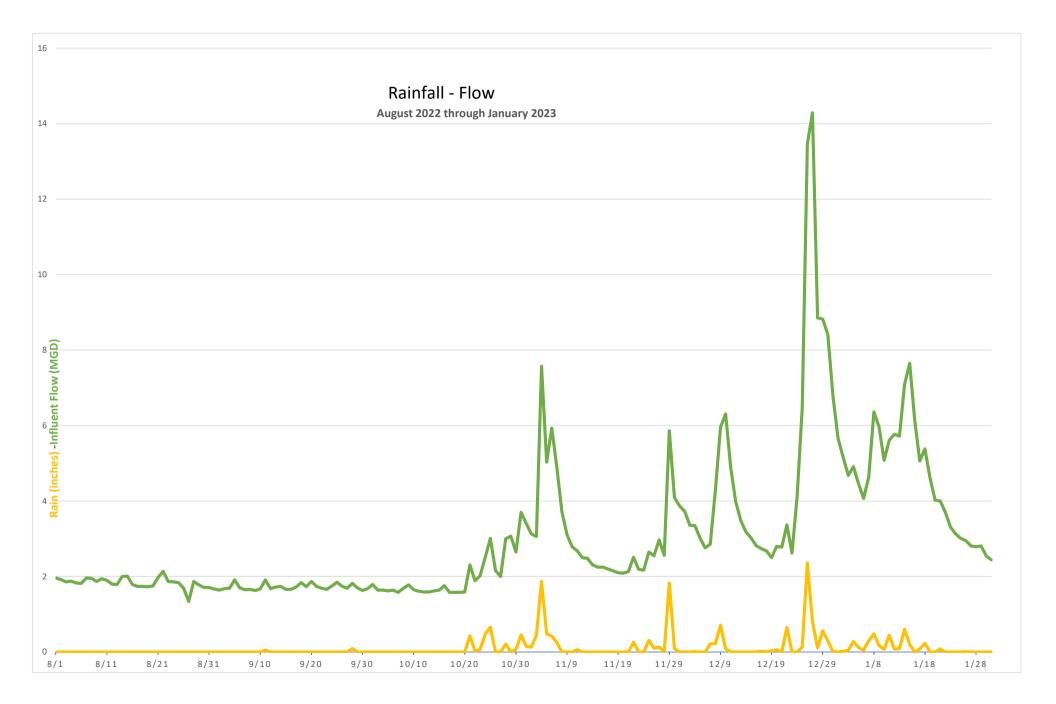
Another of the Capital Improvement Projects slated for fiscal year 2023 was to start upgrading the original Programmable Logic Controllers (PLCs) at the WWTP. For those unaware, PLCs are the electronic brains of the equipment at the WWTP. Each PLC controls numerous parts, such as pumps, valves, probes and fans. Since the WWTP has close to two dozen PLCs, this project will span multiple years, as replacing PLCs is not cheap. The First PLCs to be replaced will be in the areas of the Plant that are deemed most critical, where a failure of a PLC could lead to an immediate violation of the permit. The two most critical areas of the WWTP are UV disinfection and the Influent Pump Station. Staff are happy to report the first PLC upgrade, which took place at the Influent Pump Station, has been completed. This upgrade should provide OLWS with up-to-date software that can be easily programmed as well as peace of mind that the old PLCs will not suddenly crash and leave staff in a bad position.

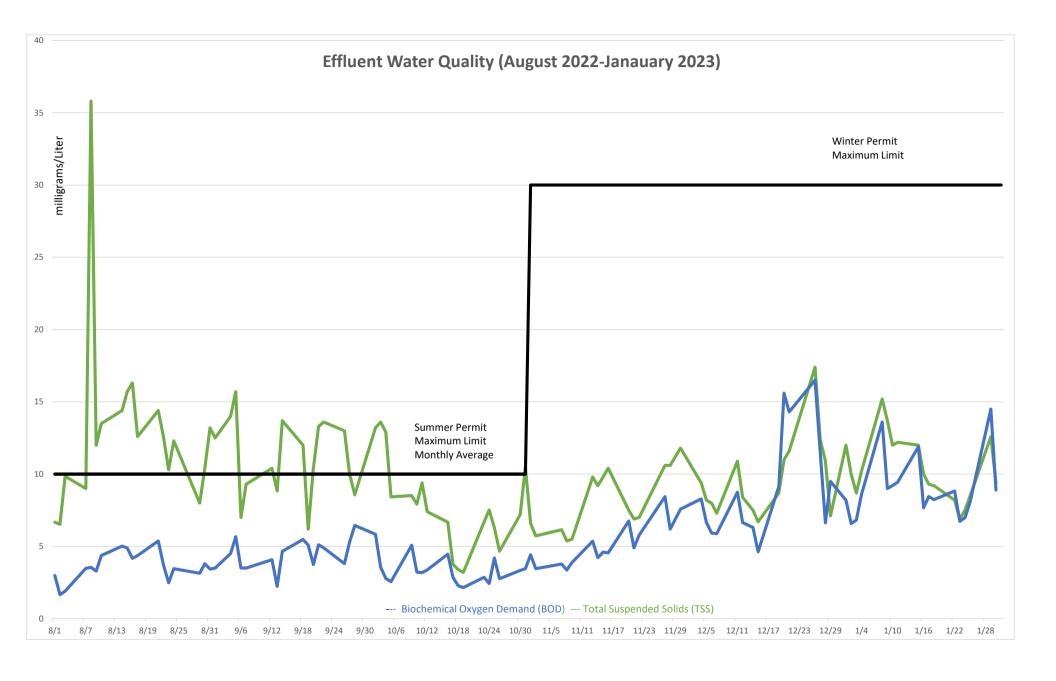
Attachments

- 1. Photo Pages of January 2023 Work
- 2. Rainfall vs. Flow Data Correlation for August 2022-January 2023
- 3. Plant Performance BOD-TSS Graph for August 2022-January 2023

Plant Operations Photo Page

Broken Rotometer due to Freezing.


Another Broken pipe due to Freezing.



Neuros Replacment Blower Delivered.

New Fire Monitor for Wetwell Cleaning.

TitleRecess to Executive SessionItem No.10DateFebruary 21, 2023

Summary

Convene Executive Session under ORS 192.660(2)(h) to consult with counsel concerning the legal rights and duties of a public body with regard to current litigation or litigation likely to be filed, and

ORS 192.660(2)(d) to conduct deliberations with persons designated by the governing body to carry on labor negotiations.

TitleAdjourn Executive SessionItem No.11DateFebruary 21, 2023

Summary

Adjourn Executive Session and make any necessary motions as a result of Executive Session discussions.

TitleAdjourn MeetingItem No.12DateFebruary 21, 2023

Summary

If there is no further business to be discussed, the Chair will note the time and adjourn the meeting.